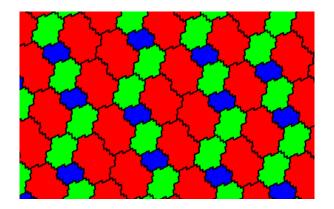
Tilings for Rauzy fractals

Arnaud Hilion

joint work with Nicolas Bédaride and Timo Jolivet

Admont - June 2015

First tiling



Tribonacci substitution

$$\sigma: \begin{cases} 1 \mapsto 12 \\ 2 \mapsto 13 \\ 3 \mapsto 1 \end{cases} \qquad \mathbf{M}_{\sigma} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Tribonacci substitution

$$\sigma: \begin{cases} 1 \mapsto 12 \\ 2 \mapsto 13 \\ 3 \mapsto 1 \end{cases} \qquad \mathbf{M}_{\sigma} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

σ is Pisot :

- ▶ One real cubic eigenvalue $\beta \approx 1.839 \ (> 1)$
- ▶ Two other conjugates $\beta', \beta'' \approx -0.419 \pm 0.606i$ (< 1)

Tribonacci substitution

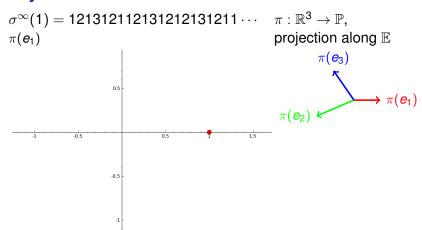
$$\sigma: \begin{cases} 1 \mapsto 12 \\ 2 \mapsto 13 \\ 3 \mapsto 1 \end{cases} \qquad \mathbf{M}_{\sigma} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

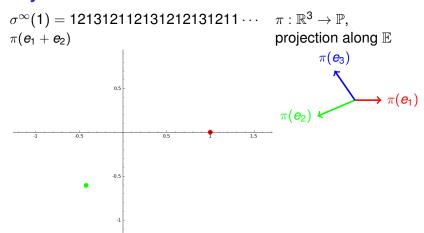
σ is Pisot :

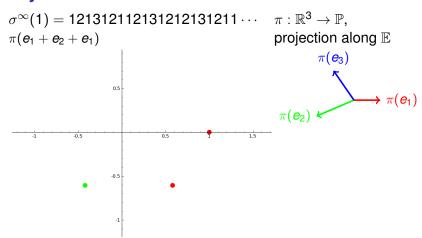
- ▶ One real cubic eigenvalue $\beta \approx 1.839 \ (> 1)$
- ▶ Two other conjugates $\beta', \beta'' \approx -0.419 \pm 0.606i$ (< 1)

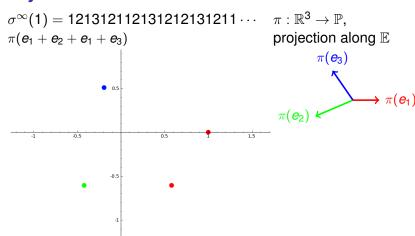
Action of M_{σ} on \mathbb{R}^3 :

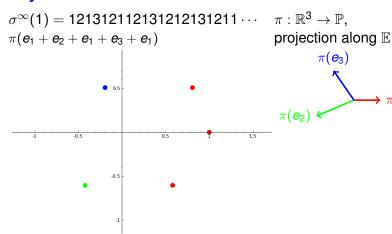
- ► Expanding line E
- Contracting plane P









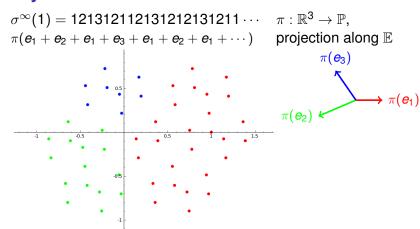


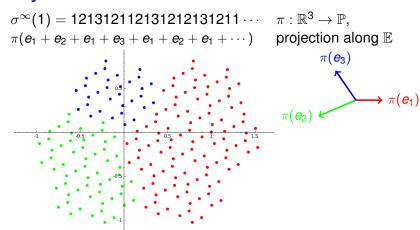
$$\sigma^{\infty}(1) = 121312112131212131211\cdots \qquad \pi: \mathbb{R}^3 \to \mathbb{P},$$

