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Aim



Hurwitz complex continued fraction transformation

Define the domain U and the map 1" on U as follows:

U={z=x+1y: —1/2<x,y<1/2}

1 1
T(z)zz ~ for z € U,

where [x]|5 for x € R means the nearest integer of x, and
[z + iy] = [z]2 + i[y]2 for z,y € R.



Define the map a on U and determine a,, (n € N) as follows:
1
o= [2)
z
an(2)(= an) = a(T" "' (2))

for z € U, then we get the continued fraction expansion of

z € U:
1
z = |
B

Obviously, |a,,| > V2.
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Fig. 1: The cylinder sets (a) = {z € U : [1/z] = a} and
11/z: z € (a)}



Aim

Construct the natural extension of (U, T, ) to determine the
density function of the absolutely continuous invariant measure L.



I In the case of reqular continued fraction transformation of RI




In the case of reqular continued fraction transformation of R

Define the map G on I := [0, 1) by
1 1
G(x) = { } :

X X

Then it is known that an invariant measure is given by

1 1
log21+4 x

dx.

How do we get it?
— We construct a two dimensional map which is the natural
extension of G.



Define
I=1[0,1) x (o0, 1],
e = (2= [ [1]) e et

Then G on I is 1-1 and onto except for a set of Lebesgue

measure 0 and
1 dxdy

log 2 (x — y)?2

gives an invariant measure for (I, G). Then we get

1 1 ; /—1 1 1 g
X — £.
log21+«x oo log 2 (x — y)? J




Construction of natural extension in real case

10

How do we determine I = [0,1) X (—o0, —1]7

Take (x, —o0) € [0,1) X [ — 0o, —1] and let
1| 1] 1
S | | |
L — | | |
o oz [
Then,
) 1| 1] 1|
G(x,—o00) = ( | | |
o [an ' [
: 1| 1
G2(:B,—OO) — ( | |
a2 ' [




By induction, we have

1| 1| 1
-+ +”°°9_{an'%

|an+1 |an+2

G’n(w, —00) = <

|an—1

By the set of the reversed sequences of {a.,(x)},
we obtain the domain

11

—(a(w)' 1 ‘u,,,. ! )
" | ‘an—l(m) | | ‘al(w) |

= (—o0, —1].

x € (0,1)
n €N
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I In the case of Hurwitz complex continued fraction transformation I




In the case of Hurwitz complex continued fraction transformation
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In the case of reqular continued fraction of real number
— @y, (resp. a,41) is not restricted from a,, 1 (resp. ay).

In the case of Hurwitz continued fraction of complex number
— @y, (resp. a,41) is restricted from a,, 11 (resp. a,).
— We decompose U and get the following partition {V}, ¢}

which is a Markov partition of T':

Vie=@)¢1-{z€eU: |z+1i|>1,|]z—1i] > 1, Rez > 0}
Vore=@)"1{2z€U: |z2—1| <1, |z2—i| <1, |z2—(1+13)| > 1}
Vae=@0@)"1-{z€U: |z—(1+1)| <1}

1<e< 4.



Flg 3: Vl,lv V2,1, V3,1 and the partition of U
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\Construction of the natural extension in Hurwitz case'
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onstruction of the natural extension in Hurwitz case

Computer experience by Shunji ITO (okyuroku 96 (1983),
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We define

V,;k,e — Ul{_ (an(z)+

1 | 1
_I_ « o _|_ _—
| a,_1(=) | aqy(z)

1
Xee={—":
w

for1 < k<3 1<¢<4.

w e V',}

|>:

z € U,

T™(z) € Vi ¢

|
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Flg 5: Vlﬂjl and Xl,l

remlin
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Fig. 6: V;:l and X2 1 (Suppon
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M V3>I:1 and X3,1

urtle
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We put

and define

T(z,w) _ <1 _al i —a) _ <—ai.z—|—i’ —aiw—l—i)
z

w

for (z,w) € U where a = [1/z].
We define a measure 1 on C X C as follows

dﬂ?ldil?zdwl d’UJ2

dii =
a z — wl

for (z,w) € C X C with z = 1 + ix3 and w = wy + ‘ws.
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Theorem 1 (Ei-Nakada-Natsui)

1. U has positive 4-dimensional Lebesgue measure.

2. T is 1-1 and onto except for a set of 4-dimensional Lebesque
measure 0.

3. f1is T-invariant measure.
i. e. (U, T, ix) is a natural extension of (U, T, 1) where p

IS an absolutely continuous invariant measure which is unique.
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‘ Corollary I

du(z) = (

for z € Vk,g.

/ 1
v* |z — wl|?

k.2

dw1 dwz) diBl dwz
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Fig. 8: Tiles X711, X2.1, X3.1
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Fig. 10: Tiling of VZ":l and V;:l
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Theorem 2 (Ei-Nakada-Natsui)

1. Vi, is tiled by {Xke: k=1,2,3, £=1,2,3,4}.
Concretely forany 1 < kg < 3and 1 < ¢y < 4,

Vk*O,Eo — U U U (Xk,£ - a)

k=1 +¢=1 aEDkzO,KO,kz,E

where

) there exists w € (a) N Vi, »
Pro,eg,k, = {a € Z[4]: ’ :

such that Tw €& Vk’O 20

2. The boundary of X , is a Jordan curve and has
2-dimensional Lebesque measure 0.
— Xk, 1S a topological disk.
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The other cases

There are some other nearest type complex continued fractions for
—2, —7 and —11. However, they do not have the best
approximation property.

The best approximation property: p/q is a best approximation to
x if

4| < |g| = |d’z — P’| > |gx — p|.
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(112,43 /6)

In the case of Q(1/—3)

. 11:

19
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Thank you very much.
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