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Dirichlet’s Theorem

Theorem (Dirichlet (1842))

Let 0, Q be real numbers with @ > 1.
There exists an integer q with 1 < g < @, such that

1
0| < —.
ezl 0

where ||t|| = min [t — n|.
neZ



Dirichlet’s Theorem

Theorem (Dirichlet (1842))

Let 0, Q be real numbers with @ > 1.
There exists an integer q with 1 < g < @, such that

1
P < =.
40| 0
where ||t|| = min [t — n|.
nez
P e 1
there exist infinitely many ¢ satisfying llgf|| < —.
q
there exist infinitely many p/q’s such that ‘9 _P



Uniform approximation and asymptotic approximation

» Uniform approximation :
For all # € R

1
for all large @, ||nd| < 0 has a solution 1 <n < Q.

» Asymptotic approximation :
For all # € R

1
|[n@|| < —  for infinitely many n.
n



Inhomogeneous approximation

Theorem (Minkowski (1907))

Let 0 be an irrational. Let y be a real number which is not equal
to any mB + £ with m,¢ € N. Then there exist infinitely many
integers n such that

1
00—yl <.
0~ < 45



Inhomogeneous approximation

Theorem (Minkowski (1907))

Let 0 be an irrational. Let y be a real number which is not equal
to any mB + £ with m,¢ € N. Then there exist infinitely many
integers n such that

1
00—yl <.
0~ < 45

The inhomogeneous analogy of the uniform Dirichlet theorem
does NOT exist.



Measure theoretic results of asymptotic approximation

» Khinchine (1924):
Leb({0 : ||nf|| < 1(n) infinitely often}) =1

n=1

» Sziisz (1958); Schmidt (1964):
Leb({0 : ||nf — y|| < ¢(n) infinitely often}) =1

= Zw(n) = 0.
n=1



We fix irrational ¢ and find the set of y.

» Fuchs-K (2016):

Leb({y : ||[nf — y|| < ¢(n) for infinitely often}) =1

00 qr41—1

= 33 min (@), |aol) =

k=0 n=qg

where ¢ is the denominator of the principal convergents of 6.

Kurzweil (1955), Cassels (1957), Berend-William (1992), Tseng
(2008), Chaika-Constantine (2013), Simons (2015) ...,

Also, K-Nakada (2011), K-Nakada-Natsui (2013)



For the example, Kurzweil (1955)

{6 : Jc > 0 with ||nf] > ¢/n for all n > 1}

{ In6 — yl| < 1(n) i.o. Vib(n), > 4(n)

n>1

Tseng (2008)

{6 : Jc > 0 with ||nf| > ¢/n" for all n > 1}

{ Hnd =yl < ¢(n) Lo. V(n), Y ¥(n)

n>1

and many others.



Hausdorff dimension for the asymptotic approximation

» Jarnik (1929); Besicovitch (1934):  For 7> 1,

2
dimy ({6 : |n8]| < n~7 infinitely often}) = T
» Levesley (1998):  For any y € R, and 7 > 1:
: . . 2
dlmH({9 i |[nf — y|]| < n~T infinitely often}) =7 i
-

» Bugeaud (2003); Schmeling-Troubetzkoy (2003): For all
0 eR\Q, 72>1,

1
dimg ({y : [[nf — y|| <n7 infinitely often}) = —.
T



Uniformly well approximated numbers

» Khintchine (1926)

{6: foralllarge @, 1 <3In<Q, [|nf]| < Q™ "}

_JQ if 7>1
R if <1
» K-Seo (2003)

Leb({y : for all large @, 1 <3n < Q, ||nf —y|| <Q™"})

0 it 7>1/w
1 if 7<1/w.



Diophantine exponent

For an irrational number 6 let
w(f) = sup {8 > 0 : liminf j°||70| = O} .
j—o0o

» For every irrational
w(d) > 1.

