Non-stationary Markov partitions for Pisot cocycles

Milton Minervino

joint with P. Arnoux, V. Berthé, W. Steiner and J. Thuswaldner

I2M, Aix-Marseille Université

March 9, 2016

$$\sigma: 1 \mapsto 12, \ 2 \mapsto 13, \ 3 \mapsto 1$$

$$\sigma(1) = 12$$

$$\sigma: 1 \mapsto 12, \, 2 \mapsto 13, \, 3 \mapsto 1$$

$$\sigma^2(1) = 1213$$

$$\sigma: 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1$$

$$\sigma^{3}(1) = 1213121$$

$$\sigma: 1 \mapsto 12, \ 2 \mapsto 13, \ 3 \mapsto 1$$

 $\sigma^4(1) = 1213121121312$

$$\sigma: 1 \mapsto 12, \, 2 \mapsto 13, \, 3 \mapsto 1$$

$$\sigma^5(1) = 1213121121312112131211213$$

$$\sigma: \mathbf{1} \mapsto \mathbf{12}, \ 2 \mapsto \mathbf{13}, \ 3 \mapsto \mathbf{1}$$

$$\sigma^{\infty}(\mathbf{1}) = 121312112131212131211213 \cdots \in \{1, 2, 3\}^{\mathbb{N}}$$

$$\sigma: 1 \mapsto 12, \ 2 \mapsto 13, \ 3 \mapsto 1$$

$$\sigma^{\infty}(1) = 121312112131212131211213 \cdots \in \{1, 2, 3\}^{\mathbb{N}}$$

$$M_{\sigma} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad f(x) = x^3 - x^2 - x - 1$$

$$\beta > 1 \text{ Pisot root of } f(x): |\beta'| < 1, \ \forall \, \beta' \text{ Galois conjugate of } \beta$$

$$\sigma \text{ is an irreducible unimodular } \textbf{Pisot substitution.}$$

S-adic shifts

- $S = \text{set of unimodular substitutions on } A = \{1, \dots, d\}.$
- $\sigma = \cdots \sigma_{-2}\sigma_{-1}.\sigma_0\sigma_1\cdots \in S^{\mathbb{Z}}$.
- $\mathcal{L}_{\sigma}^{(m)}$ language of σ : set of factors of $\sigma_{[m,n)}(i)$ for $i \in \mathcal{A}, n \in \mathbb{N}$.
- $\Sigma: (w_n)_{n\in\mathbb{Z}} \mapsto (w_{n+1})_{n\in\mathbb{Z}}$ shift.

σ -shift

Shift space (X_{σ}, Σ) where X_{σ} is the set of bi-infinite words ω such that each factor is in $\mathcal{L}_{\sigma} = \mathcal{L}_{\sigma}^{(0)}$.

ightarrow usually entropy zero, pure point spectrum?

S-adic shifts

- $S = \text{set of unimodular substitutions on } A = \{1, \dots, d\}.$
- $\sigma = \cdots \sigma_{-2}\sigma_{-1}.\sigma_0\sigma_1\cdots \in S^{\mathbb{Z}}.$
- $\mathcal{L}_{\sigma}^{(m)}$ language of σ : set of factors of $\sigma_{[m,n)}(i)$ for $i \in \mathcal{A}, n \in \mathbb{N}$.
- $\Sigma: (w_n)_{n\in\mathbb{Z}} \mapsto (w_{n+1})_{n\in\mathbb{Z}}$ shift.

σ -shift

Shift space (X_{σ}, Σ) where X_{σ} is the set of bi-infinite words ω such that each factor is in $\mathcal{L}_{\sigma} = \mathcal{L}_{\sigma}^{(0)}$.

 \rightarrow usually entropy zero, pure point spectrum?

Renormalization

 (D, Σ, ν) , $D \subseteq S^{\mathbb{Z}}$ sofic shift.

$$\sigma = \cdots \sigma_{-2}\sigma_{-1}.\sigma_0\sigma_1\cdots \in D$$

ightarrow hyperbolic system, action of toral automorphism

Sturmian words

Sturmian word

A word $u \in \{0,1\}^{\mathbb{N}}$ is Sturmian if equivalently

- **1** its complexity function satisfies $p_u(n) = n + 1$.
- 2 it is a non eventually periodic 1-balanced word.
- **3** it is a natural coding of an irrational rotation $R_{\alpha}: \mathbb{T} \to \mathbb{T}$, $x \mapsto x + \alpha \mod 1$.

Natural coding: $u = \mathcal{P}(x, R_{\alpha})$ for $\mathcal{P} = \{[0, 1 - \alpha), [1 - \alpha, 1)\}.$

Sturmian word

A word $u \in \{0,1\}^{\mathbb{N}}$ is Sturmian if equivalently

- **1** its complexity function satisfies $p_u(n) = n + 1$.
- 2 it is a non eventually periodic 1-balanced word.
- **3** it is a natural coding of an irrational rotation $R_{\alpha}: \mathbb{T} \to \mathbb{T}$, $x \mapsto x + \alpha \mod 1$.

Natural coding:
$$u = \mathcal{P}(x, R_{\alpha})$$
 for $\mathcal{P} = \{[0, 1 - \alpha), [1 - \alpha, 1)\}.$

Sturmian words are intimately related to continued fractions.

$$\begin{aligned} \sigma_0: 0 &\mapsto 0, 1 \mapsto 10, & \sigma_1: 0 \mapsto 01, 1 \mapsto 1 \\ M_0 &= \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right), & M_1 &= \left(\begin{smallmatrix} 1 & 0 \\ 1 & 1 \end{smallmatrix}\right) \end{aligned}$$

• Derivation: $u = \sigma_{i_1} \cdots \sigma_{i_n}(u_n)$, where u_n is again Sturmian.

Sturmian word

A word $u \in \{0,1\}^{\mathbb{N}}$ is Sturmian if equivalently

- **1** its complexity function satisfies $p_u(n) = n + 1$.
- 2 it is a non eventually periodic 1-balanced word.
- **3** it is a natural coding of an irrational rotation $R_{\alpha}: \mathbb{T} \to \mathbb{T}$, $x \mapsto x + \alpha \mod 1$.

Natural coding: $u = \mathcal{P}(x, R_{\alpha})$ for $\mathcal{P} = \{[0, 1 - \alpha), [1 - \alpha, 1)\}.$

Sturmian words are intimately related to continued fractions.

$$\begin{split} \sigma_0: 0 &\mapsto 0, 1 \mapsto 10, & \sigma_1: 0 \mapsto 01, 1 \mapsto 1 \\ M_0 &= \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right), & M_1 &= \left(\begin{smallmatrix} 1 & 0 \\ 1 & 1 \end{smallmatrix}\right) \end{split}$$

- Derivation: $u = \sigma_{i_1} \cdots \sigma_{i_n}(u_n)$, where u_n is again Sturmian.
- Write $i_1 i_2 \cdots = 0^{a_1} 1^{a_2} 0^{a_3} \cdots$ and set $\alpha = [a_1, a_2, a_3, \ldots]$.

