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Markov partitions of toral automorphisms

We consider a unimodular square matrix of size n with integer
entries. It defines an automorphism of the torus Rn/Zn.

An automorphism of the torus is hyperbolic if it has no
eigenvalue of modulus 1.

Markov partitions provide symbolic representations as shifts of
finite type.

Any hyperbolic automorphism of the torus admits a Markov
partition [Sinăı’68, Bowen’70]

The boundaries of the sets in a Markov partition for
hyperbolic automorphisms of the 3-torus cannot be smooth
[Bowen’78, Cawley’91]

We want to generalize this situation to the nonstationary case
for Brun algorithm following the formalism of
[Arnoux-Fisher’05]
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Topological partition
Let (X ,T ) be a dynamical system with T invertible

A topological partition of X is a finite collection (Xi )i∈A of disjoint
open sets whose closure covers X

X =
⋃
i∈A

Xi

The bilateral symbolic dynamical system associated with a
topological partition is the set ΩX endowed with the shift map S

ΩX = {(ωn)n∈Z ∈ {1, . . . , d}Z; ∃x ∈ X , ∀n ∈ Z, T n(x) ∈ Xωn}

A partition is generating if

+∞⋂
−∞

T−k(Xωk
)

is reduced to a point for ω ∈ ΩX

Markov partition A generating topological partition (X1, . . . ,Xd) of
X is a Markov partition of X if the bilateral symbolic dynamical
system (ΩX , S) is a shift of finite type



A toral automorphism

T :

{
[0, 1]2 → [0, 1]2

( x
y ) 7→ ( x

y ) = ( x+y
x ) (mod 1)
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A toral automorphism

T :

{
[0, 1]2 → [0, 1]2

( x
y ) 7→ ( x

y ) = ( x+y
x ) (mod 1)

future=expanding direction (×1+
√
5

2 )

past=contracting direction (×1−
√
5

2 )

c© Timo Jolivet



A generating partition of [0, 1]2
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Pisot substitution
Let σ be a Pisot irreducible substitution that has pure discrete
spectrum (tiling)

Pisot substitution σ is primitive (there exists a power of its
incidence matrix which admits only positive entries) and its
Perron–Frobenius eigenvalue (for its incidence matrix) is a Pisot
number

Theorem The Rauzy fractals provide basis of Markov partitions for
Pisot unimodular irreducible substitutions under the tiling
assumption

[Praggastis, beta-numeration, Ito-Rao, Siegel, substitutions]
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Purely periodic β-expansions

Theorem [K. Schmidt, A. Bertrand]

If β is a Pisot number, then x has an eventually periodic
expansion iff x ∈ Q(β)

Theorem [S. Ito, Y. Sano, R. Hui, V.B., A. Siegel]

If β is a Pisot number, then x has a purely periodic expansion iff
(x , x ′) ∈ R̃β

Natural extension for the beta-numeration



Theorem [Rauzy’82]

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

(Xσ, S) is measure-theoretically isomorphic to the translation Rβ
on the two-dimensional torus T2

Rβ : T2 → T2, x 7→ x + (1/β, 1/β2)

We want a two-sided and S-adic version of Rauzy fractals
in order to get non-stationary Markov partitions



S-adic expansions and non-stationary dynamics

Definition An infinite word ω is said S-adic if there exist

a finite set of substitutions S
an infinite sequence of substitutions (σn)n≥1 with values in S

such that
ω = lim

n→+∞
σ1 ◦ σ2 ◦ · · · ◦ σn(0)

The terminology comes from Vershik adic transformations
Bratteli diagrams

S stands for substitution, adic for the inverse limit
powers of the same substitution= partial quotients

Markov partitions Two-sided version of S-adic systems
cf. [Two-sided Markov compacta and suspension flows, Bufetov]



Dynamically

One has the shift acting on zero entropy S-adic systems

One has a renomalization cocycle given by the incidence
matrices of the substitutions (inverse of the matrices of the
Brun algorithm)

We apply Oseledets theorem to get a splitting of the spaces to
define stable and unstable spaces



