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Poincaré Recurrence Theorem
Let (X,B, µ, T ) be a measure-preserving dynamical system
(probability space) and B ⊂ X with positive measure. Then

µ{x ∈ B : Tnx ∈ B infinitely often (i.o.)} = µ(B).

Birkhoff ergodic theorem
Assume that µ is ergodic, then

µ{x ∈ X : Tnx ∈ B i.o.} = 1.

shrinking target problem (Hill and Velani, 1995)
Let {Bn}n≥1 be a sequence of measurable sets with µ(Bn)
decreasing to 0 as n→∞. Consider the metric properties of the
following set

{x ∈ X : Tnx ∈ Bn i.o.} = lim sup
n→∞

T−nBn
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well-approximable set
Let d be a metric on X consistent with the probability space
(X,B, µ). Given a sequence of balls B(y0, rn) with center y0 ∈ X
and shrinking radius {rn}, the set

F (y0, {rn}) := {x ∈ X : d(Tnx, y0) < rn i.o.}

is called the well-approximable set.

dynamical Borel-Cantelli Lemma∑∞
n=1 µ(B(y0, rn)) <∞⇒ µ(F (y0, {rn})) = 0∑∞
n=1 µ(B(y0, rn)) =∞+ some condition⇒ µ(F (y0, {rn})) = 1

(Kuraweil (1955), Philipp (1967), Kleinbock and Margulis (1999),
Chernov and Kleinbock (2001), Kim (2007), Tseng (2008) etc)
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well-approximable set : Hausdorff dimension of the set F (y0, {rn})
for the case

∑∞
n=1 µ(B(y0, rn)) <∞

(Hill and Velani (1995, 1997, 1999), Urbański (2002), Shen and
Wang (2013), Bugeaud and Wang (2014), Li, Wang, Wu and Xu
(2014) etc)

inhomogeneous Diophantine approximation
Let Sα : x 7→ x+ α be the irrational rotation map on the circle with
α /∈ Q. The classic inhomogeneous Diophantine approximation can
be written as{

α ∈ Qc : ‖Snα0− y0‖ < rn, i.o. n ∈ N
}
.
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beta-transformations (greedy)

β > 1

β-transformation Tβ : [0, 1]→ [0, 1]

Tβ(x) = βx− bβxc,

where bβxc denotes the integer part of βx.

Example : β = 1+
√
5
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the orbit of 1 under Tβ is crucial
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Main problem

well-approximable set in papameter space
Fix a point x0 ∈ [0, 1] and a given sequence of integers {`n}n≥1.

E
(
{`n}n≥1, x0

)
=
{
β > 1 : |Tnβ 1− x0| < β−`n , i.o.

}
Question :

dimH E
(
{`n}n≥1, x0

)
=?

(Persson and Schmeling, 2008)
When x0 = 0 and `n = γn(γ > 0), then

dimH E({γn}n≥1, 0) =
1

1 + γ
.
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Main result

Theorem

Let x0 ∈ [0, 1] and let {`n}n≥1 be a sequence of integers such that
`n →∞ as n→∞. Then

dimH E
(
{`n}n≥1, x0

)
=

1

1 + α
, where α = lim inf

n→∞

`n
n
.
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β-expansion

digit set

A =

{
{0, 1, . . . , β − 1} when β is an integer

{0, 1, . . . , bβc} otherwise.

digit function

ε1(·, β) : [0, 1]→ A as x 7→ bβxc

εn(x, β) := ε1(Tn−1β x, β)

β-expansion (Rényi, 1957)

x =
ε1(x, β)

β
+
ε2(x, β)

β2
+ · · ·+ εn(x, β)

βn
+ · · ·

notation :

ε(x, β) = (ε1(x, β), ε2(x, β), . . . , εn(x, β), . . . )
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admissible sequence

admissible sequence/word
Σβ = {ω ∈ AN : ∃ x ∈ [0, 1) such that ε(x, β) = ω}

Σnβ = {ω ∈ An : ∃ x ∈ [0, 1) such that εi(x, β) = ωi for all i = 1, · · · , n}

β is an integer

Σβ = AN (except countable points)

Example : β0 =
√
5+1
2

Σβ0 = {ω ∈ {0, 1}N : the word 11 dosen’t appear in ω}

number of admissible words of length n

βn ≤ ]Σnβ ≤
βn+1

β − 1
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admissible sequence

the infinite expansion of the number 1

ε∗(1, β) =



ε(1, β) if there are infinite many

εn(1, β) 6= 0 in ε(1, β)(
ε1(1, β), · · · , (εn(1, β)− 1)

)∞
otherwise, where εn(1, β) is

the last non-zero element

in ε(1, β).