Sturmian word

A word $u \in \{0,1\}^{\mathbb{N}}$ is Sturmian if equivalently

- 1 its complexity function satisfies $p_u(n) = n + 1$.
- 2 it is a non eventually periodic 1-balanced word.
- **3** it is a natural coding of an irrational rotation $R_{\alpha}: \mathbb{T} \to \mathbb{T}$, $x \mapsto x + \alpha \mod 1$.

Natural coding:
$$u = \mathcal{P}(x, R_{\alpha})$$
 for $\mathcal{P} = \{[0, 1 - \alpha), [1 - \alpha, 1)\}.$

Sturmian words are intimately related to continued fractions.

$$\begin{split} \sigma_0: 0 \mapsto 0, 1 \mapsto 10, & \sigma_1: 0 \mapsto 01, 1 \mapsto 1 \\ M_0 &= \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right), & M_1 &= \left(\begin{smallmatrix} 1 & 0 \\ 1 & 1 \end{smallmatrix}\right) \end{split}$$

- Derivation: $u = \sigma_{i_1} \cdots \sigma_{i_n}(u_n)$, where u_n is again Sturmian.
- Write $i_1 i_2 \cdots = 0^{a_1} 1^{a_2} 0^{a_3} \cdots$ and set $\alpha = [a_1, a_2, a_3, \ldots]$.
- Rauzy induction: renormalization procedure of R_{α} on $[-1, \alpha)$. Induced rotation \leftrightarrow Gauss map $\alpha \mapsto \{1/\alpha\}$.

Random dynamical system (Arnold)

• (D, Σ, ν) , $D \subset S^{\mathbb{Z}}$ sofic shift.

$$\sigma = \cdots \sigma_{-2}\sigma_{-1}.\sigma_0\sigma_1\cdots$$

• $A: D \to \mathsf{GL}(d, \mathbb{Z}), \ \boldsymbol{\sigma} \mapsto A(\boldsymbol{\sigma}) = M_0^{-1}.$

Random dynamical system (Arnold)

• (D, Σ, ν) , $D \subset S^{\mathbb{Z}}$ sofic shift.

$$\sigma = \cdots \sigma_{-2}\sigma_{-1}.\sigma_0\sigma_1\cdots$$

- $A:D o \mathsf{GL}(d,\mathbb{Z}),\ \pmb{\sigma}\mapsto A(\pmb{\sigma})=M_0^{-1}.$
- Renormalization cocycle:

$$F: D \times \mathbb{T}^d \to D \times \mathbb{T}^d, \quad (\sigma, w) \mapsto (\Sigma \sigma, M_0^{-1} w)$$

and $F^n(\sigma, w) = (\Sigma^n \sigma, A^n(\sigma) w)$ for $n \in \mathbb{Z}$, where

$$A^{n}(\sigma) = \begin{cases} A(\Sigma^{n-1}\sigma) \cdots A(\Sigma\sigma)A(\sigma) = (M_{0} \cdots M_{n-1})^{-1}, & \text{if } n > 0, \\ \mathrm{Id}, & \text{if } n = 0, \\ A(\Sigma^{n}\sigma)^{-1} \cdots A(\Sigma^{-1}\sigma)^{-1} = M_{n} \cdots M_{-1}, & \text{if } n < 0. \end{cases}$$

Random dynamical system (Arnold)

• (D, Σ, ν) , $D \subset S^{\mathbb{Z}}$ sofic shift.

$$\sigma = \cdots \sigma_{-2}\sigma_{-1}.\sigma_0\sigma_1\cdots$$

- $A:D o \mathsf{GL}(d,\mathbb{Z}),\ \pmb{\sigma}\mapsto A(\pmb{\sigma})=M_0^{-1}.$
- Renormalization cocycle:

$$F:D\times \mathbb{T}^d\to D\times \mathbb{T}^d,\quad (\sigma,w)\mapsto (\Sigma\sigma,M_0^{-1}w)$$

and $F^n(\sigma, w) = (\Sigma^n \sigma, A^n(\sigma) w)$ for $n \in \mathbb{Z}$, where

$$A^n(\sigma) = \begin{cases} A(\Sigma^{n-1}\sigma) \cdots A(\Sigma\sigma) A(\sigma) = (M_{[0,n]})^{-1}, & \text{if } n > 0, \\ \mathrm{Id}, & \text{if } n = 0, \\ A(\Sigma^n\sigma)^{-1} \cdots A(\Sigma^{-1}\sigma)^{-1} = M_{[n,0)}, & \text{if } n < 0. \end{cases}$$

Mapping families

- Cocycle fibers: $\{\sigma\} \times \mathbb{T}^d$
- Orbits → Mapping families (Arnoux-Fisher 05)

$$\cdots \xrightarrow{M_{-2}^{-1}} \mathbb{T}_{-1}^{d} \xrightarrow{M_{-1}^{-1}} \mathbb{T}_{0}^{d} \xrightarrow{M_{0}^{-1}} \mathbb{T}_{1}^{d} \xrightarrow{M_{1}^{-1}} \cdots$$

$$\mathbf{T} = \coprod_{n \in \mathbb{Z}} \mathbb{T}_n^d$$

 $f_{\sigma} : \mathbf{T} \to \mathbf{T}, f_{\sigma}(x) = M_n^{-1}(x) \text{ for } x \in \mathbb{T}_n^d.$
 $(\mathbf{T}, f_{\sigma}) = \text{mapping family}$

- Nature of the mapping family, e.g. hyperbolicity?
- Tool: Oseledets' multiplicative ergodic theorem

For ν -a.e. sequence $\sigma \in D$ we have the splitting

$$\mathbb{R}^d = E_1(\sigma) \oplus \cdots \oplus E_p(\sigma), \quad \dim(E_i(\sigma)) = d_i$$

- Splitting is invariant: $A^n(\sigma)E_i(\sigma) = E_i(\Sigma^n\sigma)$, $n \in \mathbb{Z}$.
- Dynamical characterisation:

$$\lim_{n\to\pm\infty}\frac{1}{n}\log||A^n(\sigma)x||=\theta_i\quad\Leftrightarrow\quad x\in E_i(\sigma)\setminus\{\mathbf{0}\}$$

For ν -a.e. sequence $\sigma \in D$ we have the splitting

$$\mathbb{R}^d = E_1(\sigma) \oplus \cdots \oplus E_p(\sigma), \quad \dim(E_i(\sigma)) = d_i$$

- Splitting is invariant: $A^n(\sigma)E_i(\sigma) = E_i(\Sigma^n\sigma), n \in \mathbb{Z}.$
- Dynamical characterisation:

$$\lim_{n\to\pm\infty}\frac{1}{n}\log||A^n(\sigma)x||=\theta_i\quad\Leftrightarrow\quad x\in E_i(\sigma)\setminus\{\mathbf{0}\}$$

Lyapunov exponents

$$\theta_1 + \dots + \theta_k = \lim_{n \to \infty} \frac{1}{n} \log || \wedge^k A^n(\sigma) ||, \quad k = 1, \dots, d$$

Lyapunov spectrum: $\{(\theta_i, d_i) : i = 1, \dots, p\}$.

