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Substitutions

The ubiquitous example:

c:1—12,2—13,3—1
0°°(1) = 121312112131212131211213 - - - € {1,2, 3}

1 32,
8)’ f(x)=x>=—x"—x-1
(x): 18| < 1,V Galois conjugate of 3

o is an irreducible unimodular Pisot substitution.



S-adic shifts

S = set of unimodular substitutions on A = {1,...,d}.
e o =:--0_20_1.0001""* € SZ.
Ef,m) language of o set of factors of oy, (i) for i € A, neN.

X (W")nGZ = (Wn+1)n€Z shift.

o-shift

Shift space (X5, X) where X, is the set of bi-infinite words w such that
each factoris in L, = Lff).

— usually entropy zero, pure point spectrum?



S-adic shifts

S = set of unimodular substitutions on A = {1,...,d}.
e o =:--0_20_1.0001""* € SZ.
Ef,m) language of o set of factors of oy, (i) for i € A, neN.

Y (Wp)nez — (Wnt1)nez shift.

o-shift

Shift space (X5, X) where X, is the set of bi-infinite words w such that
each factoris in L, = Lff).

— usually entropy zero, pure point spectrum?

Renormalization
(D,%,v), D C S% sofic shift.

O=--0_20_1.0001 - €D

— hyperbolic system, action of toral automorphism



Sturmian words

Sturmian word
A word u € {0,1}" is Sturmian if equivalently

@ its complexity function satisfies p,(n) = n+ 1.

@® it is a non eventually periodic 1-balanced word.

@ it is a natural coding of an irrational rotation R, : T — T,
X — x + amod 1.

Natural coding: u = P(x,R,) for P = {[0,1 — a),[1l — o, 1)}.
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Sturmian words

Sturmian word
A word u € {0,1}" is Sturmian if equivalently

@ its complexity function satisfies p,(n) = n+ 1.
@® it is a non eventually periodic 1-balanced word.
@ it is a natural coding of an irrational rotation R, : T — T,
X — x +amod 1.
Natural coding: u = P(x,R,) for P = {[0,1 — a),[1l — o, 1)}.

Sturmian words are intimately related to continued fractions.

09:0—~ 0,1~ 10, 01:0—~01,1—1
Mo =(51), My = (11}

e Derivation: u =0y, ---0;,(up), where u, is again Sturmian.
o Write iyip--- = 0%1%20% ... and set « = [a1, a2, a3, . - .].

e Rauzy induction: renormalization procedure of R, on [—1, ).
Induced rotation <+ Gauss map a — {1/a}.
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e (D,%,v), D C S% sofic shift.
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e Renormalization cocycle:
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Pisot cocycles

Random dynamical system (Arnold)
e (D,%,v), D C S% sofic shift.

O=--0_90_1.0001"""

e A:D—GL(d,Z), o+ Ala) = My "

e Renormalization cocycle:
F:DxT!—=DxT? (o,w) (Zo, My, w)
and F"(o,w) = (X"0, A"(o)w) for n € Z, where

A(X" to)---A(Xo)A(o) = (Mj,m) ", ifn>0,
A’(o) =< Id, if n=0,
AX"o) 1 A(E ) = M), if n <O0.



Mapping families

e Cocycle fibers: {o} x T¢
e Orbits — Mapping families (Arnoux-Fisher 05)

1 —1 _
MZ, MZ; d Mo :

T, T T Mo

T= HneZ Tg
fo : T =T, fo(x) = M, (x) for x € T9.
(T, fy) = mapping family
e Nature of the mapping family, e.g. hyperbolicity?

e Tool: Oseledets’ multiplicative ergodic theorem



Oseledets’ theorem

For v-a.e. sequence o € D we have the splitting
RY = Ey(0)@--- @ Ey(a), dim(E(o)) =d;

e Splitting is invariant: A"(o)E;i(o) = E(X"0), n € Z.
e Dynamical characterisation:

. 1 n o _
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Oseledets’ theorem

For v-a.e. sequence o € D we have the splitting
RY = Ey(0)@--- @ Ey(a), dim(E(o)) =d;

e Splitting is invariant: A"(o)E;i(o) = E(X"0), n € Z.
e Dynamical characterisation:

lim 1 log||A"(o)x||=6; < xe€ Ef(o)\{0}

n—+oco n
Lyapunov exponents
. 1 k An
014 - +0k = lim —log||\“A"(o)|, k=1,...,d
n—oo N

Lyapunov spectrum: {(6;,d;):i=1,...,p}.

Hyperbolic cocycle: 8; #0, Vi



Oseledets’ theorem

For v-a.e. sequence o € D we have the splitting
RY = E(o)® - @ Ey(o), dim(E(a))=d:

e Splitting is invariant: A"(0)E;(0) = Ei(X"0), n € Z.
e Dynamical characterisation:

. 1 n _
n_I:rj'rgoo - log||A"(o)x|| =6; < xe€ E(o)\{0}
Lyapunov exponents

1
01+ -+ 0k = lim —log||A*A"(0)||, k=1,....d
n—oo N

Lyapunov spectrum: {(0;,d;):i=1,...,p}.

