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Overview

e Definitions. Introducing the problem

e Sierpinski graphs in the Euclidean plane. Graph distances.
Shortest paths.

e The geodesic distance on the Sierpinski gasket



Introducing the problem. Definitions

Let Py = (1,%3), P, =(0,0), and P3 = (1,0). For i =1,2,3 let
1
qb,'(X) = E(X — P,') + P;.
The invariant set of the set of contractions {1, ¢2, ¢3},
3
g= U $i (G)
i=1

is a self similar fractal called the Sierpiniski gasket.



Sierpinski graphs

A sequence of graphs {G,},>0, G, = (V(G,), E(Gp)) related to G
is defined as follows. Let V(Gy) = {P1, P2, P3}, and

E(Go) = {{Pl, P2},{P2, P3},{P1, P3}} For n > 1, the n-th
Sierpiriski graph G, = (V(G,), E(G,)) is defined by

VG = U dwodnooa;, (V(G)),

1<ir,iz;..sin<3

and E(G,) = {{¢y 0 ¢i 0+ 0 @i, (Pk), biy © i 0 -+ 0 ¢, (P}
1<it,...,in<3, 1<k <3}

Notation: d, is the graph distance in G, for n > 0.



Example: G,

Remark: The closure of the set U,>0V/(G,) with respect to the
Euclidean topology is the Sierpinski gasket.

(e.g., Yamaguti, Hata, Kigami (1997), Tichy, Grabner(1998),...)



The geodesic metric on the Sierpinski gasket

Let x,y € G and, for all n >0, let Ap(x), An(y) € Tn be two
elementary triangles of level n such that x € A,(x) and
y € Ay(y). Forall n >0 let x, and y, be the left lower vertices of
Ap(x) and A,(y), respectively. Thus x,,y, € V(G,). The
geodesic distance between x and y is defined as

dgeod (X, y) = lim 27" dy(xp, yn).

n—oo

e this distance also occurs at Barlow and Perkins (1988),
Grabner and Tichy (1998), Strichartz (1999)



Already existing results

Hinz, Schief (1990): for any x € G there is a rectifiable curve

in G with length < 1 joining x and the vertex P;, i=1,2,3.

Application: definition of a geodesic metric on G

Hinz, Schief (1990): the average distance between 2 points on
i« 466

the gasket is ggz.

Hinz (1989, 1992) - connection to Tower of Hanoi (graph)

with 3 pegs.

Grabner, Tichy (1998) - equidistribution and Brownian motion

on g

Band, Mubarak (2004) - distribution of Euclidean and

geodesic distances on G



The problem: distances in Sierpinski graphs
Let n>1, x,y € V(G,), x # y, and m be an integer, 1 < m<n
with the property that x and y lie in distinct elementary triangles
of level m that contain a common vertex z € V(G,,). In order to
construct a path of minimal length in G, with respect to the graph
distance d,, one has to decide whether such a path passes through
z or through z1,z € V(G,,), where z,z1, and z, are the midpoints
of other two sides of the triangle of level m — 1 that contains x
and y.

Figure: G, forn=4, m=2



The problem: distances in Sierpinski graphs

Problem: decide (geometric criteria!), without actually
constructing paths, and without comparing lengths of different
paths, whether a shortest path that connects x and y in G,, passes
through z or through z; and z
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Figure: Here n =4, m = 2 and the shortest path from x to y in G4 does
not pass through z € V(G).



Sierpinski graphs in the Euclidean plane. Graph distances

Notations

n >0, A, B, C points in the Euclidean plane, ABC the convex
hull of A, B and C, (ABC), = ABC N V(G,)

A; the midpoint of the side of the triangle P;P,P3 opposite to
Pi

for A, B two points in the plane, A # B:

o (A, B) the straight line that contains A and B,

deyel the Euclidean distance




Sierpinski graphs in the Euclidean plane. Graph distances.
Main result: geometric criterion

Theorem
Let x € (A1A3P2)n and y € (A2A1P3)n.