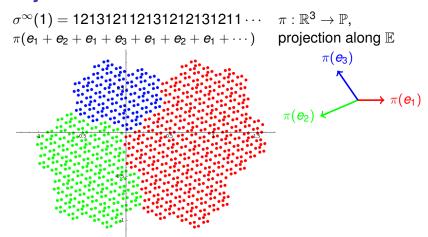
$$\pi(e_1 + e_2 + e_1 + e_3 + e_1 + e_2) \qquad \text{projection along } \mathbb{E}$$

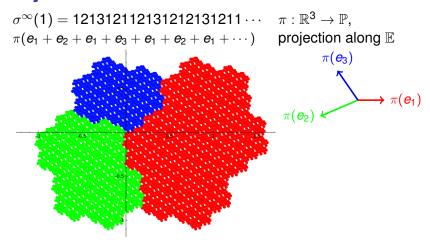
$$\pi(e_3)$$

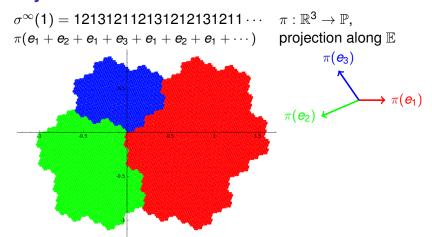
$$\sigma^{\infty}(1) = 121312112131212131211\cdots \qquad \pi: \mathbb{R}^3 \to \mathbb{P},$$
 $\pi(e_1 + e_2 + e_1 + e_3 + e_1 + e_2 + e_1 + \cdots)$ projection along \mathbb{E}
$$\pi(e_3)$$



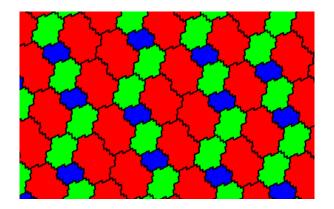






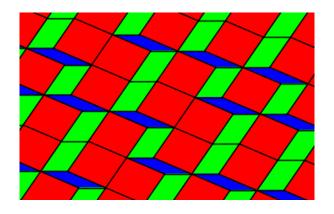


First tiling



Second tiling...

Second tiling



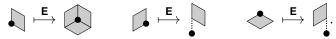
$$e_3$$
 e_1
 e_2

$$\begin{split} [\mathbf{x}, \mathbf{1}]^* &= \{ \mathbf{x} + \lambda \mathbf{e}_2 + \mu \mathbf{e}_3 : \lambda, \mu \in [0, 1] \} = \mathbf{1} \\ [\mathbf{x}, \mathbf{2}]^* &= \{ \mathbf{x} + \lambda \mathbf{e}_1 + \mu \mathbf{e}_3 : \lambda, \mu \in [0, 1] \} = \mathbf{1} \\ [\mathbf{x}, \mathbf{3}]^* &= \{ \mathbf{x} + \lambda \mathbf{e}_1 + \mu \mathbf{e}_2 : \lambda, \mu \in [0, 1] \} = \mathbf{1} . \end{split}$$

$$e_3$$
 e_1
 e_2

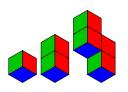
$$\begin{split} [\mathbf{x},\mathbf{1}]^* &= \{\mathbf{x} + \lambda \mathbf{e}_2 + \mu \mathbf{e}_3 : \lambda, \mu \in [0,1]\} = \mathbf{k} \\ [\mathbf{x},\mathbf{2}]^* &= \{\mathbf{x} + \lambda \mathbf{e}_1 + \mu \mathbf{e}_3 : \lambda, \mu \in [0,1]\} = \mathbf{k} \\ [\mathbf{x},\mathbf{3}]^* &= \{\mathbf{x} + \lambda \mathbf{e}_1 + \mu \mathbf{e}_2 : \lambda, \mu \in [0,1]\} = \mathbf{\bullet}. \end{split}$$

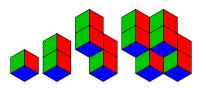
$$\begin{split} \textbf{E} : \begin{cases} [\textbf{x}, 1]^* &\mapsto \textbf{M}_{\sigma}^{-1} \textbf{x} + \left([\textbf{0}, 1]^* \cup [\textbf{0}, 2]^* \cup [\textbf{0}, 3]^* \right) \\ [\textbf{x}, 2]^* &\mapsto \textbf{M}_{\sigma}^{-1} \textbf{x} + [\textbf{e}_3, 1]^* \\ [\textbf{x}, 3]^* &\mapsto \textbf{M}_{\sigma}^{-1} \textbf{x} + [\textbf{e}_3, 2]^* \end{cases} \end{split}$$

