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Overview

• Definitions. Introducing the problem

• Sierpiński graphs in the Euclidean plane. Graph distances.
Shortest paths.

• The geodesic distance on the Sierpiński gasket



Introducing the problem. Definitions

Let P1 = (12 ,
√
3
2 ), P2 = (0, 0), and P3 = (1, 0). For i = 1, 2, 3 let

φi (x) =
1

2
(x − Pi ) + Pi .

The invariant set of the set of contractions {φ1, φ2, φ3},

G =
3⋃

i=1

φi (G)

is a self similar fractal called the Sierpiński gasket.



Sierpiński graphs

A sequence of graphs {Gn}n≥0, Gn = (V (Gn),E (Gn)) related to G
is defined as follows. Let V (G0) = {P1, P2, P3}, and
E (G0) = {{P1,P2},{P2,P3},{P1,P3}}. For n ≥ 1, the n-th
Sierpiński graph Gn = (V (Gn),E (Gn)) is defined by

V (Gn) =
⋃

1≤i1,i2,...,in≤3
φi1 ◦ φi2 ◦ · · · ◦ φin (V (G0)) ,

and E (Gn) = {{φi1 ◦ φi2 ◦ · · · ◦ φin(Pk), φi1 ◦ φi2 ◦ · · · ◦ φin(Pl)}|
1 ≤ i1, . . . , in ≤ 3, 1 ≤ k , l ≤ 3}.

Notation: dn is the graph distance in Gn, for n ≥ 0.



Example: G4
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Remark: The closure of the set ∪n≥0V (Gn) with respect to the
Euclidean topology is the Sierpiński gasket.

(e.g., Yamaguti, Hata, Kigami (1997), Tichy, Grabner(1998),. . . )



The geodesic metric on the Sierpiński gasket

Let x , y ∈ G and, for all n ≥ 0, let ∆n(x),∆n(y) ∈ Tn be two
elementary triangles of level n such that x ∈ ∆n(x) and
y ∈ ∆n(y). For all n ≥ 0 let xn and yn be the left lower vertices of
∆n(x) and ∆n(y), respectively. Thus xn, yn ∈ V (Gn). The
geodesic distance between x and y is defined as

dgeod(x , y) = lim
n→∞

2−n · dn(xn, yn).

• this distance also occurs at Barlow and Perkins (1988),
Grabner and Tichy (1998), Strichartz (1999)



Already existing results

• Hinz, Schief (1990): for any x ∈ G there is a rectifiable curve
in G with length ≤ 1 joining x and the vertex Pi , i=1,2,3.
Application: definition of a geodesic metric on G

• Hinz, Schief (1990): the average distance between 2 points on
the gasket is 466

885 .

• Hinz (1989, 1992) - connection to Tower of Hanoi (graph)
with 3 pegs.

• Grabner, Tichy (1998) - equidistribution and Brownian motion
on G

• Band, Mubarak (2004) - distribution of Euclidean and
geodesic distances on G



The problem: distances in Sierpiński graphs
Let n ≥ 1, x , y ∈ V (Gn), x 6= y , and m be an integer, 1 ≤ m < n
with the property that x and y lie in distinct elementary triangles
of level m that contain a common vertex z ∈ V (Gm). In order to
construct a path of minimal length in Gn with respect to the graph
distance dn, one has to decide whether such a path passes through
z or through z1, z2 ∈ V (Gm), where z , z1, and z2 are the midpoints
of other two sides of the triangle of level m − 1 that contains x
and y .

Figure: Gn for n = 4, m = 2



The problem: distances in Sierpiński graphs

Problem: decide (geometric criteria!), without actually
constructing paths, and without comparing lengths of different
paths, whether a shortest path that connects x and y in Gn passes
through z or through z1 and z2

Figure: Here n = 4, m = 2 and the shortest path from x to y in G4 does
not pass through z ∈ V (G2).



Sierpiński graphs in the Euclidean plane. Graph distances

Notations

• n ≥ 0, A,B,C points in the Euclidean plane, ABC the convex
hull of A,B and C , (ABC )n = ABC ∩ V (Gn)

• Ai the midpoint of the side of the triangle P1P2P3 opposite to
Pi

• for A,B two points in the plane, A 6= B:
σ(A,B) the straight line that contains A and B,

• deucl the Euclidean distance
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Figure: G4.



Sierpiński graphs in the Euclidean plane. Graph distances.
Main result: geometric criterion
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Theorem
Let x ∈ (A1A3P2)n and y ∈ (A2A1P3)n.

