Shortest paths on Sierpiński graphs and distances on the Sierpiński gasket

Ligia-Loretta Cristea

Austrian Science & Research Fund (FWF), Project P20412-N18

Institut für Mathematik, Technische Universität Graz

joint work with Bertran Steinsky

- Definitions. Introducing the problem
- Sierpiński graphs in the Euclidean plane. Graph distances. Shortest paths.

• The geodesic distance on the Sierpiński gasket

Introducing the problem. Definitions

Let
$$P_1 = (\frac{1}{2}, \frac{\sqrt{3}}{2})$$
, $P_2 = (0, 0)$, and $P_3 = (1, 0)$. For $i = 1, 2, 3$ let
 $\phi_i(x) = \frac{1}{2}(x - P_i) + P_i$.

The invariant set of the set of contractions $\{\phi_1, \phi_2, \phi_3\}$,

$$\mathcal{G} = \bigcup_{i=1}^{3} \phi_i \left(\mathcal{G} \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is a self similar fractal called the Sierpiński gasket.

Sierpiński graphs

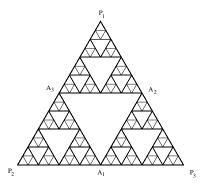
A sequence of graphs $\{G_n\}_{n\geq 0}$, $G_n = (V(G_n), E(G_n))$ related to \mathcal{G} is defined as follows. Let $V(G_0) = \{P_1, P_2, P_3\}$, and $E(G_0) = \{\{P_1, P_2\}, \{P_2, P_3\}, \{P_1, P_3\}\}$. For $n \geq 1$, the *n*-th Sierpiński graph $G_n = (V(G_n), E(G_n))$ is defined by

$$V(G_n) = \bigcup_{1 \leq i_1, i_2, \dots, i_n \leq 3} \phi_{i_1} \circ \phi_{i_2} \circ \dots \circ \phi_{i_n} \left(V(G_0) \right),$$

and $E(G_n) = \{ \{ \phi_{i_1} \circ \phi_{i_2} \circ \cdots \circ \phi_{i_n}(P_k), \phi_{i_1} \circ \phi_{i_2} \circ \cdots \circ \phi_{i_n}(P_l) \} | 1 \le i_1, \dots, i_n \le 3, 1 \le k, l \le 3 \}.$

Notation: d_n is the graph distance in G_n , for $n \ge 0$.

Example: G_4



Remark: The closure of the set $\bigcup_{n\geq 0} V(G_n)$ with respect to the Euclidean topology is the Sierpiński gasket.

(e.g., Yamaguti, Hata, Kigami (1997), Tichy, Grabner(1998),...)

The geodesic metric on the Sierpiński gasket

Let $x, y \in \mathcal{G}$ and, for all $n \ge 0$, let $\Delta_n(x), \Delta_n(y) \in \mathcal{T}_n$ be two elementary triangles of level n such that $x \in \Delta_n(x)$ and $y \in \Delta_n(y)$. For all $n \ge 0$ let x_n and y_n be the left lower vertices of $\Delta_n(x)$ and $\Delta_n(y)$, respectively. Thus $x_n, y_n \in V(\mathcal{G}_n)$. The geodesic distance between x and y is defined as

$$d_{geod}(x,y) = \lim_{n \to \infty} 2^{-n} \cdot d_n(x_n, y_n).$$

 this distance also occurs at Barlow and Perkins (1988), Grabner and Tichy (1998), Strichartz (1999)

Already existing results

- Hinz, Schief (1990): for any x ∈ G there is a rectifiable curve in G with length ≤ 1 joining x and the vertex P_i, i=1,2,3. Application: definition of a geodesic metric on G
- Hinz, Schief (1990): the average distance between 2 points on the gasket is ⁴⁶⁶/₈₈₅.
- Hinz (1989, 1992) connection to Tower of Hanoi (graph) with 3 pegs.
- Grabner, Tichy (1998) equidistribution and Brownian motion on ${\cal G}$

• Band, Mubarak (2004) - distribution of Euclidean and geodesic distances on *G*

The problem: distances in Sierpiński graphs Let $n \ge 1$, $x, y \in V(G_n)$, $x \ne y$, and m be an integer, $1 \le m < n$ with the property that x and y lie in distinct elementary triangles of level m that contain a common vertex $z \in V(G_m)$. In order to construct a path of minimal length in G_n with respect to the graph distance d_n , one has to decide whether such a path passes through z or through $z_1, z_2 \in V(G_m)$, where z, z_1 , and z_2 are the midpoints of other two sides of the triangle of level m - 1 that contains xand y.