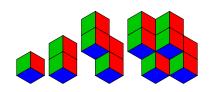


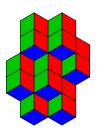


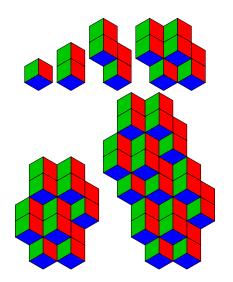
in the preimages : black dots stand for ${\bf x}$ in the images : black dots stand for ${\bf M}_{\sigma}^{-1}{\bf x}$



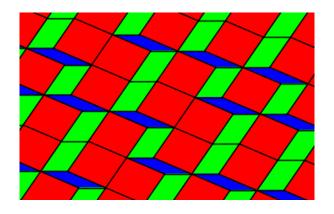




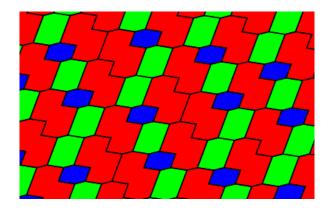




Second tiling



Third tiling



Topological substitutions

Topological substitutions

These are topological (or combinatorial) objects

These are topological (or combinatorial) objects
No geometry at all!

These are topological (or combinatorial) objects
No geometry at all!

A presubstitution:

These are topological (or combinatorial) objects

No geometry at all!

A presubstitution:

▶ topological polygons $\mathcal{T} = \{T_1, \dots, T_d\}$.

These are topological (or combinatorial) objects

No geometry at all!

A presubstitution:

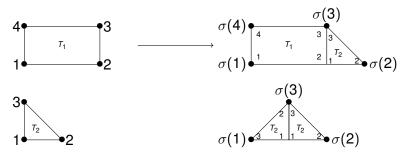
- ▶ topological polygons $\mathcal{T} = \{T_1, \dots, T_d\}$.
- $\sigma(T_i)$ is a complex, homeomorphic to a disc, obtained by gluing copies of the T_i 's along edges

These are topological (or combinatorial) objects

No geometry at all!

A presubstitution:

- ▶ topological polygons $\mathcal{T} = \{T_1, \dots, T_d\}$.
- ▶ $\sigma(T_i)$ is a complex, homeomorphic to a disc, obtained by gluing copies of the T_i 's along edges



A topological substitution is a pre-substitution σ such that

A topological substitution is a pre-substitution σ such that

 $ightharpoonup \sigma$ can be iterated consistentely on a tile T,

A topological substitution is a pre-substitution σ such that

- $ightharpoonup \sigma$ can be iterated consistentely on a tile T,
- the core of T contains a copy of T

A topological substitution is a pre-substitution σ such that

- $ightharpoonup \sigma$ can be iterated consistentely on a tile T,
- the core of T contains a copy of T

A topological substitution is a pre-substitution σ such that

- $ightharpoonup \sigma$ can be iterated consistentely on a tile T,
- the core of T contains a copy of T

A topological substitution is a pre-substitution σ such that

- $ightharpoonup \sigma$ can be iterated consistentely on a tile T,
- the core of T contains a copy of T

▶
$$T \subset \sigma(T)$$

A topological substitution is a pre-substitution σ such that

- $ightharpoonup \sigma$ can be iterated consistentely on a tile T,
- the core of T contains a copy of T

- ▶ $T \subset \sigma(T)$
- $\sigma^n(T) \subset \sigma^{n+1}(T)$

A topological substitution is a pre-substitution σ such that

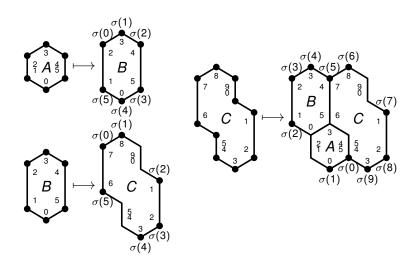
- $ightharpoonup \sigma$ can be iterated consistentely on a tile T,
- the core of T contains a copy of T

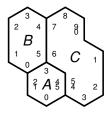
- $ightharpoonup T \subset \sigma(T)$
- $ightharpoonup \sigma^n(T) \subset \sigma^{n+1}(T)$

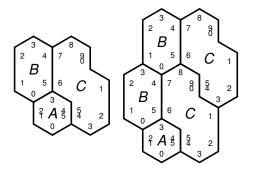
A topological substitution is a pre-substitution σ such that