1. If 3
2 + x1 −

√
3x2 ≥ y1 +

√
3y2 then

dn(x , y) = dn(x ,A1) + dn(A1, y) and

2. otherwise dn(x , y) = dn(x ,A3) + dn(A3,A2) + dn(A2, y).



Sierpiński graphs in the Euclidean plane. Graph distances

Proposition

Let n ≥ 0 and x ∈ V (Gn). Then, for i ∈ {1, 2, 3}, we have
dn(x ,P i ) ≤ 2n, where the equality holds if and only if x lies on the
side of P1P2P3 opposite to Pi .
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Sierpiński graphs in the Euclidean plane. Graph distances
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Proof.
For i = 1, by induction on n. For n = 0, trivial.
Assume dn−1(x ,P1) ≤ 2n−1, for all x ∈ V (Gn−1), with equality if
and only if x ∈ V (Gn−1) ∩ P2P3. Let x ∈ V (Gn).
First, we consider the case when x ∈ (A3A2P1)n. By the induction
hypothesis applied to (A3A2P1)n and x (since the subgraph of Gn

induced by the vertex set (A3A2P1)n is isomorphic to Gn−1), we
have dn(x ,P1) ≤ 2n−1 < 2n.



Sierpiński graphs in the Euclidean plane. Graph distances

P

P P2 3

1

A

A

3

1

A2

In the case x /∈ (A3A2P1)n, let us assume, without loss of
generality, that x ∈ (A1A3P2)n. First, we note that
dn(x ,A3) ≤ dn(x ,A2), since dn(x ,A3) ≤ 2n−1 by the induction
hypothesis and dn(x ,A2) =
min{dn(x ,A3) + dn(A3,A2), dn(x ,A1) + dn(A1,A2)} ≥ 2n−1.
Thus, dn(x ,P1) = dn(x ,A3) + dn(A3,P1) = dn(x ,A3) + 2n−1. By
the induction hypothesis, we have dn(x ,A3) ≤ 2n−1 with equality if
and only if x ∈ (A1A3P2)n is collinear with P2 and A1.



Sierpiński graphs in the Euclidean plane. Graph distances

Proposition

Let n ≥ 0. For any x ∈ V (Gn), we have∑
i=1,2,3

dn(x ,Pi ) = 2n+1.
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Proof by induction.



Sierpiński graphs in the Euclidean plane. Graph distances
For two integers i , n ≥ 0, let
• hn

1(i) = {x ∈ (A1A3P2)n | dn(x ,A1)− dn(x ,A3) = i} and
• hn

2(i) = {x ∈ (A2A1P3)n | dn(x ,A1)− dn(x ,A2) = 2n−1 − i}.
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Proposition

Let x ∈ (A1A3P2)n and y ∈ (A2A1P3)n.

1. There is one and only one i1 such that −2n−1 ≤ i1 ≤ 2n−1

and x ∈ hn
1(i1).

2. There is one and only one i2 such that 0 ≤ i2 ≤ 2n and
y ∈ hn

2(i2).



Sierpiński graphs in the Euclidean plane. Graph distances

Proposition

Let x ∈ (A1A3P2)n, y ∈ (A2A1P3)n, x ∈ hn
1(i1), and y ∈ hn

2(i2), for
some integers i1, i2. Then
dn(x ,A1) + dn(A1, y) = dn(x ,A3) + dn(A3,A2) + dn(A2, y) + i1− i2.
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Sierpiński graphs in the Euclidean plane. Graph distances

Corollary

Let x ∈ (A1A3P2)n, y ∈ (A2A1P3)n, x ∈ hn
1(i1), and y ∈ hn

2(i2), for
some integers i1, i2. Then we have

1. dn(x ,A1) + dn(A1, y)=dn(x ,A3) + dn(A3,A2) + dn(A2, y) if
and only if i1=i2,

2. dn(x ,A1) + dn(A1, y)>dn(x ,A3) + dn(A3,A2) + dn(A2, y) if
and only if i1>i2,

3. dn(x ,A1) + dn(A1, y)<dn(x ,A3) + dn(A3,A2) + dn(A2, y) if
and only if i1<i2.



Sierpiński graphs in the Euclidean plane. Geometric
aspects

Let T0 be the triangle whose set of vertices is V (G0).

Proposition

Let P ∈ V (G0) and σ be the straight line that contains the side of
T0 that lies opposite the vertex P and let
I nt (P) = {x ∈ V (Gn) | dn(x ,P) = t}, where t ∈ Z, 0 ≤ t ≤ 2n,
and n ≥ 0.

1. The set I nt (P) is contained in a straight line ωt = ωt(P) that
is parallel to σ.

2. The Euclidean distance between ωt and σ is
√
3

2n+1 (2n − t).