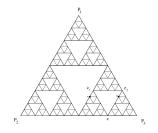


Figure: G_n for n = 4, m = 2

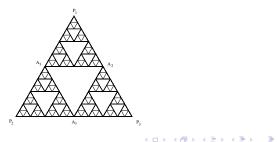
The problem: distances in Sierpiński graphs

Problem: decide (geometric criteria!), without actually constructing paths, and without comparing lengths of different paths, whether a shortest path that connects x and y in G_n passes through z or through z_1 and z_2

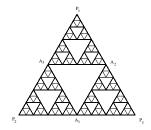


Figure: Here n = 4, m = 2 and the shortest path from x to y in G_4 does not pass through $z \in V(G_2)$.

- $n \ge 0$, A, B, C points in the Euclidean plane, \overline{ABC} the convex hull of A, B and C, $(\overline{ABC})_n = \overline{ABC} \cap V(G_n)$
- A_i the midpoint of the side of the triangle $\overline{P_1P_2P_3}$ opposite to P_i
- for A, B two points in the plane, $A \neq B$: $\sigma(A, B)$ the straight line that contains A and B,
- *d_{eucl}* the Euclidean distance



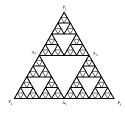
Sierpiński graphs in the Euclidean plane. Graph distances. Main result: geometric criterion



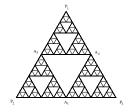
Theorem
Let
$$x \in (\overline{A_1A_3P_2})_n$$
 and $y \in (\overline{A_2A_1P_3})_n$.
1. If $\frac{3}{2} + x_1 - \sqrt{3}x_2 \ge y_1 + \sqrt{3}y_2$ then
 $d_n(x, y) = d_n(x, A_1) + d_n(A_1, y)$ and
2. otherwise $d_n(x, y) = d_n(x, A_3) + d_n(A_3, A_2) + d_n(A_2, y)$.

Proposition

Let $n \ge 0$ and $x \in V(G_n)$. Then, for $i \in \{1, 2, 3\}$, we have $d_n(x, P_i) \le 2^n$, where the equality holds if and only if x lies on the side of $P_1P_2P_3$ opposite to P_i .

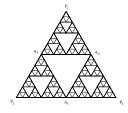


◆□> ◆□> ◆三> ◆三> □



Proof.

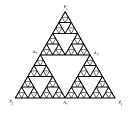
For i = 1, by induction on n. For n = 0, trivial. Assume $d_{n-1}(x, P_1) \leq 2^{n-1}$, for all $x \in V(G_{n-1})$, with equality if and only if $x \in V(G_{n-1}) \cap \overline{P_2P_3}$. Let $x \in V(G_n)$. First, we consider the case when $x \in (\overline{A_3A_2P_1})_n$. By the induction hypothesis applied to $(\overline{A_3A_2P_1})_n$ and x (since the subgraph of G_n induced by the vertex set $(\overline{A_3A_2P_1})_n$ is isomorphic to G_{n-1}), we have $d_n(x, P_1) \leq 2^{n-1} < 2^n$.



In the case $x \notin (\overline{A_3A_2P_1})_n$, let us assume, without loss of generality, that $x \in (\overline{A_1A_3P_2})_n$. First, we note that $d_n(x, A_3) \leq d_n(x, A_2)$, since $d_n(x, A_3) \leq 2^{n-1}$ by the induction hypothesis and $d_n(x, A_2) = \min\{d_n(x, A_3) + d_n(A_3, A_2), d_n(x, A_1) + d_n(A_1, A_2)\} \geq 2^{n-1}$. Thus, $d_n(x, P_1) = d_n(x, A_3) + d_n(A_3, P_1) = d_n(x, A_3) + 2^{n-1}$. By the induction hypothesis, we have $d_n(x, A_3) \leq 2^{n-1}$ with equality if and only if $x \in (\overline{A_1A_3P_2})_n$ is collinear with P_2 and A_1 .

