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Let β > 1 be a real number. The β-transformation is defined by

Tβ : x 7→ βx − bβxc ,

where bxc is the largest integer not exceeding x . By iterating this map
and taking εi = bβT i−1

β (x)c, we obtain the greedy expansion of x :

x =
ε1

β
+
ε2

β2
+ · · · = 0.ε1ε2ε3 . . . .

• Fin(β) denotes the set consisting of all finite β-expansions.
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• β has the finiteness property (F) if

Fin(β) = Z[β−1] ∩ R+

• Frougny and Solomyak in 1992 proved that if β is the positive root
of the polynomial

p(x) = xm − a1xm−1 − · · · − am ,

where a1 ≥ a2 ≥ · · · ≥ am > 0, then β is Pisot and (F) holds.

• Hollander in 1996 proved that if

a1 > a2 + · · ·+ am

then β is Pisot and (F) holds.
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• Akiyama in 2000 proved that if β is a cubic Pisot number. Then β
has property (F) if and only if it is a root of

x3 − ax2 − bx − 1 = 0;

a, b ∈ Z, a ≥ 0 and −1 ≤ b ≤ a + 1

• In general, β Pisot 6=⇒ (F)

• GOAL: Give a sufficient condition for (F)
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Let G = (Gn)n≥0 be an increasing sequence of positive integers with
G0 = 1. Then every positive integer can be expanded in the following way

n =
∞∑
k=0

εk(n)Gk ,

where εk(n) ∈ {0, . . . , dGk+1/Gke − 1} and dxe denotes the smallest
integer not less than x ∈ R.

This expansion is uniquely determined and
finite, provided that for every K

K−1∑
k=0

εk(n)Gk < GK . (1)

KG the subset of sequences satisfying (1) and its elements are called
G -admissible.
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Maria Rita Iacò (joint work with W. Steiner and R.F. Tichy) Finite β-expansions and bounded remainder sets



Let (Gn)n∈N be generated by a finite linear recurrence of order d + 1

Gn+d+1 = a0Gn+d + a1Gn+d−1 + · · ·+ (ad + 1)Gn, n ≥ 0 ,

with positive coefficients and initial values

G0 = 1 , Gn+1 =
n∑

k=0

an−kGk + 1 .

Hypothesis B (Grabner-Liardet-Tichy 1995)
There exists an integer b > 0 such that for all k and

N =
k∑

i=0

εi (N)Gi +
∞∑

j=k+b+2

εj(N)Gj ,

the addition of Gm to N, where m ≥ k + b + 2, does not change the first
k + 1 digits in the greedy representation i.e.

N + Gm =
k∑

i=0

εi (N)Gi +
∞∑

j=k+1

εj(N + Gm)Gj .
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We want to show that Hypothesis B implies (F).

Let

n =
∑
j≥0

εj(n)Gj

be the G -expansion of an integer n. We define the β-adic Monna map
φβ : KG → R+ as

φβ(n) = φβ

∑
j≥0

εj(n)Gj

 =
∑
j≥0

εj(n)β−j−1 ,

where β is the Perron root of the characteristic polynomial

xd = a0xd−1 + . . .+ ad−1

associated to the numeration system G .
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Theorem
Hypothesis B =⇒ (F)

Sketch of the proof.
Assume that

Z[β−1] ∩ R+ * Fin(β) .

It can be proved that this is equivalent to Z+[β−1] * Fin(β). Thus there
exists an x ∈ Z+[β−1] ∩ Fin(β) such that x + 1 /∈ Fin(β). Let

y = ε−nβ
−n + · · ·+ ε0 + ε1 + · · ·+ εkβ

k , εi ∈ Z+, ε−n 6= 0

be the minimal element in Z+[β−1] such that y /∈ Fin(β). This implies

x = y − 1 = ε−nβ
−n + · · ·+ (ε0 − 1) + ε1 + · · ·+ εkβ

k

= δ−mβ
−m + · · ·+ δ0 + · · ·+ δlβ

l ∈ Fin(β) .

Take N = βmx . Then N = (η0 . . . ηm . . . ηm+l).
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Wlog, we can assume that there exists b > 0 such that

N = (η0 . . . ηk0(b+1)ηk+b+2 . . . ηm+l) .

Then for Hypothesis B the addition by Gm does not affects the first k
digits of N, but

N + Gm = βmx + βm = βm((η0 + 1)η1 . . . ηk0(b+1)ηk+b+2 . . . ηm+l) ,

leading to a contradiction.
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Theorem (Hofer-I.-Tichy)
Let G 1, . . . ,G s be numeration systems given by

G 1
n+d = b1(Gn+d−1 + · · ·+ Gn), n ≥ d ,

G 2
n+d = b2(Gn+d−1 + · · ·+ Gn), n ≥ d ,

...

G s
n+d = bs(Gn+d−1 + · · ·+ Gn), n ≥ d ,

with pairwise coprime, positive integers bi . Furthermore let
βk
i

βl
j

/∈ Q, for

all l , k ∈ N, where β1, . . . , βs denote the characteristic roots of the
numerations systems. Then

((KG 1 , τ1)× . . .× (KG s , τs)) ,

is uniquely ergodic.
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• The β-adic Halton sequence is given as

(φβ(n))n∈N = (φβ1 (n), . . . , φβs (n))n∈N ,

where β = (β1, . . . , βs) and it is u.d. in [0, 1]s

• A sequence (xn)n∈N in [0, 1)s is u. d. mod 1 if

lim
N→∞

1

N

N∑
n=1

1I (xn) = λs(I )

for all s-dimensional intervals I ⊆ [0, 1)s .

• A natural measure of the uniformity of a finite sequence (x1, . . . xN)
is the discrepancy, defined by

DN = DN(xn) = DN(x1, . . . , xN) = sup
I⊂[0,1)s

∣∣∣∣∣ 1

N

N∑
n=1

1I (xn)− λs(I )

∣∣∣∣∣ .
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• W. M. Schmidt in 1974 showed that, for any sequence, the
discrepancy can never remain bounded as N →∞.

• Steiner in 2006 proved that if β is a Pisot number with irreducible
β-polynomial, then D(N, [0, y)) is bounded (in N) for y ∈ [0, 1) if
and only if the β-expansion of y is finite or its tail is the same as
that of the expansion of 1 with respect to β.
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Theorem (I.-Steiner-Tichy)
The s-dimensional box anchored at the origin I =

∏s
i=1[0, yi ) is a BRS

for the β-adic Halton sequence (φβ(n))n∈N if and only if every yi is a
β-adic rational.

Theorem
Let (X ,B, µ) be a probability space and let T : X → X be a measure
preserving transformation. Then, for any f ∈ L2(µ),

sup
N

∥∥∥∥∥
(

N∑
n=1

f ◦ T n

)∥∥∥∥∥
2

<∞ ⇐⇒ ∃g ∈ L2(µ) : f = g − g ◦ T ∈ L2(µ) .
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