Sierpiński graphs in the Euclidean plane. Geometric
aspects

Proof. W.l.o.g. assume P = P1. For t = 0 the affirmation is
trivial. Let 1 ≤ t ≤ 2n be arbitrarily fixed and ωt(P1) be the
straight line containing the points xt and yt , which are defined as
follows. The vertex xt ∈ V (Gn) lies on the side P1P2 of T0, such
that dn(xt ,P1) = t, and the vertex yt ∈ V (Gn) lies on the side
P1P3 of T0, such that dn(xt ,P1) = t. Thus ωt(P1) is parallel to
σ1, the straight line containing P2 and P3.
We proceed in two steps. At the first step, we show (by induction
on n) that for x ∈ V (Gn) ∩ ωt(P1) we have dn(x ,P1) = t, (i.e.,
V (Gn) ∩ ωt(P1) ⊆ I nt (P1)). At the second step, we show that
dn(x ,P1) 6= t for x ∈ V (Gn) \ ωt(P1).



Sierpiński graphs in the Euclidean plane. Geometric
aspects

Proposition

Let σk be the straight line that contains the side of T0 that lies
opposite the vertex Pk for 1 ≤ k ≤ 3 and let 1 ≤ i < j ≤ 3. For all

real numbers a with |a| ≤
√
3
2 , the set

Dij(a) = {x ∈ R2 | deucl(x , σi )− deucl(x , σj) = a} is contained in a
straight line γij(a), where

1. γ12(a) : x1 +
√

3x2 = 1 + 2√
3

a,

2. γ13(a) : −x1 +
√

3x2 = 2√
3

a, and

3. γ23(a) : x1 = 3−2
√
3a

6 ,

where by x1, x2 we denote the coordinates in the Euclidean plane.



Sierpiński graphs in the Euclidean plane. Geometric
aspects

Proof. (for D13(a))
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Q3 = (
√
3
3 a, a) ∈ D13(a) ∩ σ3 and thus D13(a) 6= ∅. Let M be a

point in the interior of the triangle T0, M ∈ D13(a), i.e.,
deucl(M, σ1)− deucl(M, σ3) = a. Assume, w.l.o.g., that a > 0 (the
case a < 0 can be solved analogously). Let M1 and M3 be the
orthogonal projections of M on σ1 and σ3, resp., and B and C be
the orthogonal projections of Q3 on σ1 and σ(M,M1). Then
deucl(M,M1)− deucl(M,M3) = a and a = deucl(Q3, σ1) =
deucl(Q3,B) = deucl(C ,M1) (BM1CQ3 rectangle).



Sierpiński graphs in the Euclidean plane. Geometric
aspects
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We obtain deucl(M,C ) = deucl(M,M3) and herefrom, the angles
∠CQ3M and ∠MQ3M3 have 30◦. Let Q1 be the intersection point
of σ1 and σ(Q3,M). Then ∠P2Q1Q3 has 30◦ and we infer that

Q1 = (−2
√
3

3 a, 0). Moreover, it follows that σ(Q1,Q3) = γ13(a).
As M was arbitrarily chosen in D13(a) and σ(M,Q3) = σ(Q1,Q3),
we conclude that D13(a) ⊆ γ13(a).



Sierpiński graphs in the Euclidean plane. Geometric
aspects

Proposition

Let 1 ≤ i < j ≤ 3. For an integer k, with −2n ≤ k ≤ 2n, the
points in {x ∈ V (Gn) | dn(x ,Pi )− dn(x ,Pj) = k} are contained in

the straight line γij

(
− k
√
3

2n+1

)
.

Proof. (By a previous result)

{x ∈ V (Gn) | dn(x ,Pi )− dn(x ,Pj) = k}

= {x ∈ V (Gn) | deucl(x , σi )− deucl(x , σj) = −k
√

3

2n+1
}

⊆ {x ∈ R2 | deucl(x , σi )− deucl(x , σj) = −k
√

3

2n+1
},

which is contained in the straight line γij

(
− k
√
3

2n+1

)
(by previous

results).



Sierpiński graphs in the Euclidean plane. Graph distances

• hn
1(i) = {x ∈ (A1A3P2)n | dn(x ,A1)− dn(x ,A3) = i} and

• hn
2(i) = {x ∈ (A2A1P3)n | dn(x ,A1)− dn(x ,A2) = 2n−1 − i}.

Proposition

1. For −2n−1 ≤ i1 ≤ 2n−1, the points in hn
1(i1) are contained in

the straight line ρn1(i1) : −x1 +
√

3x2 = i1
2n .