Proposition Let $n \ge 0$. For any $x \in V(G_n)$, we have

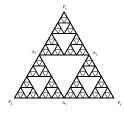
$$\sum_{i=1,2,3} d_n(x, P_i) = 2^{n+1}.$$



Proof by induction.

For two integers $i, n \ge 0$, let

- $h_1^n(i) = \{x \in (\overline{A_1 A_3 P_2})_n \mid d_n(x, A_1) d_n(x, A_3) = i\}$ and
- $h_2^n(i) = \{x \in (\overline{A_2A_1P_3})_n \mid d_n(x,A_1) d_n(x,A_2) = 2^{n-1} i\}.$



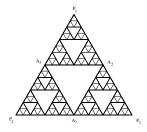
Proposition

Let $x \in (\overline{A_1A_3P_2})_n$ and $y \in (\overline{A_2A_1P_3})_n$.

- 1. There is one and only one i_1 such that $-2^{n-1} \le i_1 \le 2^{n-1}$ and $x \in h_1^n(i_1)$.
- 2. There is one and only one i_2 such that $0 \le i_2 \le 2^n$ and $y \in h_2^n(i_2)$.

Proposition

Let $x \in (\overline{A_1A_3P_2})_n$, $y \in (\overline{A_2A_1P_3})_n$, $x \in h_1^n(i_1)$, and $y \in h_2^n(i_2)$, for some integers i_1, i_2 . Then $d_n(x, A_1) + d_n(A_1, y) = d_n(x, A_3) + d_n(A_3, A_2) + d_n(A_2, y) + i_1 - i_2$.



Corollary

Let $x \in (\overline{A_1A_3P_2})_n$, $y \in (\overline{A_2A_1P_3})_n$, $x \in h_1^n(i_1)$, and $y \in h_2^n(i_2)$, for some integers i_1, i_2 . Then we have

- 1. $d_n(x, A_1) + d_n(A_1, y) = d_n(x, A_3) + d_n(A_3, A_2) + d_n(A_2, y)$ if and only if $i_1 = i_2$,
- 2. $d_n(x, A_1) + d_n(A_1, y) > d_n(x, A_3) + d_n(A_3, A_2) + d_n(A_2, y)$ if and only if $i_1 > i_2$,
- 3. $d_n(x, A_1) + d_n(A_1, y) < d_n(x, A_3) + d_n(A_3, A_2) + d_n(A_2, y)$ if and only if $i_1 < i_2$.

Let T_0 be the triangle whose set of vertices is $V(G_0)$.

Proposition

Let $P \in V(G_0)$ and σ be the straight line that contains the side of T_0 that lies opposite the vertex P and let $I_t^n(P) = \{x \in V(G_n) \mid d_n(x, P) = t\}$, where $t \in \mathbb{Z}, 0 \le t \le 2^n$, and $n \ge 0$.

1. The set $I_t^n(P)$ is contained in a straight line $\omega_t = \omega_t(P)$ that is parallel to σ .

2. The Euclidean distance between ω_t and σ is $\frac{\sqrt{3}}{2^{n+1}}(2^n-t)$.

Proof. W.I.o.g. assume $P = P_1$. For t = 0 the affirmation is trivial. Let $1 \le t \le 2^n$ be arbitrarily fixed and $\omega_t(P_1)$ be the straight line containing the points x_t and y_t , which are defined as follows. The vertex $x_t \in V(G_n)$ lies on the side $\overline{P}_1 P_2$ of T_0 , such that $d_n(x_t, P_1) = t$, and the vertex $y_t \in V(G_n)$ lies on the side P_1P_3 of T_0 , such that $d_n(x_t, P_1) = t$. Thus $\omega_t(P_1)$ is parallel to σ_1 , the straight line containing P_2 and P_3 . We proceed in two steps. At the first step, we show (by induction on n) that for $x \in V(G_n) \cap \omega_t(P_1)$ we have $d_n(x, P_1) = t$, (i.e., $V(G_n) \cap \omega_t(P_1) \subseteq I_t^n(P_1)$). At the second step, we show that $d_n(x, P_1) \neq t$ for $x \in V(G_n) \setminus \omega_t(P_1)$.