Dynamically

One has the shift acting on zero entropy S-adic systems
Dictionary

σ∞(a)  · · ·σ−2σ−1.σ0σ1σ2 · · ·

One has a renomalization cocycle given by the incidence
matrices of the substitutions (inverse of the matrices of the
Brun algorithm)

We apply Oseledets theorem to get a splitting of the spaces to
define stable and unstable spaces

Dictionary

ΩX
S−→ ΩXy y

Td −→
M−1

σ

Td

 



One-sided case

We apply a multidimensional continued fraction algorithm to
the line in R3 directed by a given vector u = (u1, u2, u3)

We then associate with the matrices produced by the
algorithm substitutions, with these substitutions having the
matrices produced by the continued fraction algorithm as
incidence matrices

u = u0 u1 u2 · · · uk

w = w0 w1 w2 · · · wk ∈ {1, 2, 3}

M1 M2 M3 Mk

σ1 σ2 σ3 σk

u = M1 · · ·Mkuk



S-adic Rauzy fractals

We associate with every translation acting on Td (i.e., with any
line in Rd)

an S-adic sequence

ω = lim
n→+∞

σ1 ◦ σ2 ◦ · · · ◦ σn(0)

such that Xω is isomorphic to a Kronecker map

with finite symbolic discrepancy

provided by a multidimensional continued fraction algorithm
(e.g. Brun algorithm)



S-adic Rauzy fractals

We associate with almost every translation acting on Td (i.e.,
with any line in Rd)

an S-adic sequence

ω = lim
n→+∞

σ1 ◦ σ2 ◦ · · · ◦ σn(0)

such that Xω is isomorphic to a Kronecker map

with finite symbolic discrepancy

provided by a multidimensional continued fraction algorithm
(e.g. Brun algorithm)

Brun and Jacobi-Perron algorithms are “Pisot”
a.e. exponential convergence [Broise-Guivarc’h]



S-adic Pisot dynamics
Theorem [B.-Steiner-Thuswaldner]

For almost every (α, β) ∈ [0, 1]2, the S-adic system provided
by the Brun multidimensional continued fraction algorithm
applied to (α, β) is measurably conjugate to the translation by
(α, β) on the torus T2

For almost every Arnoux-Rauzy word, the associated S-adic
system has pure discrete spectrum

Proof Based on

“adic IFS” (Iterated Function System)

Theorem [Avila-Delecroix]

The Arnoux-Rauzy S-adic system is Pisot

Theorem [Avila-Hubert-Skripchenko]

A measure of maximal entropy for the Rauzy gasket

Finite products of Brun/Arnoux-Rauzy substitutions have pure
discrete spectrum [B.-Bourdon-Jolivet-Siegel]



Random dynamical systems and linear cocyles

Let (X ,B, µ) be a probability space, T an invertible
transformation on (X ,B, µ) (base transformation)

Let A : X → GL(d ,R)

Linear cocycle

(T ,A) : X × Rd → X × Rd , (x , v) 7→ (Tx ,A(x)v)

(T ,A)n = (T n,An)

An(x) := A(T n−1x) · · ·A(x) n ≥ 0

An(x) := A(T−nx)−1 · · ·A(x)−1 n < 0



Brun algorithm

Brun Start with three entries 0 ≤ x1 ≤ x2 ≤ x3
We subtract the second largest and we reorder

(x1, x2, x3) 7→ (x1, x2, x3 − x2)

Linear version Start with w(0) = (w
(0)
1 ,w

(0)
2 ,w

(0)
3 ) with

0 ≤ w
(0)
1 ≤ w

(0)
2 ≤ w

(0)
3

Define
w(n) = M−1in

w(n−1)

where Min is chosen among the matrices1 0 0
0 1 0
0 1 1

 1 0 0
0 0 1
0 1 1

 0 1 0
0 0 1
1 0 1


according to w

(n−1)
3 − w

(n−1)
2 compared to w

(n−1)
1 and w

(n−1)
2



Brun algorithm

Additive form
Let

∆2 := {(x1, x2) ∈ R2 : 0 ≤ x1 ≤ x2 ≤ 1}

TBrun : ∆2 → ∆2

TBrun

(
w

(n−1)
1 /w

(n−1)
3 ,w

(n−1)
2 /w

(n−1)
3

)
=
(
w

(n)
1 /w

(n)
3 ,w

(n)
2 /w

(n)
3

)