Hyperbolic cocycle: $\theta_i \neq 0$, $\forall i$

For ν -a.e. sequence $\sigma \in D$ we have the splitting

$$\mathbb{R}^d = E_1(\sigma) \oplus \cdots \oplus E_p(\sigma), \quad \dim(E_i(\sigma)) = d_i$$

- Splitting is invariant: $A^n(\sigma)E_i(\sigma) = E_i(\Sigma^n\sigma), n \in \mathbb{Z}.$
- Dynamical characterisation:

$$\lim_{n\to\pm\infty}\frac{1}{n}\log||A^n(\sigma)x||=\theta_i\quad\Leftrightarrow\quad x\in E_i(\sigma)\setminus\{\mathbf{0}\}$$

Lyapunov exponents

$$\theta_1 + \dots + \theta_k = \lim_{n \to \infty} \frac{1}{n} \log || \wedge^k A^n(\sigma) ||, \quad k = 1, \dots, d$$

Lyapunov spectrum: $\{(\theta_i, d_i) : i = 1, \dots, p\}$.

Pisot cocycle:
$$\theta_1 \ge \theta_2 \ge \cdots \ge \theta_{d-1} > 0 > \theta_d$$

The PRICE to pay

 (D, Σ, ν) ergodic shift with the Pisot condition such that there exists a cylinder of positive measure in D corresponding to a substitution with positive incidence matrix.

The PRICE to pay

 (D, Σ, ν) ergodic shift with the Pisot condition such that there exists a cylinder of positive measure in D corresponding to a substitution with positive incidence matrix.

Then ν -a.e. sequence σ satisfies:

• (P) Primitivity: $\forall k \in \mathbb{Z}$, $M_{[k,\ell)} > 0$ for some $\ell > k$.

The PRICE to pay

 (D, Σ, ν) ergodic shift with the Pisot condition such that there exists a cylinder of positive measure in D corresponding to a substitution with positive incidence matrix.

Then ν -a.e. sequence σ satisfies:

- (P) Primitivity: $\forall k \in \mathbb{Z}$, $M_{[k,\ell)} > 0$ for some $\ell > k$.
- (R) Recurrence: there is $k \in \mathbb{Z}$ such that for each $\ell \in \mathbb{N}$, $\exists n = n(\ell) > k$ with $(\sigma_n, \dots, \sigma_{n+\ell-1}) = (\sigma_k, \dots, \sigma_{k+\ell-1})$.

 (D, Σ, ν) ergodic shift with the Pisot condition such that there exists a cylinder of positive measure in D corresponding to a substitution with positive incidence matrix.

Then ν -a.e. sequence σ satisfies:

- (P) Primitivity: $\forall k \in \mathbb{Z}$, $M_{[k,\ell)} > 0$ for some $\ell > k$.
- (R) Recurrence: there is $k \in \mathbb{Z}$ such that for each $\ell \in \mathbb{N}$, $\exists n = n(\ell) > k$ with $(\sigma_n, \dots, \sigma_{n+\ell-1}) = (\sigma_k, \dots, \sigma_{k+\ell-1})$.
- (I) Algebraic irreducibility: ∀ k ∈ Z the characteristic polynomial of M_{[k,ℓ)} is irreducible for all sufficiently large ℓ.

 (D, Σ, ν) ergodic shift with the Pisot condition such that there exists a cylinder of positive measure in D corresponding to a substitution with positive incidence matrix.

Then ν -a.e. sequence σ satisfies:

- (P) Primitivity: $\forall k \in \mathbb{Z}$, $M_{[k,\ell)} > 0$ for some $\ell > k$.
- (R) Recurrence: there is $k \in \mathbb{Z}$ such that for each $\ell \in \mathbb{N}$, $\exists n = n(\ell) > k$ with $(\sigma_n, \dots, \sigma_{n+\ell-1}) = (\sigma_k, \dots, \sigma_{k+\ell-1})$.
- (I) Algebraic irreducibility: $\forall k \in \mathbb{Z}$ the characteristic polynomial of $M_{[k,\ell)}$ is irreducible for all sufficiently large ℓ .
- (C) *C*-balancedness: $\exists C > 0$ such that for each $\ell \in \mathbb{N}$ the number $n = n(\ell)$ can be chosen such that $\mathcal{L}_{\sigma}^{(n+\ell)}$ is *C*-balanced.

$$u, v \in \mathcal{L}_{\sigma}, |u| = |v|, -C \le |u|_j - |v|_j \le C, \forall j \in \mathcal{A}$$

 (D, Σ, ν) ergodic shift with the Pisot condition such that there exists a cylinder of positive measure in D corresponding to a substitution with positive incidence matrix.

Then ν -a.e. sequence σ satisfies:

- (P) Primitivity: $\forall k \in \mathbb{Z}$, $M_{[k,\ell)} > 0$ for some $\ell > k$.
- (R) Recurrence: there is $k \in \mathbb{Z}$ such that for each $\ell \in \mathbb{N}$, $\exists n = n(\ell) > k$ with $(\sigma_n, \dots, \sigma_{n+\ell-1}) = (\sigma_k, \dots, \sigma_{k+\ell-1})$.
- (I) Algebraic irreducibility: ∀ k ∈ Z the characteristic polynomial of M_{[k,ℓ)} is irreducible for all sufficiently large ℓ.
- (C) *C*-balancedness: $\exists \ C > 0$ such that for each $\ell \in \mathbb{N}$ the number $n = n(\ell)$ can be chosen such that $\mathcal{L}_{\sigma}^{(n+\ell)}$ is *C*-balanced.

$$u, v \in \mathcal{L}_{\sigma}, |u| = |v|, -C \le |u|_j - |v|_j \le C, \quad \forall j \in \mathcal{A}$$

• (E) Generalized left eigenvector: $\exists \mathbf{v} \in \mathbb{R}^d_{\geq 0} \setminus \{\mathbf{0}\}$ such that (\mathbf{T}, f_{σ}) is Anosov in the past.

Stable and unstable spaces

For u-almost every $\sigma \in D$ the Oseldets' splitting is characterised by

$$E_1(\Sigma^n\sigma)\oplus\cdots\oplus E_{d-1}(\Sigma^n\sigma)=(\mathbf{v}^{(n)})^\perp, \quad E_d(\Sigma^n\sigma)=\mathbb{R}\mathbf{u}^{(n)}$$
 $(d-1)$ -dimensional one-dimensional

where

$$\mathbb{R}_{+}\mathbf{u}^{(n)} = \bigcap_{k \geq n} M_{[n,k)} \mathbb{R}_{+}^{d}, \qquad \mathbb{R}_{+}\mathbf{v}^{(n)} = \bigcap_{k \leq n} {}^{t}(M_{[k,n)}) \mathbb{R}_{+}^{d}$$

Stable and unstable spaces

For u-almost every $\sigma \in D$ the Oseldets' splitting is characterised by

$$E_1(\Sigma^n\sigma)\oplus\cdots\oplus E_{d-1}(\Sigma^n\sigma)=(\mathbf{v}^{(n)})^\perp, \quad E_d(\Sigma^n\sigma)=\mathbb{R}\mathbf{u}^{(n)}$$
 $(d-1)$ -dimensional one-dimensional

where

$$\mathbb{R}_{+}\mathbf{u}^{(n)} = \bigcap_{k \geq n} M_{[n,k)} \mathbb{R}_{+}^{d}, \qquad \mathbb{R}_{+}\mathbf{v}^{(n)} = \bigcap_{k \leq n} {}^{t}(M_{[k,n)}) \mathbb{R}_{+}^{d}$$

• $\mathbf{u}^{(n)}$ and $\mathbf{v}^{(n)}$ exist by (P), (R) and (E).