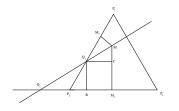
Proposition

Let σ_k be the straight line that contains the side of T_0 that lies opposite the vertex P_k for $1 \le k \le 3$ and let $1 \le i < j \le 3$. For all real numbers a with $|a| \le \frac{\sqrt{3}}{2}$, the set $D_{ij}(a) = \{x \in \mathbb{R}^2 \mid d_{eucl}(x, \sigma_i) - d_{eucl}(x, \sigma_j) = a\}$ is contained in a straight line $\gamma_{ij}(a)$, where

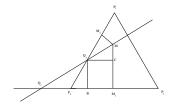
1. $\gamma_{12}(a) : x_1 + \sqrt{3}x_2 = 1 + \frac{2}{\sqrt{3}}a$, 2. $\gamma_{13}(a) : -x_1 + \sqrt{3}x_2 = \frac{2}{\sqrt{3}}a$, and 3. $\gamma_{23}(a) : x_1 = \frac{3-2\sqrt{3}a}{6}$,

where by x_1, x_2 we denote the coordinates in the Euclidean plane.

Proof. (for $D_{13}(a)$)



 $Q_3 = (\frac{\sqrt{3}}{3}a, a) \in D_{13}(a) \cap \sigma_3$ and thus $D_{13}(a) \neq \emptyset$. Let M be a point in the interior of the triangle T_0 , $M \in D_{13}(a)$, i.e., $d_{eucl}(M, \sigma_1) - d_{eucl}(M, \sigma_3) = a$. Assume, w.l.o.g., that a > 0 (the case a < 0 can be solved analogously). Let M_1 and M_3 be the orthogonal projections of M on σ_1 and σ_3 , resp., and B and C be the orthogonal projections of Q_3 on σ_1 and $\sigma(M, M_1)$. Then $d_{eucl}(M, M_1) - d_{eucl}(M, M_3) = a$ and $a = d_{eucl}(Q_3, \sigma_1) = d_{eucl}(Q_3, B) = d_{eucl}(C, M_1)$ ($\overline{BM_1CQ_3}$ rectangle).



We obtain $d_{eucl}(M, C) = d_{eucl}(M, M_3)$ and herefrom, the angles $\angle CQ_3M$ and $\angle MQ_3M_3$ have 30°. Let Q_1 be the intersection point of σ_1 and $\sigma(Q_3, M)$. Then $\angle P_2Q_1Q_3$ has 30° and we infer that $Q_1 = (-\frac{2\sqrt{3}}{3}a, 0)$. Moreover, it follows that $\sigma(Q_1, Q_3) = \gamma_{13}(a)$. As M was arbitrarily chosen in $D_{13}(a)$ and $\sigma(M, Q_3) = \sigma(Q_1, Q_3)$, we conclude that $D_{13}(a) \subseteq \gamma_{13}(a)$.

Proposition

Let $1 \le i < j \le 3$. For an integer k, with $-2^n \le k \le 2^n$, the points in $\{x \in V(G_n) \mid d_n(x, P_i) - d_n(x, P_i) = k\}$ are contained in the straight line $\gamma_{ij}\left(-\frac{k\sqrt{3}}{2^{n+1}}\right)$. Dreaf (Dr. a province scoult)

$$\{x \in V(G_n) \mid d_n(x, P_i) - d_n(x, P_j) = k\}$$

=
$$\{x \in V(G_n) \mid d_{eucl}(x, \sigma_i) - d_{eucl}(x, \sigma_j) = -\frac{k\sqrt{3}}{2^{n+1}}\}$$

$$\subseteq \{x \in \mathbb{R}^2 \mid d_{eucl}(x, \sigma_i) - d_{eucl}(x, \sigma_j) = -\frac{k\sqrt{3}}{2^{n+1}}\},$$

which is contained in the straight line $\gamma_{ij}\left(-\frac{k\sqrt{3}}{2^{n+1}}\right)$ (by previous results).