Theorem (Parry, 1960)

Let β > 1 be a real number and ε∗(1, β) the infinite expansion of the
number 1. Then ω ∈ Σβ if and only if

σk(ω) ≺ ε∗(1, β) for all k ≥ 0,

where ≺ means the lexicographical order.
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self-admissible sequence

Corollary (Parry, 1960)

w is the β-expansion of 1 for some β ⇐⇒ σk(w) � w for all k ≥ 0

self-admissible sequence

σk(w) � w for all k ≥ 0

cylinder of order n ((ε1, ε2, · · · , εn) ∈ Σnβ)

In(ε1, ε2, · · · , εn) = {x ∈ [0, 1) : εk(x) = εk, 1 ≤ k ≤ n}

full cylinder ∣∣In(w1, · · · , wn)
∣∣ = β−n
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a kind of classification of β > 1

tn(β) := max{ k ≥ 0 : ε∗n+1(1, β) = · · · = ε∗n+k(1, β) = 0 }

t(β) = lim sup
n→∞

tn(β)
n

A kind of classification of β > 1 :

A0 =
{
β > 1 : {tn(β)} is bounded

}
;

A1 =
{
β > 1 : {tn(β)} is unbounded and t(β) = 0

}
;

A2 =
{
β > 1 : t(β) > 0

}
.

Theorem (Li and Wu, 2008)

(1) β ∈ A0 ⇐⇒ Cβ−n ≤ |In(x)| ≤ β−n for any x ∈ [0, 1] and n ≥ 1,
where C is a constant.
(2) β ∈ A0 ∪A1 ⇐⇒ lim

n→∞
− log |In(x)|

n = log β for any x ∈ [0, 1].

FAN workshop in Admont Diophantine approximation of the orbit of 1 in beta-expansions



Diophantine approximation of the orbits of 1 under beta-transformations
The lengths of the cylinders in β-expansion

Distribution of regular cylinders in parameter space

Distribution of regular cylinders in parameter space

FAN workshop in Admont Diophantine approximation of the orbit of 1 in beta-expansions



Diophantine approximation of the orbits of 1 under beta-transformations
The lengths of the cylinders in β-expansion

Distribution of regular cylinders in parameter space

cylinders in parameter space

Recall :
a word w = (ε1, · · · , εn) is called self-admissible if σiw � w for all
1 ≤ i < n, that is,

σi(ε1, · · · , εn) � ε1, · · · , εn.

Definition

Let (ε1, · · · , εn) be self-admissible. A cylinder in the parameter space is
defined as

IPn (ε1, · · · , εn) =
{
β > 1 : ε1(1, β) = ε1, · · · , εn(1, β) = εn

}
,

i.e., the collection of β for which the β-expansion of 1 begins with
ε1, · · · , εn.
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cylinders in parameter space

(Schmeling, 1997)
The cylinder IPn (ε1, · · · , εn) is a half-open interval [β0, β1). The left
endpoint β0 is given as the only solution in (1,∞) to the equation

1 =
ε1
β

+ · · ·+ εn
βn
.

The right endpoint β1 is given as the limit of the solutions
{βN}N≥1 in (1,∞) to the equations

1 =
ε1
β

+ · · ·+ εn
βn

+
εn+1

βn+1
+ · · ·+ εN

βN
,

where (ε1, . . . , εn, εn+1, . . . , εN ) is the maximal self-admissible word
beginning with ε1, · · · , εn in the lexicographical order. Moreover,∣∣IPn (ε1, . . . , εn)

∣∣ ≤ β−n1 .

