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I each Tα admits a unique (ergodic) A.C.I.P. µα
I h(α) = h(Tα, µα) metric entropy

I Goal: study the function α 7→ h(α).
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Matching property

Key feature: combinatorial property(matching).

It can be used to explain why the entropy looks piecewise
monotone in some regions [NN2008].
It explains the self-similarity of the graph [CT2013].
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Properties

Each of these maps the nonwandering set is bounded, and it is
endowed with a ACIP measure, which is ergodic.

The entropy can be computed using Rohlin formula

h(Tβ) =

∫
log |T ′β(x)|dµβ(x) = (log s)µβ([0, +∞]).

In [BSORG] the authors are mainly interested in plateaux of the
entropy.
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Matching for piecewise linear maps

In [BSORG] the authors are mainly interested in plateaux of the
entropy.

Plateaux (and more generally monotonicity) are consequence of a
combinatorial condition (that we shall call again matching).

When this condition holds, we can compute both the invariant
density (which is locally constant) and the entropy.
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Movie(s)

Remark: when the fixed point is no more in the image of the left
branch the support of the invariant measure gets disconnected
Show movie!



An affine change of coordinates

In order to use the same techniques as in the case of α-CF, it is
convenient to describe the same family using different coordinates:

performing an affine change of coordinates we can keep the two
branches fixed, and move the discontinuity point.

Thus for s > 1 (fixed) we consider the following family of maps
depending on γ ∈ R

Qγ(x) :=

{
x + 1 x ≤ γ
1 + s(1− x) x > γ

(1)

β := 2(1 + s)(1− γ)
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Let f : R→ R be a map, and a ∈ R be a fixed value.

For k ∈ N we shall use the following notation

f k(a+) := lim
t→a+

f k(t) f k(a−) := lim
t→a−

f k(t)
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Matching

Definition

We say that Qγ satisfies the matching condition if there exist
integers k−, k+ ∈ N such that

Qk−
γ (γ−) = Qk+

γ (γ+)

(Qk−
γ )′(γ−) = (Qk+

γ )′(γ+)

Moreover we will also ask the following stability condition:

γ /∈ PMγ := {Q j
γ(γ−) : 1 ≤ j ≤ k−−1}∪{Q j

γ(γ+) : 1 ≤ j ≤ k+−1}

The set PMγ is called prematching set, while difference
∆ := k− − k+ will be called matching index.
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I matching is an open condition.

I we will call matching interval a connected component of the
matching set; here the matching exponents (and matching
index) are constant.

I For some values of the slope s matching actually occurs.

I For some values of the slope s matching is prevalent (i.e. has
full measure).
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rn(x , γ) :=
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j=0

χ[γ,+∞[(Q j
γ(x)).

This is a counter which records how many times the expanding
branch has been used in the first n iterates of x under Qγ .
Condition

(Qk−
γ )′(γ−) = (Qk+

γ )′(γ+)

boils down to
rk+(x , γ+) = rk−(x , γ−)
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Examples (for s integer).

If s > 1 is an integer value, then matching holds on ]−∞, 0[.

Indeed, lower and upper orbits of γ behave as follows:

lower γ 7→ γ + 1
+7→ 1− sγ

+7→ 1 + s2γ

upper γ
+7→ 1 + s(1− γ)

+7→ 1 + s2γ − s2 7→ ... 7→ 1 + s2γ

Here k− = 3, k+ = 2 + s2, and derivatives match as well, since the
expanding branch has been used the same number of times for the
upper and lower orbit.

For γ ∈] s
s+1 ,+∞[ matching holds as well:

lower γ 7→ γ + 1
+7→ 1− sγ 7→ ... 7→ 1 + s − sγ k− = 2 + s

upper γ
+7→ 1 + s − sγ k+ = 1
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Let J be a matching interval, and let ∆ = k+ − k− be its
matching index. Then

1. If ∆ = 0 then γ 7→ h(γ) is constant on J;

2. If ∆ > 0 then γ 7→ h(γ) is increasing on J;

3. If ∆ < 0 then γ 7→ h(γ) is decreasing on J.

Theorem

For all integer values s of the slope, matching is prevalent (has full
measure).
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Numerical evidence

Numerical experiments suggest that the following propositions are
also true (but we complete rigorous proofs are still missing)

Let J be a matching interval, γ ∈ J and let PMγ be the
pre-matching set of Qγ . Then

1. µγ = ργdx with ργ locally constant on the complement of
PMγ ;

2. the entropy varies smoothly on J.

For all the values s of the slope considered by [BSGOR] matching
is prevalent (has full measure).

Being bold, one could also ask the following question:
what conditions on the slope s characterize prevalence of
matching?
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Matching ⇒ monotonicity: NN formula.