Stable and unstable spaces

For u-almost every $\sigma \in D$ the Oseldets' splitting is characterised by

$$E_1(\Sigma^n\sigma)\oplus\cdots\oplus E_{d-1}(\Sigma^n\sigma)=(\mathbf{v}^{(n)})^\perp, \quad E_d(\Sigma^n\sigma)=\mathbb{R}\mathbf{u}^{(n)}$$
 $(d-1)$ -dimensional one-dimensional

where

$$\mathbb{R}_{+}\mathbf{u}^{(n)} = \bigcap_{k \geq n} M_{[n,k)} \mathbb{R}_{+}^{d}, \qquad \mathbb{R}_{+}\mathbf{v}^{(n)} = \bigcap_{k \leq n} {}^{t}(M_{[k,n)}) \mathbb{R}_{+}^{d}$$

- $\mathbf{u}^{(n)}$ and $\mathbf{v}^{(n)}$ exist by (P), (R) and (E).
- We have

$$\begin{split} &\lim_{n \to -\infty} \lVert M_{[n,0)} \mathbf{x} \rVert = +\infty, \quad \lim_{n \to \infty} (M_{[0,n)})^{-1} \mathbf{x} = \mathbf{0}, \quad \forall \, \mathbf{x} \in \mathbb{R} \mathbf{u} \setminus \{\mathbf{0}\} \\ &\lim_{n \to -\infty} M_{[n,0)} \mathbf{x} = \mathbf{0}, \quad \lim_{n \to \infty} \lVert (M_{[0,n)})^{-1} \mathbf{x} \rVert = +\infty, \quad \forall \, \mathbf{x} \in \mathbf{v}^{\perp} \setminus \{\mathbf{0}\} \end{split}$$

Anosov property for both past and future!

Continued fractions

Action of Σ^n on σ translates to

$$(\mathbf{u}, \mathbf{v}) \mapsto ((M_{[0,n)})^{-1} \mathbf{u}, {}^t(M_{[0,n)}) \mathbf{v}) = (\mathbf{u}^{(n)}, \mathbf{v}^{(n)})$$

Two dual CF algorithms happening on these vectors.

Brun algorithm

$$S = \{\beta_1, \beta_2, \beta_3\}$$
, where

$$\beta_1: \begin{cases} 1 \mapsto 3 \\ 2 \mapsto 1 \\ 3 \mapsto 23 \end{cases} \qquad \beta_2: \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 3 \\ 3 \mapsto 23 \end{cases} \qquad \beta_3: \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 23 \\ 3 \mapsto 3 \end{cases}$$

with incidence matrices

$$M_{\beta_1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \quad M_{\beta_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad M_{\beta_3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

$$S = \{\beta_1, \beta_2, \beta_3\}$$
, where

$$\beta_1: \begin{cases} 1\mapsto 3 \\ 2\mapsto 1 \\ 3\mapsto 23 \end{cases} \qquad \beta_2: \begin{cases} 1\mapsto 1 \\ 2\mapsto 3 \\ 3\mapsto 23 \end{cases} \qquad \beta_3: \begin{cases} 1\mapsto 1 \\ 2\mapsto 23 \\ 3\mapsto 3 \end{cases}$$

with incidence matrices

$$M_{\beta_1} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \quad M_{\beta_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \quad M_{\beta_3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Linear version defined on $B = \{(w_1, w_2, w_3) \in \mathbb{P}(\mathbb{R}^3_+) : w_1 < w_2 < w_3\}$

$$(w_1, w_2, w_3) \mapsto \mathsf{sort}(w_1, w_2, w_3 - w_2)$$

Let
$$B_i = M_{\beta_i} B \subset B$$
, $\mathbf{w}^{(0)} = (w_1^{(0)}, w_2^{(0)}, w_3^{(0)})$

$$\mathbf{w}^{(n-1)} \mapsto \mathbf{w}^{(n)} = M_{\beta_i}^{-1} \mathbf{w}^{(n-1)}, \quad \text{for } \mathbf{w}^{(n-1)} \in B_i$$

S-adic Rauzy fractals

For σ satisfying PRICE define

$$\mathcal{R}_{\mathbf{w}}^{(n)} = \bigcup_{i \in \mathcal{A}} \mathcal{R}_{\mathbf{w}}^{(n)}(i) \subset (\mathbf{w}^{(n)})^{\perp}$$

$$\mathcal{R}_{\mathbf{W}}^{(n)}(i) = \overline{\{\pi_{\mathbf{u},\mathbf{w}}^{(n)} \, | \, (p) : \, p \in \mathcal{A}^*, \, \, pi \, \, \text{prefix of} \, \, \omega^{(n)}, \, \, \sigma_{[0,n)}(\omega^{(n)}) \, \, \text{limit word of} \, \, \sigma\}}$$

$$\pi_{\mathbf{u},\mathbf{w}}^{(n)} = \text{projection along } \mathbf{u}^{(n)} \text{ onto } (\mathbf{w}^{(n)})^{\perp}.$$

 $\mathbf{I}:\mathcal{A}^* o\mathbb{R}^d$, $i\mapsto\mathbf{e}_i$ abelianization.

$$\omega^{(0)} = \sigma_{[0,n)}(\omega^{(n)})$$
 desubstitution.

S-adic Rauzy fractals

For σ satisfying PRICE define

$$\mathcal{R}^{(n)} = igcup_{i \in \mathcal{A}} \mathcal{R}^{(n)}(i) \subset (\mathbf{v}^{(n)})^{\perp}$$

$$\mathcal{R}^{(n)}(i) = \overline{\{\pi^{(n)} \, \mathbf{I}(p) : \, p \in \mathcal{A}^*, \, \, pi \, \, \text{prefix of} \, \, \omega^{(n)}, \, \, \sigma_{[0,n)}(\omega^{(n)}) \, \, \text{limit word of} \, \, \sigma\}}$$

$$\pi^{(n)} = \text{projection along } \mathbf{u}^{(n)} \text{ onto } (\mathbf{v}^{(n)})^{\perp}.$$

 $\mathbf{I}: \mathcal{A}^* o \mathbb{R}^d$, $i \mapsto \mathbf{e}_i$ abelianization.

$$\omega^{(0)} = \sigma_{[0,n)}(\omega^{(n)})$$
 desubstitution.

The Rauzy fractal

 $S = \{\sigma : 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1\}.$

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

Broken line (balanced): $\sigma^{\infty}(1) = 121312112131212131211213 \cdots$

$$S = \{\sigma : 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1\}.$$

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

$$S = \{\sigma : 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1\}.$$

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

$$S = \{ \sigma : 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1 \}.$$

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

$$S = \{ \sigma : 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1 \}.$$

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

 $S = \{ \sigma : 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1 \}.$

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

$$S = \{\sigma : 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1\}.$$

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

 $S = \{ \sigma : 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1 \}.$

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

$$S = \{\sigma: 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1\}.$$

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

$$S = \{\sigma : 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1\}.$$

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

$$S = \{\sigma : 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1\}.$$

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

$$S = \{ \sigma : 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1 \}.$$

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

Broken line (balanced): $\sigma^{\infty}(1) = 121312112131212131211213 \cdots$

Domain exchange $\mathcal{E}: \mathcal{R}(i) \mapsto \mathcal{R}(i) + \pi(\mathbf{e}_i)$.

$$S = {\sigma : 1 \mapsto 12, 2 \mapsto 13, 3 \mapsto 1}.$$

 M_{σ} -invariant decomposition: $\mathbb{R}^3 = E^u \oplus E^s \cong \mathbb{R} \oplus \mathbb{C}$.