2. For 0 ≤ i2 ≤ 2n, the points in hn
2(i2) are contained in the

straight line ρn2(i2) : x1 +
√

3x2 = 3
2 −

i2
2n .

Proof. By the last proposition, the straight line ρn1(i1) is the

straight line γ13
(
i1
√
3

2n+1

)
and ρn2(i2) is γ12

(
(−i2+2n−1)

√
3

2n+1

)
. Then

apply the proposition before.



Sierpiński graphs in the Euclidean plane. Graph distances
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Figure: On the left side are segments of the straight lines ρ31(i1), for
−4 ≤ i1 ≤ 4, and on the right side are segments of the straight lines
ρ32(i2), for 0 ≤ i2 ≤ 8.

ρn1(i1) : −x1 +
√

3x2 = i1
2n

ρn2(i2) : x1 +
√

3x2 = 3
2 −

i2
2n



Sierpiński graphs in the Euclidean plane. Graph distances.

ρn1(i1) : −x1 +
√

3x2 = i1
2n

ρn2(i2) : x1 +
√

3x2 = 3
2 −

i2
2n

Theorem
Let x ∈ (A1A3P2)n and y ∈ (A2A1P3)n. Then x ∈ ρn1(i1) and
y ∈ ρn2(i2), for one and only one i1 with −2n−1 ≤ i1 ≤ 2n−1 and
one and only one i2 with 0 ≤ i2 ≤ 2n. Furthermore,

1. if i1 ≤ i2 then dn(x , y) = dn(x ,A1) + dn(A1, y) and

2. if i1 > i2 then dn(x , y) = dn(x ,A3) + dn(A3,A2) + dn(A2, y).



Sierpiński graphs in the Euclidean plane. Graph distances.
Main result: geometric criterion
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Theorem
Let x ∈ (A1A3P2)n and y ∈ (A2A1P3)n.

1. If 3
2 + x1 −

√
3x2 ≥ y1 +

√
3y2 then

dn(x , y) = dn(x ,A1) + dn(A1, y) and

2. otherwise dn(x , y) = dn(x ,A3) + dn(A3,A2) + dn(A2, y).



Sierpiński graphs in the Euclidean plane. Graph distances

Final remark. The above results obtained for x , y ∈ Gn, where
n ≥ 0, x ∈ (A1A3P2)n and y ∈ (A2A1P3)n, can be applied to any
x , y ∈ V (Gn):
By the construction of the graphs Gn, n ≥ 0, it follows that for any
integer n ≥ 0, and for any vertices x , y ∈ V (Gn), x 6= y there
exists an integer m, with 1 ≤ m ≤ n such that x , y lie in distinct
elementary triangles of level m that have a common vertex
z ∈ V (Gm), and lie inside the same elementary triangle of level
m − 1. We write x ∈ ∆m(x), y ∈ ∆m(y), ∆m(x) ∩∆m(y) = {z},
and ∆m(x),∆m(y) ⊆ ∆m−1(x , y) ∈ Tm−1. Then, the subgraph of
Gn induced by the vertex set V (Gn) ∩∆m−1(x , y) is isomorphic to
Gn−m+1. By applying a similarity f with factor 2n−m+1,
f (x) ∈ (A1A3P2)n−m+1, f (y) ∈ (A2A1P3)n−m+1, and
dn(x , y) = dn−m+1(f (x), f (y)).



The Sierpiński gasket in the Euclidean plane. The geodesic
distance. Geometric aspects

h1(i) = {x ∈ (A1A3P2)∞ | dgeod(x ,A1)− dgeod(x ,A3) = i} and
h2(i) = {x ∈ (A2A1P3)∞ | dgeod(x ,A1)− dgeod(x ,A2) = 1

2 − i}

Proposition

1. For −1
2 ≤ i1 ≤ 1

2 , the points in h1(i1) are contained in the

straight line ρ1(i1) : −x1 +
√

3x2 = i1.

2. For 0 ≤ i2 ≤ 1, the points in h2(i2) are contained in the
straight line ρ2(i2) : x1 +

√
3x2 = 3

2 − i2.



The Sierpiński gasket in the Euclidean plane. The geodesic
distance. The main result: geometric criterion

Theorem
Let x ∈ (A1A3P2)∞ and y ∈ (A2A1P3)∞. Then x ∈ ρ1(i1) and
y ∈ ρ2(i2), for one and only one i1 with −1

2 ≤ i1 ≤ 1
2 and one and

only one i2 with 0 ≤ i2 ≤ 1. Furthermore,

1. if i1 ≤ i2 then dgeod(x , y) = dgeod(x ,A1) + dgeod(A1, y) and

2. if i1 > i2 then
dgeod(x , y) = dgeod(x ,A3) + dgeod(A3,A2) + dgeod(A2, y).