Pisot cocycle: 81 >0, > - >0y_1 > 0> 04 ‘
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The PRICE to pay

(D, X, v) ergodic shift with the Pisot condition such that there exists a
cylinder of positive measure in D corresponding to a substitution with
positive incidence matrix.

Then v-a.e. sequence o satisfies:
e (P) Primitivity: Yk € Z, M ¢ > 0 for some £ > k.

(R) Recurrence: there is k € Z such that for each £ € N,
dn= n(@) > k with (O’n, . ,O’,,Jrg,l) = (Ok, ... ,0k+g,1).

(1) Algebraic irreducibility: V k € Z the characteristic polynomial of
M. ¢y is irreducible for all sufficiently large /.

C) C-balancedness: 3 C > 0 such that for each ¢ € N the number
n = n({) can be chosen such that 5 is C-balanced.

uveLy, lu=|vl, =C<|ulj—|v;j<C, Vjed

(E) Generalized left eigenvector: Jv € R%o \ {0} such that (T, f,)
is Anosov in the past.
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Stable and unstable spaces

For v-almost every o € D the Oseldets' splitting is characterised by

E(X"0)® - ®Ey 1(X"0) = (V") E4(Z"0) = Rul
(d — 1)-dimensional one-dimensional

where

Riul" = m Min, )R, Rov(M = ﬂ {(Mi,n))RE
k>n k<n

e ul™ and v(" exist by (P), (R) and (E).
e We have

lim ||M[,,,0)XH = +00, (M[oj,,))71X =0, Vx € Ru\ {0}
n——oo

lim
n—00

lim I\/I[,,’o)x =0, "“_}mooll(M[O’n))_lX” =400, Vx€ vt \ {0}

n——oo

Anosov property for both past and future!



Continued fractions

Action of X" on o translates to
(U,V) = ((M[O,n))iluv t(M[O,n))V) = (u(n)vv(n))

Two dual CF algorithms happening on these vectors.



Brun algorithm

S = {ﬂ1752a53}1 where
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Brun algorithm

S = {ﬂ1752a53}1 where

1—3 1—1 1—1
Br:82—1 Br:42—3 B3:42—23
3+—23 3+—23 3—3

with incidence matrices
010 100 100
M :(001) M :(001) M :<010>
f 101 fa 011 Ba 011

Linear version defined on B = {(w1,wo, w3) € P(RY) : wp < wo < w3}
(W]_, ws, W3) — SOI’t(W]_, Wy, W3 — W2)
Let B; = Mg,B C B, w(® = (Wl(o), WQ(O), w3(0))

w1 s wln) = M@IW("_” for w1 e B;

)



S-adic Rauzy fractals

For o satisfying PRICE define

R = UieaRU(i) € (i)

R (i) = {7rl(,"\,)\, I(p) : p € A*, pi prefix of w(™, U[O’,,)(w(")) limit word of o}

m(."\,)., = projection along u( onto (w("))L.
I: A* > RY, i — e; abelianization.
w® = (g ) (w™) desubstitution.



S-adic Rauzy fractals

For o satisfying PRICE define
RN — Uiea RM(i) c (vimM)*+

RM(i) = {xMI(p) : p e A*, pi prefix of w(™), o0,y (w™) limit word of o'}
7(" = projection along u(™ onto (v(M)+L,
l: A* = RY, i — e; abelianization.

w® = oo ) (w™) desubstitution.



The Rauzy fractal

S={0:1—12,2— 13,3 — 1}.
M, -invariant decomposition: R3 =E*@® ES=Rq C.
Broken line (balanced): o°°(1) = 121312112131212131211213---.
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The Rauzy fractal

S={0:1—12,2+13,3+ 1}.

M, -invariant decomposition:

Broken line (balanced): ¢>°(1)

R¥=E‘®ES~RaC.
=121312112131212131211213 - - - .
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The Rauzy fractal

{0:1—12,213,3+ 1}.

S:

=2RoC.

D E®
121312112131212131211213 - - -

R® = E*

M, -invariant decomposition:

(1)

g

Broken line (balanced):
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The Rauzy fractal

S={0:1~12,2+ 13,3 1}.
M,-invariant decomposition: R3=E“ @ E° =R C.
Broken line (balanced): ¢°°(1) =121312112131212131211213---.

Domain exchange & : R(i) — R(i) + 7 (e;).

Strong coincidence condition: V (i,j) € A%, 3n, 3a € A such that
10,m (1) = p1as1, oj0,m () = p2as2 with |p1| = |p2].
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Properties

Results of [Berthé-Steiner-Thuswaldner 14]:

@ (X5,Y) is minimal and uniquely ergodic with invariant measure y
(by primitivity and recurrence).

® Each R\(,\f)(i) is compact, closure of its interior, with boundary of
zero Lebesgue measure.