Broken line (balanced): $\sigma^{\infty}(1) = 121312112131212131211213 \cdots$

Domain exchange $\mathcal{E}: \mathcal{R}(i) \mapsto \mathcal{R}(i) + \pi(\mathbf{e}_i)$.

Strong coincidence condition: $\forall (i,j) \in \mathcal{A}^2$, $\exists n, \exists a \in \mathcal{A}$ such that $\sigma_{[0,n)}(i) = p_1 a s_1$, $\sigma_{[0,n)}(j) = p_2 a s_2$ with $|p_1| = |p_2|$.

Properties

Results of [Berthé-Steiner-Thuswaldner 14]:

1 (X_{σ}, Σ) is minimal and uniquely ergodic with invariant measure μ (by primitivity and recurrence).

Properties

Results of [Berthé-Steiner-Thuswaldner 14]:

- (X_{σ}, Σ) is minimal and uniquely ergodic with invariant measure μ (by primitivity and recurrence).
- **2** Each $\mathcal{R}_{W}^{(n)}(i)$ is compact, closure of its interior, with boundary of zero Lebesgue measure.

Results of [Berthé-Steiner-Thuswaldner 14]:

- **1** (X_{σ}, Σ) is minimal and uniquely ergodic with invariant measure μ (by primitivity and recurrence).
- **2** Each $\mathcal{R}_{W}^{(n)}(i)$ is compact, closure of its interior, with boundary of zero Lebesgue measure.
- Set equations

$$\pi^{(k)} \mathbf{x} + \mathcal{R}^{(k)}(i) = \bigcup_{[\mathbf{y}, j] \in E_{\mathbf{i}}^*(\sigma_{[\mathbf{k}, \ell)})[\mathbf{x}, i]} M_{[\mathbf{k}, \ell)}(\pi^{(\ell)} \mathbf{y} + \mathcal{R}^{(\ell)}(j))$$

Results of [Berthé-Steiner-Thuswaldner 14]:

- **1** (X_{σ}, Σ) is minimal and uniquely ergodic with invariant measure μ (by primitivity and recurrence).
- **2** Each $\mathcal{R}_{W}^{(n)}(i)$ is compact, closure of its interior, with boundary of zero Lebesgue measure.
- Set equations

$$\pi^{(k)} \mathbf{x} + \mathcal{R}^{(k)}(i) = \bigcup_{[\mathbf{y},j] \in E_{\mathbf{1}}^*(\sigma_{[\mathbf{k},\ell)})[\mathbf{x},i]} M_{[\mathbf{k},\ell)}(\pi^{(\ell)} \mathbf{y} + \mathcal{R}^{(\ell)}(j))$$

$$\begin{split} E_1(\sigma)[\mathbf{x},i] &= \{ [M_\sigma \mathbf{x} - \mathbf{I}(p),j] : p \in \mathcal{A}^*, j \in \mathcal{A} \text{ such that } \sigma(i) = pjs \} \\ E_1^*(\sigma)[\mathbf{x},i] &= \{ [M_\sigma^{-1}(\mathbf{x} + \mathbf{I}(p)),j] : p \in \mathcal{A}^*, j \in \mathcal{A} \text{ such that } \sigma(j) = pis \} \end{split}$$

Dual action on (d-1)-dimensional faces:

$$\begin{split} E_{1}^{*}(\sigma): [\mathbf{x}, 1] &\mapsto [M_{\sigma}^{-1}\mathbf{x}, 1] \cup [M_{\sigma}^{-1}\mathbf{x}, 2] \cup [M_{\sigma}^{-1}\mathbf{x}, 3] \\ [\mathbf{x}, 2] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi(\mathbf{e}_{1})), 1] \\ [\mathbf{x}, 3] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi(\mathbf{e}_{1})), 2] \end{split}$$

$$\begin{split} E_1^*(\sigma) : [\mathbf{x}, 1] &\mapsto [M_{\sigma}^{-1}\mathbf{x}, 1] \cup [M_{\sigma}^{-1}\mathbf{x}, 2] \cup [M_{\sigma}^{-1}\mathbf{x}, 3] \\ [\mathbf{x}, 2] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi(\mathbf{e}_1)), 1] \\ [\mathbf{x}, 3] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi(\mathbf{e}_1)), 2] \end{split}$$

$$\begin{split} E_1^*(\sigma) : [\mathbf{x}, 1] &\mapsto [M_\sigma^{-1} \mathbf{x}, 1] \cup [M_\sigma^{-1} \mathbf{x}, 2] \cup [M_\sigma^{-1} \mathbf{x}, 3] \\ [\mathbf{x}, 2] &\mapsto [M_\sigma^{-1} (\mathbf{x} + \pi(\mathbf{e}_1)), 1] \\ [\mathbf{x}, 3] &\mapsto [M_\sigma^{-1} (\mathbf{x} + \pi(\mathbf{e}_1)), 2] \end{split}$$

$$E_{1}^{*}(\sigma): [\mathbf{x}, 1] \mapsto [M_{\sigma}^{-1}\mathbf{x}, 1] \cup [M_{\sigma}^{-1}\mathbf{x}, 2] \cup [M_{\sigma}^{-1}\mathbf{x}, 3]$$
$$[\mathbf{x}, 2] \mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi(\mathbf{e}_{1})), 1]$$
$$[\mathbf{x}, 3] \mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi(\mathbf{e}_{1})), 2]$$

$$E_{1}^{*}(\sigma): [\mathbf{x}, 1] \mapsto [M_{\sigma}^{-1}\mathbf{x}, 1] \cup [M_{\sigma}^{-1}\mathbf{x}, 2] \cup [M_{\sigma}^{-1}\mathbf{x}, 3]$$
$$[\mathbf{x}, 2] \mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi(\mathbf{e}_{1})), 1]$$
$$[\mathbf{x}, 3] \mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi(\mathbf{e}_{1})), 2]$$

$$\begin{split} E_1^*(\sigma) : [\mathbf{x}, 1] &\mapsto [M_{\sigma}^{-1}\mathbf{x}, 1] \cup [M_{\sigma}^{-1}\mathbf{x}, 2] \cup [M_{\sigma}^{-1}\mathbf{x}, 3] \\ [\mathbf{x}, 2] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi(\mathbf{e}_1)), 1] \\ [\mathbf{x}, 3] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi(\mathbf{e}_1)), 2] \end{split}$$