Theorem
Let x ∈ (A1A3P2)∞ and y ∈ (A2A1P3)∞.

1. If −x1 +
√

3x2 ≤ 3
2 − y1 −

√
3y2 then

dgeod(x , y) = dgeod(x ,A1) + dgeod(A1, y) and

2. otherwise
dgeod(x , y) = dgeod(x ,A3) + dgeod(A3,A2) + dgeod(A2, y).



Average distances in Sierpiński graphs

Proposition

Let P ∈ V (G0) ⊆ R2 and x ∈ V (Gn).
The average value of the distance dn(P, x) is 2

3 · 2
n.
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Thank you!

Merçi!

Danke!



The Sierpiński gasket in the Euclidean plane. The geodesic
distance

Notations

• for three points A,B, and C in the Euclidean plane:
(ABC )∞ the set of all points in G, that are contained in the
convex hull of A,B and C

• For real i , let
h1(i) = {x ∈ (A1A3P2)∞ | dgeod(x ,A1)− dgeod(x ,A3) = i}
and
h2(i) = {x ∈ (A2A1P3)∞ | dgeod(x ,A1)−dgeod(x ,A2) = 1

2−i}

Proposition

Let x ∈ (A1A3P2)∞ and y ∈ (A2A1P3)∞.

1. There is one and only one i1 such that −1
2 ≤ i1 ≤ 1

2 and
x ∈ h1(i1).

2. There is one and only one i2 such that 0 ≤ i2 ≤ 1 and
y ∈ h2(i2).



The Sierpiński gasket in the Euclidean plane. The geodesic
distance

h1(i) = {x ∈ (A1A3P2)∞ | dgeod(x ,A1)− dgeod(x ,A3) = i}
h2(i) = {x ∈ (A2A1P3)∞ | dgeod(x ,A1)− dgeod(x ,A2) = 1

2 − i}

Proposition

Let x ∈ (A1A3P2)∞, y ∈ (A2A1P3)∞, x ∈ h1(i1), and y ∈ h2(i2),
for some real numbers i1and i2. Then we have the equality
dgeod(x ,A1) + dgeod(A1, y) =
dgeod(x ,A3) + dgeod(A3,A2) + dgeod(A2, y)+i1 − i2.

Proof. The proof is analogue to that for the Sierpiński graph.



The Sierpiński gasket in the Euclidean plane. The geodesic
distance

Corollary

Let x ∈ (A1A3P2)∞, y ∈ (A2A1P3)∞, x ∈ h1(i1), and y ∈ h2(i2),
for some real numbers i1 and i2. Then we have

1. dgeod(x ,A1) + dgeod(A1, y) =
dgeod(x ,A3) + dgeod(A3,A2) + dgeod(A2, y) if and only if
i1 = i2,

2. dgeod(x ,A1) + dgeod(A1, y) >
dgeod(x ,A3) + dgeod(A3,A2) + dgeod(A2, y) if and only if
i1 > i2, and

3. dgeod(x ,A1) + dgeod(A1, y) <
dgeod(x ,A3) + dgeod(A3,A2) + dgeod(A2, y) if and only if
i1 < i2.



The Sierpiński gasket in the Euclidean plane. The geodesic
distance. Geometric aspects

Proposition

Let P ∈ V (G0) and σ be the straight line that contains the side of
T0 that lies opposite the vertex P. Then, for all x ∈ G,

deucl(x , σ) =

√
3

2
(1− dgeod(x ,P)).

Corollary

Let t be a real number such that 0 ≤ t ≤ 1, P ∈ V (G0) and σ be
the straight line that contains the side of T0 that lies opposite the
vertex P.

1. The points x ∈ G with dgeod(x ,P) = t lie on a straight line
ωt = ωt(P), where ωt is parallel to σ.

2. The Euclidean distance between σ and ωt is
√
3
2 (1− t).



The Sierpiński gasket in the Euclidean plane. The geodesic
distance. Geometric aspects

Corollary

Let P ∈ V (G0) and x ∈ G. Then dgeod(x ,P) = 1 if and only if x
lies on the side of the triangle P1P2P3 opposite to P.

Proposition

Let n ≥ 0. For any x ∈ G, we have∑
k=1,2,3

dgeod(x ,Pk) = 2.

Proposition

Let 1 ≤ i < j ≤ 3. For any real k, with −1 ≤ k ≤ 1, the points in
{x ∈ G | dgeod(x ,Pi )− dgeod(x ,Pj) = k} are contained in the

straight line γij

(
−k
√
3

2

)
, where γij(a) is defined as before.