TBrun : (x1, x2) 7→


(

x1
1−x2 ,

x2
1−x2

)
, for x2 ≤ 1

2(
x1
x2
, 1−x2x2

)
, for 1

2 ≤ x2 ≤ 1− x1(
1−x2
x2
, x1x2

)
, for 1− x1 ≤ x2



Brun substitutions

β1 :


1 7→ 1

2 7→ 23

3 7→ 3

β2 :


1 7→ 1

2 7→ 3

3 7→ 23

β3 :


1 7→ 3

2 7→ 1

3 7→ 23

Their incidence matrices coincide with the three matrices
associated with Brun’s algorithm1 0 0

0 1 0
0 1 1

 1 0 0
0 0 1
0 1 1

 0 1 0
0 0 1
1 0 1





Brun cocyle

S is the shift
D is the S-adic shift generated by Brun
Symbolic version

Fs : D × Td → D × Td , (σ,w) 7→ (Sσ,M−1σ0 w)

σ = (σn) ∈ SZ lim
n→∞

σ[−n,0).σ[0,n) = · · ·σ−2σ−1.σ0σ1σ2 · · ·

Arithmetic version

Fa : [0, 1]2×Td → [0, 1]2×Td , ((x1, x2),w) 7→ (TBrun(x1, x2),MBrunw)

F n
s (σ,w) = (Snσ,An(σ)w) for n ∈ Z, where

An(σ) := A(Sn−1σ) · · ·A(Sσ)A(σ) = M−1[0,n), if n > 0

An(σ) := A(Snσ)−1 · · ·A(S−1σ)−1 = M[n,0), if n < 0
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Let Lσ be the language associated with σ

σ = (σn) ∈ SZ

The σ-subshift with directive sequence σ is (Xσ,Σ), where Xσ

denotes the set of infinite words ω such that each factor of ω is an
element of Lσ

Primitivity For each k ∈ Z, M[k,`) is positive for some ` > k

Algebraically irreducible For each k ∈ Z, the characteristic
polynomial of M[k,`) is irreducible for all sufficiently large `

Balance A pair of words u, v ∈ A∗ with |u| = |v | is
C -balanced if

−C ≤ |u|j − |v |j ≤ C for all j ∈ A.

A language L is C -balanced if each pair of words u, v ∈ L
with |u| = |v | is C -balanced.



Strong convergence Let σ be an algebraically irreducible sequence
of substitutions with generalized right eigenvector u and balanced
language Lσ ⋂

n∈N
M[0,n)Rd

+ = R+u

Then the coordinates of u are rationally independent

Let σ = (σn)n∈N be a primitive, algebraically irreducible, and
recurrent sequence of substitutions with balanced language Lσ.
Then

lim
n→∞

πu,1M[0,n) ei = 0 for all i ∈ A.
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Theorem Let σ = (σn)n∈Z be a primitive, algebraically irreducible,
and recurrent sequence of substitutions with balanced language
Lσ. Then the mapping family (T, f ) associated with σ is
eventually Anosov

Theorem Let σ = (σn)n∈N be a primitive and algebraically
irreducible sequence of unimodular substitutions over the finite
alphabet A. Assume that there is C > 0 such that for each ` ∈ N,
there is n ≥ 1 with (σn, . . . , σn+`−1) = (σ0, . . . , σ`−1) and the

language L(n+`)σ is C -balanced. If moreover one has tiling, then the
partition R̂(n) made of the suspensions of the Rauzy fractals form
a Markov partition for the mapping family (T, f )

These pieces are connected [B.-Bourdon-Jolivet-Siegel]



Non-stationary composition of toral automorphisms

Consider the sequence of toral homeomorphisms

· · · f−2−→ T−1
f−1−→ T0

f0−→ T1
f1−→ · · ·

each Ti is a manifold homeomorphic to the d-dimensional
torus by a given map ϕi : Ti → Rd/Zd

fi : Ti → Ti+1 is a map such that ϕi+1 ◦ fi ◦ ϕ−1i is an
automorphism of Rd/Zd given in the canonical coordinates by
left multiplication by the inverse matrix M−1i

Let T be the disjoint union of the Ti , let f : T→ T be the
total map which equals fi on the component Ti . We call
(T, f ) the mapping family associated with σ.