1. If% +x1 — V3% > 1+ ﬁyz then
dn(x,y) = dn(x, A1) + dn(A1,y) and

2. otherwise dn(x,y) = dn(x, A3) + dn(As3, A2) + dn(A2,y).



Sierpinski graphs in the Euclidean plane. Graph distances

Proposition

Let n> 0 and x € V(G,). Then, fori € {1,2,3}, we have

dn(x, P;) < 2", where the equality holds if and only if x lies on the
side of P1P,P5 opposite to P;.

AA% /N
AVXVA AVXVA

VAN
JAN
AN JAN AN
JAVAY JAVAN
AvA AvA AN A A A
JAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAN
A P,




Sierpinski graphs in the Euclidean plane. Graph distances
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1

Proof.

For i = 1, by induction on n. For n = 0, trivial.

Assume d,_1(x, P1) <2771, for all x € V(G,_1), with equality if
and only if x € V(G,-1) N PaP3. Let x € V(G,).

First, we consider the case when x € (A3A2P1),. By the induction
hypothesis applied to (A3A2P1), and x (since the subgraph of G,
induced by the vertex set (A3A2P1), is isomorphic to G,—1), we
have d,(x, Py) <21 <27,




Sierpinski graphs in the Euclidean plane. Graph distances
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In the case x ¢ (A3A2P1)p, let us assume, without loss of
generality, that x € (A1A3P,),. First, we note that

dn(x, A3) < du(x, Az), since d,(x,A3) < 2"1 by the induction
hypothesis and d,(x, Az) =

min{d,,(x, A3) + C/,,(A37 Ag), dn(X, Al) -+ dn(Al, Az)} > 2n—1

Thus, d(x, P1) = dn(x, A3) + dn(Asz, P1) = dn(x, A3) +2"1. By
the induction hypothesis, we have d,(x, A3) < 2"~1 with equality if
and only if x € (A1A3P,), is collinear with P, and A;.




Sierpinski graphs in the Euclidean plane

Proposition
Let n > 0. For any x € V(G,), we have
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Proof by induction.

. Graph distances



Sierpinski graphs in the Euclidean plane. Graph distances
For two integers i, n > 0, let
o hi(i) = {x € (A1A3P2)n | dn(x, A1) — dn(x,A3) = i} and
o h(i) = {x € (A2A1P3)n | dn(x, A1) — dn(x, Az) = 271 — i}.
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Proposition
Let x € (A1A3P), and v € (A2A1P3),.
1. There is one and only one iy such that —2"~1 < jj <271
and x € hi(ir).

2. There is one and only one i» such that 0 < i» < 2" and
S hg(iz).



Sierpinski graphs in the Euclidean plane. Graph distances

Proposition

Let x € (A1A3P2)n, VS (A2A1P3)n, X € hf(ll), and y € hg(l'g), for
some integers i1, /. Then

dn(X; Al) + dn(AL )/) = dn(X7 A3) + dn(A37 A2) + dn(A27 )/) +ir—h.
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Sierpinski graphs in the Euclidean plane. Graph distances

Corollary
Let x € (A1A3P2)n, y € (A2A1P3)n, X € hf(il), andy S hg(l'z), for
some integers i1, ir. Then we have
1. dn(Xa Al) + dn(Alay):dn(Xv A3) + dn(A37 A2) + dn(A27y) if
and only if 1=y,
2. dn(X; Al) + dn(Alay)>dn(X7 A3) + dn(A37A2) + dn(A27y) if
and only if 1>,

3. dn(x, A1) + dn(A1, y)<dn(x, A3) + dn(A3, A2) + dn(Az, y) if
and only if i1<ip.



Sierpinski graphs in the Euclidean plane. Geometric
aspects

Let Ty be the triangle whose set of vertices is V(Gp).

Proposition
Let P € V(Gop) and o be the straight line that contains the side of
To that lies opposite the vertex P and let
I7(P) ={x € V(G,) | dn(x, P) = t}, wheret € Z, 0 < t < 2",
and n > 0.
1. The set I[(P) is contained in a straight line w; = w¢(P) that
is parallel to o.