- $h_1^n(i) = \{x \in (\overline{A_1A_3P_2})_n \mid d_n(x,A_1) d_n(x,A_3) = i\}$ and
- $h_2^n(i) = \{x \in (\overline{A_2A_1P_3})_n \mid d_n(x,A_1) d_n(x,A_2) = 2^{n-1} i\}.$

Proposition

- 1. For $-2^{n-1} \leq i_1 \leq 2^{n-1}$, the points in $h_1^n(i_1)$ are contained in the straight line $\rho_1^n(i_1) : -x_1 + \sqrt{3}x_2 = \frac{i_1}{2^n}$.
- 2. For $0 \le i_2 \le 2^n$, the points in $h_2^n(i_2)$ are contained in the straight line $\rho_2^n(i_2) : x_1 + \sqrt{3}x_2 = \frac{3}{2} \frac{i_2}{2^n}$.

Proof. By the last proposition, the straight line $\rho_1^n(i_1)$ is the straight line $\gamma_{13}\left(\frac{i_1\sqrt{3}}{2^{n+1}}\right)$ and $\rho_2^n(i_2)$ is $\gamma_{12}\left(\frac{(-i_2+2^{n-1})\sqrt{3}}{2^{n+1}}\right)$. Then apply the proposition before.

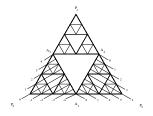


Figure: On the left side are segments of the straight lines $\rho_1^3(i_1)$, for $-4 \le i_1 \le 4$, and on the right side are segments of the straight lines $\rho_2^3(i_2)$, for $0 \le i_2 \le 8$.

$$\rho_1^n(i_1): -x_1 + \sqrt{3}x_2 = \frac{i_1}{2^n} \\ \rho_2^n(i_2): x_1 + \sqrt{3}x_2 = \frac{3}{2} - \frac{i_2}{2^n}$$

$$\rho_1^n(i_1): -x_1 + \sqrt{3}x_2 = \frac{i_1}{2^n}$$

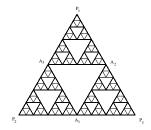
$$\rho_2^n(i_2): x_1 + \sqrt{3}x_2 = \frac{3}{2} - \frac{i_2}{2^n}$$

Theorem

Let $x \in (\overline{A_1A_3P_2})_n$ and $y \in (\overline{A_2A_1P_3})_n$. Then $x \in \rho_1^n(i_1)$ and $y \in \rho_2^n(i_2)$, for one and only one i_1 with $-2^{n-1} \le i_1 \le 2^{n-1}$ and one and only one i_2 with $0 \le i_2 \le 2^n$. Furthermore,

- 1. if $i_1 \le i_2$ then $d_n(x, y) = d_n(x, A_1) + d_n(A_1, y)$ and
- 2. if $i_1 > i_2$ then $d_n(x, y) = d_n(x, A_3) + d_n(A_3, A_2) + d_n(A_2, y)$.

Sierpiński graphs in the Euclidean plane. Graph distances. Main result: geometric criterion



Theorem
Let
$$x \in (\overline{A_1A_3P_2})_n$$
 and $y \in (\overline{A_2A_1P_3})_n$.
1. If $\frac{3}{2} + x_1 - \sqrt{3}x_2 \ge y_1 + \sqrt{3}y_2$ then
 $d_n(x, y) = d_n(x, A_1) + d_n(A_1, y)$ and
2. otherwise $d_n(x, y) = d_n(x, A_3) + d_n(A_3, A_2) + d_n(A_2, y)$.