Remark : If the left endpoint of IPn (ε1, · · · , εn) is 1, then the

cylinder will be an open interval. For example, IP2 (1, 0) = (1, 1+
√
5

2 ).
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maximal self-admissible sequence

Definition

Let w = (ε1, · · · , εn) be a word of length n. The recurrence time τ(w) of
w is defined as

τ(w) := inf
{
k ≥ 1 : σk(ε1, · · · , εn) = ε1, · · · , εn−k

}
.

If such an integer k does not exist, then τ(w) is defined to be n and w is
said to be of full recurrence time.

Theorem

Let w = (ε1, . . . , εn) be self-admissible with τ(w) = k. Then the periodic
sequence

(ε1, · · · , εk)∞

is the maximal self-admissible sequence beginning with ε1, · · · , εn.
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lengths of cylinders in parameter space

Theorem

Let w = (ε1, · · · , εn) be self-admissible with τ(w) = k. Let β0 and β1 be
the left and right endpoints of IPn (ε1, · · · , εn). Then we have

∣∣IPn (ε1, · · · , εn)
∣∣ ≥

 Cβ−n1 , when k=n ;

C

(
εt+1

βn+1
1

+ · · ·+ εk+1

β
(`+1)k
1

)
, otherwise.

where C := (β0 − 1)2 is a constant depending on β0 ; the integers t and `
are given as `k < n ≤ (`+ 1)k and t = n− `k.

regular cylinder
When (ε1, · · · , εn) is of full recurrence time, the length

Cβ−n1 ≤ |IPn (ε1, · · · , εn)| ≤ β−n1 ,

in this case, IPn (ε1, · · · , εn) is called regular cylinder.
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distribution of regular cylinders in parameter space

Denote by CPn the collection of cylinders of order n in parameter
space.

Corollary

Among any n consecutive cylinders in CPn , there is at least one with full
recurrence time, hence with regular length.

This corollary was established for the first time by Persson and
Schmeling (2008).
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Recall main result

Theorem

Let x0 ∈ [0, 1] and let {`n}n≥1 be a sequence of integers such that
`n →∞ as n→∞. Then

dimH E
(
{`n}n≥1, x0

)
=

1

1 + α
, where α = lim inf

n→∞

`n
n
.

The generality of {`n}n≥1 arises no extra difficulty compared with
special {`n}n≥1.
The difficulty comes from that x0 6= 0 has no uniform β-expansion
for different β.
When x0 6= 1, the set E({`}n≥1, x0) can be regarded as a type of
shrinking target problem. While x0 = 1, it becomes a type of
recurrence properties.
The notion of the recurrence time of a word in symbolic space is
introduced to characterize the lengths and the distribution of
cylinders in the parameter space {β ∈ R : β > 1}.
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More general theorem

the set E
(
{`n}n≥1, x0

)
concerns points in the parameter space

{β > 1 : β ∈ R } for which the orbit {Tnβ 1 : n ≥ 1 } is close to the
same magnitude x(β) = x0 for infinitely many moments in time.
What can be said if the magnitude x(β) is also allowed to vary
continuously with β > 1 ?
Let x = x(β) be a function on (1,+∞), taking values on [0, 1]. The
set E

(
{`n}n≥1, x0

)
changes to

Ẽ
(
{`n}n≥1, x

)
=
{
β > 1 : |Tnβ 1− x(β)| < β−`n , i.o.

}
.

Theorem

Let x = x(β) : (1,+∞)→ [0, 1] be a Lipschtiz continuous function and
{`n}n≥1 be a sequence of positive integers such that `n →∞ as
n→∞. Then

dimH Ẽ
(
{`n}n≥1, x

)
=

1

1 + α
, where α = lim inf

n→∞

`n
n
.
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Application : sizes of A0, A1, A2

Theorem

(1) L(A0) = 0 and dimH(A0) = 1 (already known by Schmeling, 1997).
(2) The set A1 is of full Lebesgue measure.
(3) L(A2) = 0 and dimH(A2) = 1.
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Thanks for your attention !
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