2. The Euclidean distance between w; and o is 2\"/4?1 (2" —t).




Sierpinski graphs in the Euclidean plane. Geometric
aspects

Proof. W.l.o.g. assume P = P;. For t = 0 the affirmation is
trivial. Let 1 < t < 2" be arbitrarily fixed and w¢(P;) be the
straight line containing the points x; and y;, which are defined as
follows. The vertex x; € V(G,) lies on the side P;P; of Ty, such
that d,(x¢, P1) = t, and the vertex y; € V(G,) lies on the side
P1Ps3 of Ty, such that d,(x¢, P1) = t. Thus w:(P1) is parallel to
01, the straight line containing P> and Ps.

We proceed in two steps. At the first step, we show (by induction
on n) that for x € V(G,) Nw¢(P1) we have dy(x, P1) =t, (i.e.,
V(Gp) Nwe(P1) C I7(P1)). At the second step, we show that
dn(x, P1) # t for x € V(G,) \ we(P1).




Sierpinski graphs in the Euclidean plane. Geometric
aspects

Proposition
Let oy be the straight line that contains the side of Ty that lies
opposite the vertex P, for 1 < k <3 and let 1 < i< j < 3. For all
real numbers a with |a| < V3 the set
Dji(a) = {x € R? | deyei(x,07) — deyer(x, ;) = a} is contained in a
straight line ~y;j(a), where

L y2(a) i x1+V3x =1+ %a,

2. 713(3) —X1+fX2 = a and
( ) _ 3= 26fa

3. y3(a) 1 x1 =

where by x1, xo we denote the coordinates in the Euclidean plane.



Sierpinski graphs in the Euclidean plane. Geometric
aspects
Proof. (for Di3(a))

Q3 = (?a, a) € Di3(a) N o3 and thus Di3(a) # (. Let M be a
point in the interior of the triangle Ty, M € Di3(a), i.e.,
deuct(M, 01) — deyct(M, 03) = a. Assume, w.l.o.g., that a > 0 (the
case a < 0 can be solved analogously). Let M; and M3 be the
orthogonal projections of M on o1 and o3, resp., and B and C be
the orthogonal projections of Q3 on o1 and o(M, M;). Then
deucl(M7 Ml) - deucI(M7 M3) =aand a= deucI(Q3701) =
deucl(Q3a B) = eucl(Ca Ml) (BMI CQ3 reCtangle)'



Sierpinski graphs in the Euclidean plane. Geometric
aspects

We obtain deyci(M, C) = deyei(M, M3) and herefrom, the angles
ZCQ3M and ZMQ@3Ms5 have 30°. Let Q; be the intersection point
of o1 and O'(Q3, M). Then ZP>Q; Q3 has 30° and we infer that

= (—2¥345,0). Moreover, it follows that o(Q1, Q3) = ~13(a).
As M was arbltranly chosen in Di3(a) and o(M, @Q3) = o(Q1, Q3),
we conclude that Dj3(a) C v13(a).



Sierpinski graphs in the Euclidean plane. Geometric
aspects

Proposition

Let1 <i<j<3. Foran integer k, with —2" < k < 2", the

points in {x € V(G,) | du(x, P;) — dn(x, P;) = k} are contained in

the straight line y;; < ;)ﬁ)

Proof. (By a previous result)

{x € V(Gy) | dn(x, Pi) — dn(x, P;) = k}

kv/3
= {X S V(Gn) | deucI(Xyo'i) - deucl(xa Uj) 2n+1}
kv3
- {X S R2 ‘ deucl(X7 Ui) - deucl(Xyoj) 2n+1}

which is contained in the straight line ;; ( g,}g) (by previous

results).



Sierpinski graphs in the Euclidean plane. Graph distances

° hf(l) = {X S (A1A3P2)n | d,,(X,Al) — dn(X,A3) = i} and
° hg(l) = {X S (A2A1P3)n | dn(X,Al) — dn(X,AQ) =on-1_ i}.