$$E_{1}^{*}(\sigma): [\mathbf{x}, 1] \mapsto [M_{\sigma}^{-1}\mathbf{x}, 1] \cup [M_{\sigma}^{-1}\mathbf{x}, 2] \cup [M_{\sigma}^{-1}\mathbf{x}, 3]$$
$$[\mathbf{x}, 2] \mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi(\mathbf{e}_{1})), 1]$$
$$[\mathbf{x}, 3] \mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi(\mathbf{e}_{1})), 2]$$

$$E_{1}^{*}(\sigma): [\mathbf{x}, 1] \mapsto [M_{\sigma}^{-1}\mathbf{x}, 1] \cup [M_{\sigma}^{-1}\mathbf{x}, 2] \cup [M_{\sigma}^{-1}\mathbf{x}, 3]$$
$$[\mathbf{x}, 2] \mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi(\mathbf{e}_{1})), 1]$$
$$[\mathbf{x}, 3] \mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi(\mathbf{e}_{1})), 2]$$

$$\begin{split} E_1^*(\sigma) : [\mathbf{x}, 1] &\mapsto [M_{\sigma}^{-1}\mathbf{x}, 1] \cup [M_{\sigma}^{-1}\mathbf{x}, 2] \cup [M_{\sigma}^{-1}\mathbf{x}, 3] \\ [\mathbf{x}, 2] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi(\mathbf{e}_1)), 1] \\ [\mathbf{x}, 3] &\mapsto [M_{\sigma}^{-1}(\mathbf{x} + \pi(\mathbf{e}_1)), 2] \end{split}$$

$$\mathcal{R}(i) = \lim_{n \to \infty} \pi(M_{\sigma}^n E_1^*(\sigma)^n([\mathbf{0}, i]))$$

1 If σ satisfies SCC then $\mathcal{R}^{(n)}(i)$ are mutually disjoint in measure and $(X_{\sigma}, \Sigma, \mu) \cong (\mathcal{R}, \mathcal{E}, \lambda)$.

1 If σ satisfies SCC then $\mathcal{R}^{(n)}(i)$ are mutually disjoint in measure and $(X_{\sigma}, \Sigma, \mu) \cong (\mathcal{R}, \mathcal{E}, \lambda)$.

 $\Lambda = \mathbf{1}^{\perp} \cap \mathbb{Z}^d = \sum_{j \in \mathcal{A} \setminus \{1\}} \mathbb{Z}(\mathbf{e}_j - \mathbf{e}_1)$ is a (d-1)-dimensional lattice. Note $\pi \mathbf{e}_j \equiv \pi \mathbf{e}_1 \pmod{\Lambda}$, thus \mathcal{E} projects onto the torus $\mathbf{1}^{\perp}/\Lambda \cong \mathbb{T}^{d-1}$ to a translation.

1 If σ satisfies SCC then $\mathcal{R}^{(n)}(i)$ are mutually disjoint in measure and $(X_{\sigma}, \Sigma, \mu) \cong (\mathcal{R}, \mathcal{E}, \lambda)$.

 $\Lambda = \mathbf{1}^{\perp} \cap \mathbb{Z}^d = \sum_{j \in \mathcal{A} \setminus \{1\}} \mathbb{Z}(\mathbf{e}_j - \mathbf{e}_1)$ is a (d-1)-dimensional lattice. Note $\pi \mathbf{e}_j \equiv \pi \mathbf{e}_1 \pmod{\Lambda}$, thus \mathcal{E} projects onto the torus $\mathbf{1}^{\perp}/\Lambda \cong \mathbb{T}^{d-1}$ to a translation.

2 If $\mathcal{R} + \Lambda$ is a tiling

1 If σ satisfies SCC then $\mathcal{R}^{(n)}(i)$ are mutually disjoint in measure and $(X_{\sigma}, \Sigma, \mu) \cong (\mathcal{R}, \mathcal{E}, \lambda)$.

 $\Lambda = \mathbf{1}^{\perp} \cap \mathbb{Z}^d = \sum_{j \in \mathcal{A} \setminus \{1\}} \mathbb{Z}(\mathbf{e}_j - \mathbf{e}_1)$ is a (d-1)-dimensional lattice. Note $\pi \mathbf{e}_j \equiv \pi \mathbf{e}_1 \pmod{\Lambda}$, thus \mathcal{E} projects onto the torus $\mathbf{1}^{\perp}/\Lambda \cong \mathbb{T}^{d-1}$ to a translation.

② If $\mathcal{R} + \Lambda$ is a tiling—then $(\mathcal{R}, \mathcal{E}, \lambda) \cong (\mathbb{T}^{d-1}, \mathcal{T}, \lambda)$ and its spectrum is purely discrete. Equivalently each $\omega \in X_{\sigma}$ is a natural coding of the toral translation \mathcal{T} w.r.t. partition $\{\mathcal{R}(i) : i \in \mathcal{A}\}$ and each $\mathcal{R}(i)$ is a bounded remainder set for \mathcal{T} .

1 If σ satisfies SCC then $\mathcal{R}^{(n)}(i)$ are mutually disjoint in measure and $(X_{\sigma}, \Sigma, \mu) \cong (\mathcal{R}, \mathcal{E}, \lambda)$.

 $\Lambda = \mathbf{1}^{\perp} \cap \mathbb{Z}^d = \sum_{j \in \mathcal{A} \setminus \{1\}} \mathbb{Z}(\mathbf{e}_j - \mathbf{e}_1)$ is a (d-1)-dimensional lattice. Note $\pi \mathbf{e}_j \equiv \pi \mathbf{e}_1 \pmod{\Lambda}$, thus \mathcal{E} projects onto the torus $\mathbf{1}^{\perp}/\Lambda \cong \mathbb{T}^{d-1}$ to a translation.

- **2** If $\mathcal{R} + \Lambda$ is a tiling then $(\mathcal{R}, \mathcal{E}, \lambda) \cong (\mathbb{T}^{d-1}, \mathcal{T}, \lambda)$ and its spectrum is purely discrete. Equivalently each $\omega \in X_{\sigma}$ is a natural coding of the toral translation \mathcal{T} w.r.t. partition $\{\mathcal{R}(i) : i \in \mathcal{A}\}$ and each $\mathcal{R}(i)$ is a bounded remainder set for \mathcal{T} .
- Geometric coincidence and finiteness conditions (related to the dual substitution) to get tilings.

- **1** If σ satisfies SCC then $\mathcal{R}^{(n)}(i)$ are mutually disjoint in measure and $(X_{\sigma}, \Sigma, \mu) \cong (\mathcal{R}, \mathcal{E}, \lambda)$.
- ② If $\mathcal{R} + \Lambda$ is a tiling—then $(\mathcal{R}, \mathcal{E}, \lambda) \cong (\mathbb{T}^{d-1}, \mathcal{T}, \lambda)$ and its spectrum is purely discrete. Equivalently each $\omega \in X_{\sigma}$ is a natural coding of the toral translation T w.r.t. partition $\{\mathcal{R}(i) : i \in \mathcal{A}\}$ and each $\mathcal{R}(i)$ is a bounded remainder set for T.
- Geometric coincidence and finiteness conditions (related to the dual substitution) to get tilings.