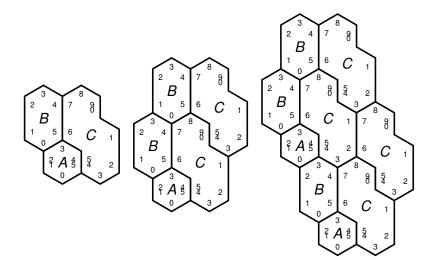
- $ightharpoonup \sigma$ can be iterated consistentely on a tile T,
- the core of T contains a copy of T

- ▶ $T \subset \sigma(T)$
- $ightharpoonup \sigma^n(T) \subset \sigma^{n+1}(T)$
- $ightharpoonup \sigma^{\infty}(T) = \bigcup_{n=0}^{\infty} \sigma^n(T)$ is a complex homeomorphic to \mathbb{R}^2 .

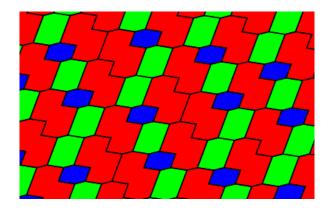


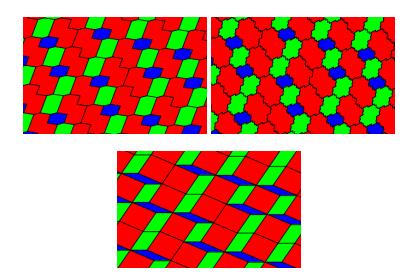


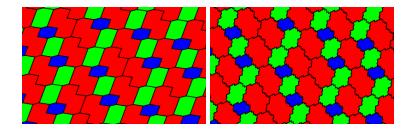


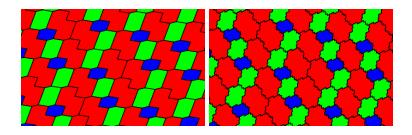


Third tiling

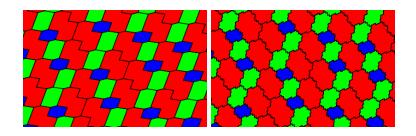






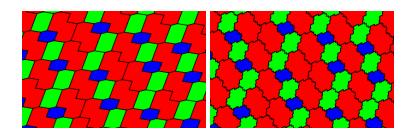


2 different geometric realizations of the same complex $\sigma^{\infty}(C)$



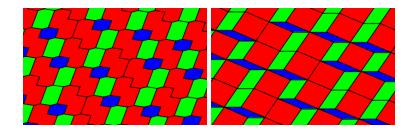
2 different geometric realizations of the same complex $\sigma^{\infty}(C)$

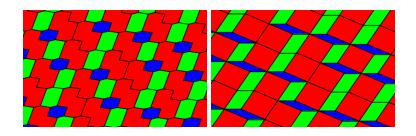
by hexagons and decagons,



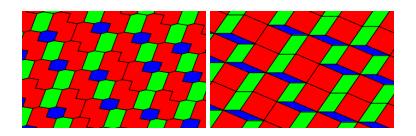
2 different geometric realizations of the same complex $\sigma^{\infty}(C)$

- by hexagons and decagons,
- by Rauzy fractals.

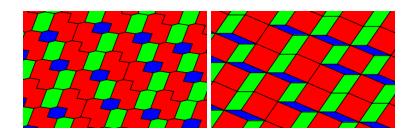




not the same underlying complex



- not the same underlying complex
- no basic trick, such as taking some edges of length 0



- not the same underlying complex
- no basic trick, such as taking some edges of length 0
- but we guess the "obvious" bijection between tiles

Morphism "tile to tile"

Morphism "tile to tile"

$$\Phi(B) = \mathbf{E}^3([\mathbf{0},3]^*)$$

$$\Phi\left(\bigcap\right) = \mathbf{E}^3([\mathbf{0},1]^*)$$

Morphism "tile to tile"

$$\Phi\big({\color{red} {\color{blue} A}} \big) = {\color{blue} {\color{blue} L}} = {\color{blue} {\color{blue} L}}^3([{\color{blue} {\color{blue} 0}},2]^*)$$

$$\Phi(B) = \mathbf{E}^3([\mathbf{0},3]^*)$$

$$\Phi\left(\bigcap\right) = \mathbf{E}^3([\mathbf{0},\mathbf{1}]^*)$$

 $\mathbf{E}^{-3} \circ \Phi$ is a morphism "tile to tile"