Proposition

1. For —2""1 <y <2771, the points in h{(i1) are contained in
the straight line pj(i1) : —x1 + V3x = 5
2. For 0 < ip < 2", the points in h5(i») are contained in the

straight line p3(ix) : x1 + V3% = 3 — 2.

Proof. By the last proposition, the straight line pf(i1) is the
straight line 713 (ﬂ?) and p8(i2) is 12 ((*2;27:)“5) Then
apply the proposition before.




Sierpinski graphs in the Euclidean plane. Graph distances

Figure: On the left side are segments of the straight lines p3(iy), for
—4 < i3 <4, and on the right side are segments of the straight lines
p3(in), for 0 < ip < 8.

(i) s —x1+V3x = o
pa(i2) 1 x1 +V3x = % —



Sierpinski graphs in the Euclidean plane. Graph distances.

pi(i) 1 —x1 +V3x =L _
pa(i) xa+V3e=3—-%
Theorem
Let x € (A1A3P2)n andy € (A2A1P3)n. Then x € pf(/l) and
y € p3(ir), for one and only one iy with —2"~1 < jj <271 and
one and only one ir with 0 < ip < 2". Furthermore,
1. if i < i then dn(x,y) = dn(x, A1) + dn(A1,y) and
2. if i1 > I» then d,,(x,y) = dn(X, A3) + d,,(A3,A2) + d,,(AQ,y).



Sierpinski graphs in the Euclidean plane. Graph distances.
Main result: geometric criterion

Theorem
Let x € (A1A3P2)n and y € (A2A1P3)n.

1. If% +x1 — V3% > 1+ ﬁyz then
dn(x,y) = dn(x, A1) + dn(A1,y) and

2. otherwise dn(x,y) = dn(x, A3) + dn(As3, A2) + dn(A2,y).



Sierpinski graphs in the Euclidean plane. Graph distances

Final remark. The above results obtained for x,y € G, where
n>0, x € (A1A3P2), and y € (A2A1P3),, can be applied to any
x,y € V(Gp):

By the construction of the graphs G,, n > 0, it follows that for any
integer n > 0, and for any vertices x,y € V(G,), x # y there
exists an integer m, with 1 < m < n such that x, y lie in distinct
elementary triangles of level m that have a common vertex

z € V(Gp), and lie inside the same elementary triangle of level

m — 1. We write x € Ap(x), y € An(y), Am(x) NAR(y) ={z},
and Ap(x), Am(y) € Am—1(x,y) € Tm—1. Then, the subgraph of
G, induced by the vertex set V(G,) N Ap—1(x,y) is isomorphic to
Gp—m+1. By applying a similarity f with factor 277+,

f(X) € (A1A3P2)n_m+1, f(y) S (A2A1P3)n_m+1, and

dn(X, y) = dn-m+1(f(x), f(y)).




The Sierpinski gasket in the Euclidean plane. The geodesic
distance. Geometric aspects

hl(i) = {X € (A1A3P2)oo ‘ dgeod(Xa Al) - dgeod(
h2(i) = {X € (A2A1P3)oo ‘ dgeod(xa Al) - dgeod(xa A2) = % — i}

Proposition

1. For —% <ip< % the points in hi(i1) are contained in the
straight line p1(i1) : —x1 + v/3x2 = i1.

2. For 0 < ip <1, the points in hy(i») are contained in the
straight line pa(i2) : x1 + /3% = % — .



The Sierpinski gasket in the Euclidean plane. The geodesic
distance. The main result: geometric criterion

Theorem
Let x € (A1A3P2)oo and y € (A2A1P3)00. Then x € p1(i1) and
y € p2(ia), for one and only one iy with —% <ip< % and one and
only one ir with 0 < ip < 1. Furthermore,
1. if ih < i then dgeod(X,y) = dgeod(X, A1) + dgeod(A1,y) and
2. ifih > > then
dgeod(Xa)/) = geod(Xa A3) + dgeod(A?n A2) + dgeod(A2aY)-

Theorem
Let x € (A1A3P2)Oo and y € (A2A1P3)oo.
1. If —x1 + V3% < 3 — y1 — V/3y» then
dgeod(Xy)/) = dgeod(Xy Al) + dgeod(Aly)/) and
2. otherwise
dgeod(X7 )/) = geod(X7 A3) + dgeod(A37 AZ) + dgeod(A27 )/)



Average distances in Sierpinski graphs

Proposition
Let P € V(Gy) CR? and x € V(G,).
The average value of the distance dy(P,x) is 5 - 2".
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Thank you!