- **1** If σ satisfies SCC then $\mathcal{R}^{(n)}(i)$ are mutually disjoint in measure and $(X_{\sigma}, \Sigma, \mu) \cong (\mathcal{R}, \mathcal{E}, \lambda)$.
- ② If $\mathcal{R} + \Lambda$ is a tiling—then $(\mathcal{R}, \mathcal{E}, \lambda) \cong (\mathbb{T}^{d-1}, \mathcal{T}, \lambda)$ and its spectrum is purely discrete. Equivalently each $\omega \in X_{\sigma}$ is a natural coding of the toral translation \mathcal{T} w.r.t. partition $\{\mathcal{R}(i) : i \in \mathcal{A}\}$ and each $\mathcal{R}(i)$ is a bounded remainder set for \mathcal{T} .
- Geometric coincidence and finiteness conditions (related to the dual substitution) to get tilings.

- **1** If σ satisfies SCC then $\mathcal{R}^{(n)}(i)$ are mutually disjoint in measure and $(X_{\sigma}, \Sigma, \mu) \cong (\mathcal{R}, \mathcal{E}, \lambda)$.
- ② If $\mathcal{R} + \Lambda$ is a tiling—then $(\mathcal{R}, \mathcal{E}, \lambda) \cong (\mathbb{T}^{d-1}, \mathcal{T}, \lambda)$ and its spectrum is purely discrete. Equivalently each $\omega \in X_{\sigma}$ is a natural coding of the toral translation T w.r.t. partition $\{\mathcal{R}(i) : i \in \mathcal{A}\}$ and each $\mathcal{R}(i)$ is a bounded remainder set for T.
- Geometric coincidence and finiteness conditions (related to the dual substitution) to get tilings.

- **1** If σ satisfies SCC then $\mathcal{R}^{(n)}(i)$ are mutually disjoint in measure and $(X_{\sigma}, \Sigma, \mu) \cong (\mathcal{R}, \mathcal{E}, \lambda)$.
- ② If $\mathcal{R} + \Lambda$ is a tiling—then $(\mathcal{R}, \mathcal{E}, \lambda) \cong (\mathbb{T}^{d-1}, \mathcal{T}, \lambda)$ and its spectrum is purely discrete. Equivalently each $\omega \in X_{\sigma}$ is a natural coding of the toral translation \mathcal{T} w.r.t. partition $\{\mathcal{R}(i) : i \in \mathcal{A}\}$ and each $\mathcal{R}(i)$ is a bounded remainder set for \mathcal{T} .
- Geometric coincidence and finiteness conditions (related to the dual substitution) to get tilings.

- **1** If σ satisfies SCC then $\mathcal{R}^{(n)}(i)$ are mutually disjoint in measure and $(X_{\sigma}, \Sigma, \mu) \cong (\mathcal{R}, \mathcal{E}, \lambda)$.
- ② If $\mathcal{R} + \Lambda$ is a tiling—then $(\mathcal{R}, \mathcal{E}, \lambda) \cong (\mathbb{T}^{d-1}, \mathcal{T}, \lambda)$ and its spectrum is purely discrete. Equivalently each $\omega \in X_{\sigma}$ is a natural coding of the toral translation T w.r.t. partition $\{\mathcal{R}(i) : i \in \mathcal{A}\}$ and each $\mathcal{R}(i)$ is a bounded remainder set for T.
- Geometric coincidence and finiteness conditions (related to the dual substitution) to get tilings.

- **1** If σ satisfies SCC then $\mathcal{R}^{(n)}(i)$ are mutually disjoint in measure and $(X_{\sigma}, \Sigma, \mu) \cong (\mathcal{R}, \mathcal{E}, \lambda)$.
- ② If $\mathcal{R} + \Lambda$ is a tiling—then $(\mathcal{R}, \mathcal{E}, \lambda) \cong (\mathbb{T}^{d-1}, \mathcal{T}, \lambda)$ and its spectrum is purely discrete. Equivalently each $\omega \in X_{\sigma}$ is a natural coding of the toral translation \mathcal{T} w.r.t. partition $\{\mathcal{R}(i) : i \in \mathcal{A}\}$ and each $\mathcal{R}(i)$ is a bounded remainder set for \mathcal{T} .
- Geometric coincidence and finiteness conditions (related to the dual substitution) to get tilings.

Suspensions

$$\widehat{\mathcal{R}^{(n)}(i)} = -\mathcal{R}^{(n)}(i) + [0,1)\overline{\pi}_n \,\mathbf{e}_i.$$

$$\widehat{\mathcal{R}}^{(n)} + \mathbb{Z}^d$$
 tiling $\Leftrightarrow \mathcal{R}^{(n)} + \Lambda$ tiling

Suspensions

$$\widehat{\mathcal{R}^{(n)}(i)} = -\mathcal{R}^{(n)}(i) + [0,1)\overline{\pi}_n \,\mathbf{e}_i.$$

$$\widehat{\mathcal{R}}^{(n)} + \mathbb{Z}^d$$
 tiling $\Leftrightarrow \mathcal{R}^{(n)} + \Lambda$ tiling

Markov partitions

 $\mathcal{P}_n = \{ \operatorname{int}(\widehat{\mathcal{R}}^{(n)}(i)) \bmod \mathbb{Z}^d : i \in \mathcal{A} \}$ topological partition of \mathbb{T}^d . Theorem [Arnoux, Berthé, M., Steiner, Thuswaldner] \mathcal{P}_n forms a non-stationary Markov partition for the mapping family (\mathbf{T}, f_σ) associated with σ .

Markov partitions

 $\mathcal{P}_n = \{ \operatorname{int}(\widehat{\mathcal{R}}^{(n)}(i)) \bmod \mathbb{Z}^d : i \in \mathcal{A} \} \text{ topological partition of } \mathbb{T}^d.$

Theorem [Arnoux, Berthé, M., Steiner, Thuswaldner]

 \mathcal{P}_n forms a non-stationary Markov partition for the mapping family (\mathbf{T}, f_σ) associated with σ .

Proof.

- Each member of the partition has a pair of horizontal and vertical transverses.
- Actions of M_n^{-1} on $h_{n,i}(\mathbf{x})$ and of M_n on $v_{n,i}(\mathbf{x})$ are inflations.
- We are mod $\mathbb{Z}^d o \mathsf{cut} ext{-}\mathsf{and} ext{-}\mathsf{stack}$ process
- Markov property: $v_{n,i}(M_n\mathbf{x}) \subset M_nv_{n+1,j}(\mathbf{x})$, $h_{n+1,j}(M_n^{-1}\mathbf{x}) \subset M_n^{-1}h_{n,i}(\mathbf{x})$

Subshifts of finite type

 \mathcal{P}_n is not generating in general: the "rectangles" int $(\widehat{\mathcal{R}}^{(n)}(i))$ are not sufficiently small, the image of one of the could wrap around in the torus.

Solution: take the first subdivision of the rectangles $\widehat{\mathcal{P}}_n$ according to the set equation.