Assume J is a matching interval for the family (Qγ) with slope
s > 1, let k± be the matching exponents, and ∆ the matching
index of J.

Then, if γ0, γ1 ∈ J are sufficiently close, γ0 < γ1 then

h(γ1) = [1 + ∆ · µγ1([γ0, γ1])]h(γ0) (2)

So, for instance, we get that if ∆ > 0 then for every γ0, γ1 close
enough

γ0 < γ1 ⇒ h(γ0) < h(γ1)
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Proof of NN formula - step 1

Matching implies that, forall x ∈ (γ0, γ1)

Q j
γ0(x) /∈ (γ0, γ1), ∀1 ≤ j ≤ k+ − 1

Q j
γ1(x) /∈ (γ0, γ1), ∀1 ≤ j ≤ k− − 1

Qk+

γ0 (x) = Qk−
γ1 (x) (Qk+

γ0 )′(x) = (Qk−
γ1 )′(x)

This means that, even if the orbits of x under Qγ split, they will
meet again before returning to [γ0, γ1] (and one-sided derivatives
match).
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Step 2

Fix a value x ∈ (γ0, γ1) such that

1. Q j
γ0(x) /∈ {γ0, γ1} and Q j

γ1(x) /∈ {γ0, γ1} for all j ∈ N;

2. x is typical for both Qγ0 and Qγ1 .

Let us set

n+
k := kth − return time to (γ0, γ1)of the orbit{Q j

γ0(x), j ∈ N}
n−k := kth − return time to (γ0, γ1)of the orbit{Q j

γ1(x), j ∈ N}

The matching property implies that

n+
k (x)− n−k (x) = k∆

rn+k
(x , γ0) = rn−k

(x , γ0)
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Step 3.2 - qed

h(γ) =

∫
log |Q ′γ(x)|dµγ(x) = (log s) · µγ([γ,+∞[).

(3)

µγi ([γi ,+∞[) = lim
n→+∞

1

n
rn(x , γi ), (i = 1, 2)

so that the ratio between entropies relates to ratio of return times:

h(γ1)

h(γ0)
=
µγ1([γ1,+∞[)

µγ0([γ0,+∞[)
= lim
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(1/n+
k )rn+k
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Prevalence for integer slope: the proof.

If s > 1 is integer then the situation is simpler, and the bifurcation
set is contained in [0, 1].

Moreover, if γ = p
sq with p, q ∈ N then both the upper and the

lower rbit of γ end up in the fixed point, and matching holds.

On the other hand, if the upper (or lower) orbit of γ ends up in the
fixed point then γ = p

sq .
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The first returns of Qγ on [0, 1) are modelled by the map
g(x) := {s(1− x)}

(here {} denotes the fractional part).

Lemma

Let x ∈ [0, 1) and let R(x) denote the first return of
Qk
γ (x)on[0, 1). Then

R(x) :=

{
g(x) if x ∈ (0, γ)
g2(x) if x ∈ (γ, 1)

Of course R is not defined for x = 0 because in this case
Qk
γ (x) = 1 for all k ≥ 1 (never returns).
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First returns
Here is a graph of the first returns for s = 2 and γ = 1.2
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Alternative

It is easy to check that the upper and lower orbit of γ begin as
follows:

lower γ 7→ g(γ) 7→ ...
upper γ 7→ g2(γ) 7→ ...

Neither the upper nor the lower orbit can miss two consecutive
elements of {gk(k), k ∈ N}.
Hence the following alternative holds:

1. the retuns of the upper orbit coincide with even powers of g ,
the lower orbit runs on odd powers of g (no matching).

2. some lower and upper iterates both attain gk(γ) for some k
(matching).
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Cases

If gk(γ) ≥ γ for all k ∈ N then we are in the first case.

Assume gk(γ) < γ.
If gk(γ) does not belong to neither the upper nor the lower orbit,
then gk−1(γ) belongs to both upper and lower orbit and matching
holds.

If gk(γ) belongs to the upper orbit, then also gk+1(γ) belongs to
the upper orbit, and so one of these two values must belong to the
lower orbit as well and matching holds.

If gk(γ) belongs to the lower orbit, the argument goes over in the
same way.
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Characterization of the bifurcation set

Theorem

The bifurcation set is

E := {γ ∈ [0, 1] : gk(γ) ≥ γ ∀k ∈ N}. (4)



Zero measure

For t ∈ [0, 1] let us define

K (t) := {x ∈ [0, 1] : gk(x) ≥ t ∀k ∈ N}, (5)

Since g is ergodic, the lebesgue measure of K (t) is zero. Moreover
E ∩ [t, 1] ⊂ K (t). We have thus proved the following

Theorem

For s integer, the bifurcation set E has zero lebesgue measure.
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