Mergil

Q>



The Sierpinski gasket in the Euclidean plane. The geodesic
distance
Notations

e for three points A, B, and C in the Euclidean plane:
(ABC)« the set of all points in G, that are contained in the
convex hull of A, B and C

e For real i/, let

h1(i) = {x € (A1A3P2)c | dgeod(X, A1) — dgeod (X, A3) = i}
and

ha(i) = {x € (A2A1P3)c0 | dgeod (X, A1) — dgeod (X, A2) = 2 —i}
Proposition
Let x € (A1A3P3) o and y € (A2A1P3)0o.
1. There is one and only one iy such that —% <ip< % and
x € hi(h).
2. There is one and only one i» such that 0 < i, <1 and
VAS h2(l'2).



The Sierpinski gasket in the Euclidean plane. The geodesic
distance

hl(i) = {X € (A1A3P2)oo ‘ dgeod(xa Al) - dgeod(Xa A3) = i}

h2(i) = {X € (A2A1P3)oo ‘ dgeod(Xa Al) - dgeod(Xa A2) = % - i}
Proposition

Let x € (A1A3P2)oo, VS (A2A1P3)Oo, X € hl(il), and y € h2(i2),
for some real numbers ihand i,. Then we have the equality

dgeod(xa Al) + dgeod(Ala Y) =
dgeod(X7 A3) + dgeod(A37 A2) + dgeod(A27y)+i1 - i2-

Proof. The proof is analogue to that for the Sierpinski graph.



The Sierpinski gasket in the Euclidean plane. The geodesic
distance

Corollary

Let x € (A1A3P2)oo, y € (A2A1P3)OO, X € hl(il), andy S h2(i2),
for some real numbers iy and i». Then we have

1. dgeod(xaAl) + dgeod(Ala)/) =
dgeod(Xa A3) + dgeod(A3a A2) + dgeod(A2a y) if and on/y if

n =1,

2. dgeod(val) + dgeod(Alvy) >
dgeod(X> A3) + dgeod(A3> A2) + dgeod(AQ,y) if and on/y if
i1 > Ip, and

3. dgeod(Xa Al) + dgeod(Alay) <
dgeod(Xa A3) + dgeod(A?n A2) + dgeod(A27Y) if and only if
<.



The Sierpinski gasket in the Euclidean plane. The geodesic
distance. Geometric aspects

Proposition

Let P € V(Gp) and o be the straight line that contains the side of
To that lies opposite the vertex P. Then, for all x € G,

deycl(x,0) = \f(l — dgeod (X, P)).

Corollary

Let t be a real number such that 0 <t <1, P € V(Gp) and o be
the straight line that contains the side of Ty that lies opposite the
vertex P.
1. The points x € G with dgeod(X, P) = t lie on a straight line
wt = wi(P), where wy is parallel to o.

2. The Euclidean distance between o and w; is ?(1 —t).



The Sierpinski gasket in the Euclidean plane. The geodesic
distance. Geometric aspects

Corollary

Let P € V(Go) and x € G. Then dgeod(x, P) =1 if and only if x
lies on the side of the triangle Py P,P5; opposite to P.

Proposition
Let n > 0. For any x € G, we have

D dgeoa(x, Pi) = 2.

k=1,2,3

Proposition

Let1 < i< j<3. Forany real k, with —1 < k <1, the points in
{x € G| dgeod(X, Pj) — dgeod(x, P;) = k} are contained in the
straight line ~y;; (_1%5) where vjj(a) is defined as before.