Final remark. The above results obtained for $x, y \in G_n$, where $n \ge 0$, $x \in (\overline{A_1A_3P_2})_n$ and $y \in (\overline{A_2A_1P_3})_n$, can be applied to any $x, y \in V(G_n)$:

By the construction of the graphs G_n , $n \ge 0$, it follows that for any integer n > 0, and for any vertices $x, y \in V(G_n)$, $x \neq y$ there exists an integer m, with $1 \le m \le n$ such that x, y lie in distinct elementary triangles of level m that have a common vertex $z \in V(G_m)$, and lie inside the same elementary triangle of level m-1. We write $x \in \Delta_m(x)$, $y \in \Delta_m(y)$, $\Delta_m(x) \cap \Delta_m(y) = \{z\}$, and $\Delta_m(x), \Delta_m(y) \subset \Delta_{m-1}(x, y) \in \mathcal{T}_{m-1}$. Then, the subgraph of G_n induced by the vertex set $V(G_n) \cap \Delta_{m-1}(x, y)$ is isomorphic to G_{n-m+1} . By applying a similarity f with factor 2^{n-m+1} , $f(x) \in (\overline{A_1A_3P_2})_{n-m+1}, f(y) \in (\overline{A_2A_1P_3})_{n-m+1}, \text{ and }$ $d_n(x, y) = d_{n-m+1}(f(x), f(y)).$

The Sierpiński gasket in the Euclidean plane. The geodesic distance. Geometric aspects

- 1. For $-\frac{1}{2} \le i_1 \le \frac{1}{2}$, the points in $h_1(i_1)$ are contained in the straight line $\rho_1(i_1) : -x_1 + \sqrt{3}x_2 = i_1$.
- 2. For $0 \le i_2 \le 1$, the points in $h_2(i_2)$ are contained in the straight line $\rho_2(i_2) : x_1 + \sqrt{3}x_2 = \frac{3}{2} i_2$.

The Sierpiński gasket in the Euclidean plane. The geodesic distance. The main result: geometric criterion

Theorem

Let $x \in (\overline{A_1A_3P_2})_{\infty}$ and $y \in (\overline{A_2A_1P_3})_{\infty}$. Then $x \in \rho_1(i_1)$ and $y \in \rho_2(i_2)$, for one and only one i_1 with $-\frac{1}{2} \leq i_1 \leq \frac{1}{2}$ and one and only one i_2 with $0 \leq i_2 \leq 1$. Furthermore,

- 1. if $i_1 \leq i_2$ then $d_{geod}(x, y) = d_{geod}(x, A_1) + d_{geod}(A_1, y)$ and
- 2. if $i_1 > i_2$ then $d_{geod}(x, y) = d_{geod}(x, A_3) + d_{geod}(A_3, A_2) + d_{geod}(A_2, y).$

Theorem Let $x \in (\overline{A_1A_3P_2})_{\infty}$ and $y \in (\overline{A_2A_1P_3})_{\infty}$. 1. If $-x_1 + \sqrt{3}x_2 \leq \frac{3}{2} - y_1 - \sqrt{3}y_2$ then $d_{geod}(x, y) = d_{geod}(x, A_1) + d_{geod}(A_1, y)$ and

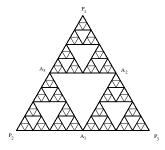
2. otherwise

 $d_{geod}(x,y) = d_{geod}(x,A_3) + d_{geod}(A_3,A_2) + d_{geod}(A_2,y).$

Average distances in Sierpiński graphs

Proposition

Let $P \in V(G_0) \subseteq \mathbb{R}^2$ and $x \in V(G_n)$. The average value of the distance $d_n(P, x)$ is $\frac{2}{3} \cdot 2^n$.



イロト イポト イヨト イヨト

Thank you!

Merçi!

Danke!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Sierpiński gasket in the Euclidean plane. The geodesic distance

Notations

- for three points A, B, and C in the Euclidean plane:
 (ABC)_∞ the set of all points in G, that are contained in the convex hull of A, B and C
- For real *i*, let $h_1(i) = \{x \in (\overline{A_1 A_3 P_2})_{\infty} \mid d_{geod}(x, A_1) - d_{geod}(x, A_3) = i\}$ and $h_2(i) = \{x \in (\overline{A_2 A_1 P_3})_{\infty} \mid d_{geod}(x, A_1) - d_{geod}(x, A_2) = \frac{1}{2} - i\}$

Proposition

Let $x \in (\overline{A_1A_3P_2})_{\infty}$ and $y \in (\overline{A_2A_1P_3})_{\infty}$.

