Diophantine approximation of the orbit of 1 in the dynamical system of beta expansions Bing LI, South China University of Technology, Guangzhou, China

Abstract: We consider the distribution of the orbits of the number 1 under the β -transformations T_{β} as β varies. Mainly, the size of the set of $\beta > 1$ for which a given point can be well-approximated by the orbit of 1 is measured by its Hausdorff dimension. That is, the dimension of the following set

$$E(\{\ell_n\}_{n\geq 1}, x_0) = \left\{\beta > 1 : |T_{\beta}^n 1 - x_0| < \beta^{-\ell_n}, \text{ for infinitely many } n \in \mathbb{N}\right\}$$

is determined, where x_0 is a given point in [0,1] and $\{\ell_n\}_{n\geq 1}$ is a sequence of integers tending to infinity as $n \to \infty$. For the proof of this result, the notion of the recurrence time of a word in symbolic space is introduced to characterize the lengths and the distribution of cylinders (the set of β with a common prefix in the expansion of 1) in the parameter space $\{\beta \in \mathbb{R} : \beta > 1\}$. This is a joint work with Bao-Wei Wang, Tomas Persson and Jun Wu.