With $\widehat{\mathcal{P}}_n$ generating define the transition matrices

$$A_{ij}^{(n)} = \begin{cases} 1 & \text{if } \operatorname{int}(\widehat{\mathcal{R}}^{(n+1)}(i)) \cap M_n^{-1} \mathrm{int}(\widehat{\mathcal{R}}^{(n)}(j)) \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

The map $\pi: (\Omega_A, \Sigma) \to (\mathbf{T}^d, f_{\sigma})$ defined by $(x_n) \mapsto \bigcap_{n \in \mathbb{Z}} M_n^{-1} \widehat{\mathcal{R}}^{(n)}(x_n)$ is one-to-one except on the set of boundary pullbacks.

$$\begin{array}{c|c} \Omega_A^{-1} & \xrightarrow{\Sigma} \Omega_A^0 & \xrightarrow{\Sigma} \Omega_A^1 & \xrightarrow{\Sigma} \Omega_A^2 \\ \dots \middle| & & & & & & \downarrow \dots \\ \mathbb{T}_{-1}^d & \xrightarrow{M_{-1}^{-1}} \mathbb{T}_0^d & \xrightarrow{M_0^{-1}} \mathbb{T}_1^d & \xrightarrow{M_1^{-1}} \mathbb{T}_2^d \end{array}$$

• Oseledets' splitting:

$$E_1(\Sigma^n \sigma) \oplus \cdots \oplus E_d(\Sigma^n \sigma) = \mathbb{R} \mathbf{u}_1^{(n)} \oplus \cdots \oplus \mathbb{R} \mathbf{u}_d^{(n)}$$

Renormalize
$$\|\mathbf{u}_1^{(n)}\|=1$$
, $\langle \mathbf{u}_1^{(n)}, \mathbf{v}^{(n)} \rangle=1$, where $(\mathbf{v}^{(n)})^{\perp}=\operatorname{span}(\mathbf{u}_2^{(n)},\ldots,\mathbf{u}_d^{(n)})$.

• Oseledets' splitting:

$$E_1(\Sigma^n \sigma) \oplus \cdots \oplus E_d(\Sigma^n \sigma) = \mathbb{R} \mathbf{u}_1^{(n)} \oplus \cdots \oplus \mathbb{R} \mathbf{u}_d^{(n)}$$

Renormalize
$$\|\mathbf{u}_1^{(n)}\|=1$$
, $\langle \mathbf{u}_1^{(n)}, \mathbf{v}^{(n)} \rangle=1$, where $(\mathbf{v}^{(n)})^{\perp}=\operatorname{span}(\mathbf{u}_2^{(n)},\ldots,\mathbf{u}_d^{(n)})$.

Then

$$M_n^{-1}B_n\operatorname{diag}(\lambda_1^{(n)},\ldots,\lambda_d^{(n)})=B_{n+1}$$

where $\prod_i \lambda_i^{(n)} = \pm 1$, $B_n = (\mathbf{u}_1^{(n)}, \dots, \mathbf{u}_d^{(n)}) \in \mathsf{SL}(d, \mathbb{R})$.

Oseledets' splitting:

$$E_1(\Sigma^n \sigma) \oplus \cdots \oplus E_d(\Sigma^n \sigma) = \mathbb{R} \mathbf{u}_1^{(n)} \oplus \cdots \oplus \mathbb{R} \mathbf{u}_d^{(n)}$$

Renormalize
$$\|\mathbf{u}_1^{(n)}\|=1$$
, $\langle \mathbf{u}_1^{(n)}, \mathbf{v}^{(n)} \rangle=1$, where $(\mathbf{v}^{(n)})^{\perp}=\operatorname{span}(\mathbf{u}_2^{(n)}, \ldots, \mathbf{u}_d^{(n)})$.

Then

$$M_n^{-1}B_n \mathrm{diag}(\lambda_1^{(n)},\ldots,\lambda_d^{(n)})=B_{n+1}$$
 where $\prod_i \lambda_i^{(n)}=\pm 1$, $B_n=(\mathbf{u}_1^{(n)},\ldots,\mathbf{u}_d^{(n)})\in \mathrm{SL}(d,\mathbb{R})$.

• The B_n 's are cross-sections of the Weyl chamber flow

$$\mathsf{diag}(e^{t_2+\dots+t_d},e^{-t_2},\dots,e^{-t_d})$$

Brun revisited

- $(S^{\mathbb{Z}}, \Sigma, \nu)$ satisfies the Pisot condition [Avila, Delecroix 15]
- $\mathcal{R} + \Lambda$ tiling [Berthé-Bourdon-Jolivet-Siegel 14] $\Rightarrow \widehat{\mathcal{R}} + \mathbb{Z}^d$ tiling. The Rauzy suspensions are fundamental domains of \mathbb{T}^d .
- For ν -a.e. every $\sigma \in S^{\mathbb{Z}}$ words in X_{σ} are natural codings of a translation on \mathbb{T}^2 .

Brun revisited

- $(S^{\mathbb{Z}}, \Sigma, \nu)$ satisfies the Pisot condition [Avila, Delecroix 15]
- $\mathcal{R} + \Lambda$ tiling [Berthé-Bourdon-Jolivet-Siegel 14] $\Rightarrow \widehat{\mathcal{R}} + \mathbb{Z}^d$ tiling. The Rauzy suspensions are fundamental domains of \mathbb{T}^d .
- For ν -a.e. every $\sigma \in S^{\mathbb{Z}}$ words in X_{σ} are natural codings of a translation on \mathbb{T}^2 .
- Set equations for β_3 :

$$\begin{split} &M_{\beta_3}^{-1}\mathcal{R}^{(0)}(1) = \mathcal{R}^{(1)}(1), \\ &M_{\beta_3}^{-1}\mathcal{R}^{(0)}(2) = \mathcal{R}^{(1)}(2), \\ &M_{\beta_3}^{-1}\mathcal{R}^{(0)}(3) = \mathcal{R}^{(1)}(3) \cup (\mathcal{R}^{(1)}(2) + \pi^{(1)}M_{\beta_3}^{-1}\mathbf{e}_2), \end{split}$$

- $(S^{\mathbb{Z}}, \Sigma, \nu)$ satisfies the Pisot condition [Avila, Delecroix 15]
- $\mathcal{R} + \Lambda$ tiling [Berthé-Bourdon-Jolivet-Siegel 14] $\Rightarrow \widehat{\mathcal{R}} + \mathbb{Z}^d$ tiling. The Rauzy suspensions are fundamental domains of \mathbb{T}^d .
- For ν -a.e. every $\sigma \in S^{\mathbb{Z}}$ words in X_{σ} are natural codings of a translation on \mathbb{T}^2 .
- Set equations for β_3 :

$$\begin{split} &M_{\beta_3}^{-1}\mathcal{R}^{(0)}(1)=\mathcal{R}^{(1)}(1),\\ &M_{\beta_3}^{-1}\mathcal{R}^{(0)}(2)=\mathcal{R}^{(1)}(2),\\ &M_{\beta_3}^{-1}\mathcal{R}^{(0)}(3)=\mathcal{R}^{(1)}(3)\cup(\mathcal{R}^{(1)}(2)+\pi^{(1)}M_{\beta_3}^{-1}\mathbf{e}_2), \end{split}$$

From the cut-and-stack

$$(m_1, m_2, m_3) \mapsto (m_1, m_2, m_3 - m_2)$$
 action of $M_{\beta_3}^{-1}$
 $(h_1, h_2, h_3) \mapsto (h_1, h_2 + h_3, h_3)$ action of ${}^tM_{\beta_3}$

→ Natural extension for Brun CF algorithm

Thanks for the attention!