- 1. There is one and only one i_1 such that $-\frac{1}{2} \le i_1 \le \frac{1}{2}$ and $x \in h_1(i_1)$.
- 2. There is one and only one i_2 such that $0 \le i_2 \le 1$ and $y \in h_2(i_2)$.

The Sierpiński gasket in the Euclidean plane. The geodesic distance

$$\begin{split} h_1(i) &= \{x \in (\overline{A_1 A_3 P_2})_{\infty} \mid d_{geod}(x, A_1) - d_{geod}(x, A_3) = i\} \\ h_2(i) &= \{x \in (\overline{A_2 A_1 P_3})_{\infty} \mid d_{geod}(x, A_1) - d_{geod}(x, A_2) = \frac{1}{2} - i\} \\ \text{Proposition} \\ \text{Let } x \in (\overline{A_1 A_3 P_2})_{\infty}, y \in (\overline{A_2 A_1 P_3})_{\infty}, x \in h_1(i_1), \text{ and } y \in h_2(i_2), \\ \text{for some real numbers } i_1 \text{ and } i_2. \text{ Then we have the equality} \\ d_{geod}(x, A_1) + d_{geod}(A_1, y) = \\ d_{geod}(x, A_3) + d_{geod}(A_3, A_2) + d_{geod}(A_2, y) + i_1 - i_2. \end{split}$$

Proof. The proof is analogue to that for the Sierpiński graph.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Sierpiński gasket in the Euclidean plane. The geodesic distance

Corollary

Let $x \in (\overline{A_1A_3P_2})_{\infty}$, $y \in (\overline{A_2A_1P_3})_{\infty}$, $x \in h_1(i_1)$, and $y \in h_2(i_2)$, for some real numbers i_1 and i_2 . Then we have

1.
$$d_{geod}(x, A_1) + d_{geod}(A_1, y) = d_{geod}(x, A_3) + d_{geod}(A_3, A_2) + d_{geod}(A_2, y)$$
 if and only if $i_1 = i_2$,

2.
$$d_{geod}(x, A_1) + d_{geod}(A_1, y) > d_{geod}(x, A_3) + d_{geod}(A_3, A_2) + d_{geod}(A_2, y)$$
 if and only if $i_1 > i_2$, and

3.
$$d_{geod}(x, A_1) + d_{geod}(A_1, y) < d_{geod}(x, A_3) + d_{geod}(A_3, A_2) + d_{geod}(A_2, y)$$
 if and only if $i_1 < i_2$.

The Sierpiński gasket in the Euclidean plane. The geodesic distance. Geometric aspects

Proposition

Let $P \in V(G_0)$ and σ be the straight line that contains the side of T_0 that lies opposite the vertex P. Then, for all $x \in \mathcal{G}$,

$$d_{eucl}(x,\sigma) = rac{\sqrt{3}}{2}(1-d_{geod}(x,P)).$$

Corollary

Let t be a real number such that $0 \le t \le 1$, $P \in V(G_0)$ and σ be the straight line that contains the side of T_0 that lies opposite the vertex P.

- 1. The points $x \in \mathcal{G}$ with $d_{geod}(x, P) = t$ lie on a straight line $\omega_t = \omega_t(P)$, where ω_t is parallel to σ .
- 2. The Euclidean distance between σ and ω_t is $\frac{\sqrt{3}}{2}(1-t)$.

The Sierpiński gasket in the Euclidean plane. The geodesic distance. Geometric aspects

Corollary

Let $P \in V(G_0)$ and $x \in G$. Then $d_{geod}(x, P) = 1$ if and only if x lies on the side of the triangle $\overline{P_1P_2P_3}$ opposite to P.

Proposition

Let $n \ge 0$. For any $x \in \mathcal{G}$, we have

$$\sum_{k=1,2,3} d_{geod}(x, P_k) = 2.$$

Proposition

Let $1 \leq i < j \leq 3$. For any real k, with $-1 \leq k \leq 1$, the points in $\{x \in \mathcal{G} \mid d_{geod}(x, P_i) - d_{geod}(x, P_j) = k\}$ are contained in the straight line $\gamma_{ij}\left(-\frac{k\sqrt{3}}{2}\right)$, where $\gamma_{ij}(a)$ is defined as before.