© Set equations

76 x 4 R(k)(i) _ U My o) (ﬂ(e) y+ R(f)(j))
Y J1€EL (ok,0)) %]

Ei(o)[x,i] = {[Msx —l(p),j] : p € A*,j € A such that o(i) = pjs}
E}(0)[x, 1] = {[M; (x +1(p)),j] : p € A*,j € A such that o(j) = pis}



Dual substitution

Dual action on (d — 1)-dimensional faces:

Ef (o) : [x, 1] = [M;'x, 1] U [M, %, 2] U [M, 'x, 3]
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[x,3] = [M;*(x + 7(e1)), 2]
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Dual substitution

Ef (o) : [x,1] = [M; %, 1] U [M;'x, 2] U [M %, 3]
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Dual substitution

Ef(0) 1 [x,1] = [M;1x, 1] U [M, 1 x,2] U [M, x, 3]
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Dual substitution

Ef (o) : [x, 1] = [M;'x, 1] U [M, %, 2] U [M, !x, 3]
[x.2] = My (x + 7(e1)), 1]
[x,3] = [M;*(x + 7(e1)), 2]




Dual substitution

E/ (o) : [x,1] — [M;1x,1] U [M; *x,2] U [M; 1x, 3]
[x,2] = [M; Y (x + 7(e1)), 1]
[x,3] = [M; Y (x + 7(e1)), 2]




Dual substitution

Ef (o) : [x, 1] = [M;'x, 1] U [M, x,2] U [M, 'x, 3]
[x,2] = [M;*(x + 7(e1)), 1]
[x,3] = [M;*(x + 7(e1)), 2]

R(7) = lim (M} E5(c)"([0, )
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Suspensions

ROy = —RM(i) 4 [0, 1)7n ;.

R + 79 tiling < R™ + A tiling




Markov partitions

P, = {int(R"(i)) mod Z9 : i € A} topological partition of T¢.
Theorem [Arnoux, Berthé, M., Steiner, Thuswaldner]

P, forms a non-stationary Markov partition for the mapping family
(T, fs) associated with o



Markov partitions

P, = {int(R"(i)) mod Z9 : i € A} topological partition of T¢.
Theorem [Arnoux, Berthé, M., Steiner, Thuswaldner]

P, forms a non-stationary Markov partition for the mapping family
(T, fs) associated with o

Proof.

Each member of the partition has a pair of horizontal and vertical
transverses.

Actions of M on h, ;(x) and of M, on v, ;(x) are inflations.

We are mod Z¢ — cut-and-stack process

Markov property: v, i(Max) C Myvay1 j(X),
hoi1;(M1x) ©€ My thyi(x) O



Subshifts of finite type

P, is not generating in general: the “rectangles” int(R("(i)) are not
sufficiently small, the image of one of the could wrap around in the torus.

Solution: take the first subdivision of the rectangles P, according to the
set equation.

With P, generating define the transition matrices

A _ 1 it (RUD() 0 M tint(ROV(7)) # 0,
Y 0 otherwise.

The map 7 : (Qa,X) — (T9, f,) defined by (x,) — N
is one-to-one except on the set of boundary pullbacks.

nez M;lﬁ(n)(xn)

Q7! Q9 QL 02
l —1 i —1 i —1 i
_ M M
T, —>T¢ 2> T¢ 2> T



Flow

e Oseledets’ splitting:
E(X0) @ - @ Eg(X"0) =Ru{” & --- & Rul
Renormalize ||u(1")|| =1, (u(ln),v(")> =1, where
(v(M)+ = span(ul”, ..., ul").
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Flow

e Oseledets’ splitting:
E(X0) @ - @ Eg(X"0) =Ru{” & --- & Rul
Renormalize ||u(1")|| =1, (u(ln),v(")> =1, where

(v(M)+ = span(ul”, ..., ul").

e Then
M; 1 B,diag A", ... Ay = B,y

where [[; A\ = +1, B, = (u{", ... u{") € SL(d, R).
e The B,’s are cross-sections of the Weyl chamber flow

diag(e® Tt 72 ... eH)



Brun revisited

e (SZ,%,v) satisfies the Pisot condition [Avila, Delecroix 15]

e R + A tiling [Berthé-Bourdon-Jolivet-Siegel 14] = R+ 7° tiling.
The Rauzy suspensions are fundamental domains of T?.

e For v-a.e. every o € S% words in X, are natural codings of a
translation on T2.
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Brun revisited

(S%,%,v) satisfies the Pisot condition [Avila, Delecroix 15]

R + A tiling [Berthé-Bourdon-Jolivet-Siegel 14] = R+ 7° tiling.
The Rauzy suspensions are fundamental domains of T?.

For v-a.e. every o € S% words in X, are natural codings of a
translation on T2.

Set equations for (3:

M5 RO(1) = RM (1),
Mz R©(2) = RMW(2),
M;RO3) = RMWB) U (RM(2) + r M ey),

From the cut-and-stack

(mq, ma, mg) — (my, my, ms — my) action of ME:

(hl, hg, h3) — (hl, hy + h3, h3) action of tM53

— Natural extension for Brun CF algorithm



Thanks for the attention |