Mapping family

The mapping family associated with σ is eventually Anosov if

there exist splittings E
(n)
s ⊕ E

(n)
u of Rd so that the following

properties hold.

f -invariance For all n, fn(E
(n)
s ) = E

(n+1)
s , fn(E

(n)
u ) = E

(n+1)
u .

Hyperbolicity For some (and hence for all) k ∈ Z

lim
n→+∞

inf{‖M−1[k,n) x‖/‖x‖ : x ∈ E
(k)
u \ {0}} = +∞, n > k ,

lim
n→+∞

sup{‖M−1[k,n) x‖/‖x‖ : x ∈ E
(k)
s \ {0}} = 0, n > k ,

lim
n→−∞

sup{‖M[n,k) x‖/‖x‖ : x ∈ E
(k)
u \ {0}} = 0, n < k ,

lim
n→−∞

inf{‖M[n,k) x‖/‖x‖ : x ∈ E
(k)
s \ {0}} = +∞, n < k .



Theorem Let σ = (σn)n∈Z be a primitive, algebraically irreducible,
and recurrent sequence of substitutions with balanced language
Lσ. Then the mapping family (T, f ) associated with σ is
eventually Anosov.

Proof Under hypotheses of primitivity and recurrence of the
directive sequence σ = (σn)n∈Z we have the existence of two
positive vectors u and v defined as⋂

n∈N
M[0,n)Rd

+ = R+u,
⋂
m∈N

t(M[−m,0))Rd
+ = R+v.

Set

u(n) = (M[0,n))
−1u, v(n) = t(M[0,n))v, for n ≥ 0

u(n) = M[n,0)u, v(n) = t(M[n,0))
−1v, for n < 0.

E
(n)
u := (v(n))⊥, E

(n)
s := 〈u(n)〉.

Note that E
(n)
u has codimension 1 whereas E

(n)
s has dimension 1.



Theorem Let σ = (σn)n∈Z be a primitive, algebraically irreducible,
and recurrent sequence of substitutions with balanced language
Lσ. Then the mapping family (T, f ) associated with σ is
eventually Anosov.

Proof ⋂
n∈N

M[0,n)Rd
+ = R+u,

⋂
m∈N

t(M[−m,0))Rd
+ = R+v.

Set

u(n) = (M[0,n))
−1u, v(n) = t(M[0,n))v, for n ≥ 0

u(n) = M[n,0)u, v(n) = t(M[n,0))
−1v, for n < 0.

E
(n)
u := (v(n))⊥, E

(n)
s := 〈u(n)〉.

One checks that f -invariance holds by looking at the definitions of
u(n) and v(n)



Theorem Let σ = (σn)n∈Z be a primitive, algebraically irreducible,
and recurrent sequence of substitutions with balanced language
Lσ. Then the mapping family (T, f ) associated with σ is
eventually Anosov.

Proof ⋂
n∈N

M[0,n)Rd
+ = R+u,

⋂
m∈N

t(M[−m,0))Rd
+ = R+v.

Set

u(n) = (M[0,n))
−1u, v(n) = t(M[0,n))v, for n ≥ 0

u(n) = M[n,0)u, v(n) = t(M[n,0))
−1v, for n < 0.

E
(n)
u := (v(n))⊥, E

(n)
s := 〈u(n)〉.

The hyperbolicity for k = 0 (this is sufficient to do it for k = 0)
comes from the following limits

lim
n→−∞

‖M[n,0)u‖= +∞, lim
n→∞

M−1[0,n)u = 0

lim
n→−∞

M[n,0)x = 0, lim
n→∞
‖M−1[0,n)x‖= +∞, for all x ∈ v⊥ \ {0}.


	Brun