» The set of irrational numbers of w = 1 has measure 1 and
include the set of irrational numbers with bounded partial
quotients, which is of measure 0.

» There exist numbers of w = oo, called the Liouville
numbers.



Result on uniformly approximated numbers

» Cheung (2011), Cheung-Chevallier (2015)

{(91,92) : for all large Q,1 < 3dn < Q,
maxc{|[n6) [ [ [} < 5Q7/2}

is of Hausdorff dimension 4/3

d2 . . .
(£ for higher dimensional cases).

» Kleinbock-Wadleigh (in more general form)
{(y,0) : for all large Q, 1 < 3n <@, [[nf —y|l <P(Q)}

has full Lebesgue measure if and only if
- 1

Z 7n21j}(n) < 00.

n=1



Main problem

Let an irrational 6 be fixed.

What is the size (Hausdorfl dimension) of

U, 16 := {y . for all large Q, ||[nf —y|| < Q"

has a solution 1 < n < Q}

Question of Bugeaud and Laurent (2005)



Theorem (K-Liao)
Let 6 be an irrational with w = w(0) > 1. Then

1/74+1 — 1/7
log (n/ " T ) TImgol)

lim —<7<1
. ~ log (ng||nk@] 1 Tow ’
dimpy (U [0]) =45 gk(_lkH g H 1)/7_
i —log (I[;=1 ;im0 )
1im , <7 <w,
koo l0g(ng[ngd] 1)

where ny is the (mazimal) subsequence of (qx) such that

ng||ned||” < 1, if 1/w<Tt<1,
ng||ngd| < 2, if 1<7<w.



Theorem (K-Liao)
Let 0 be an irrational with w = w(0) > 1. Then

U0 =T if T < 1/w,
U0 ={i0 € T:i>1} if T>w.



Theorem (K-Liao)
Let 0 be an irrational with w = w(0) > 1. Then

U0 =T if T < 1/w,
U0 ={i0 € T:i>1} if T>w.

Moreover, for 7 =1

2
< di <
w+1 _dlmH(Z/ﬁ[@])_ w+1

Theorem (K-Liao)

For each irrational 0, dimg (U [0]) is a continuous function of T
on (0,1) U (1,00).



Theorem (K-Liao)

Let 6 be an irrational with w(0) = 1. Then

1
5 < dimy (2h[0]) < 1.
For any irrational 6 with w(0) = w > 1 we have
w/T—1 ) 1/7+1 1
<d 10]) < , — <7<,
w2—1_1mH(uH)_ w-+1 wo =
—1
w/T 1< <w.

0 <dimpy (U[0]) <

)

w? —

If w(f) = oo, then dimpy (U;[0]) = 0.
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N[ =




Remarks

Remark 1: The results depend on w(6).
Remark 2: For the case 7 > 1,
1 1

dimy (U, [6]) < - (T+ 72_1> <5

» U.[0] C L;]0] except for a countable set of points.
» dimy(L,]0]) =T

Remark 3: No mass transference principle for uniform
approximations.



Examples

(i) Let 6 be an irrational with w(f) = w > 1 and g1 > ¢}’ for
all k. Then for each 1/w < 7 < w we have

aimpr @410 = 7L

(ii) Assume that 6 is an irrational of w(f) = w > 1 with
subsequence {k;} of qx,+1 > gy, satistying that

ans1=1forn#k; and g, > (qr,)"

Then we have

1/7+1 1
for — <7 <1
dimy U [0) =4 wrl’ T STSh

0, for 7 > 1.




Examples-continued

(iii) Let 6 = ‘/5271, of which partial quotients ar = 1 for all k.
Note that w(f) = 1. Then U,[f] =T for 7 = 1. Thus, we have

: I, 7<1,
dimg (U, [0]) = {0 o1

(iv) Let 6 be the irrational with partial quotient aj = k for all
k. Then w(f) =1 and

Lor<l,
dlmH (UT[H]) = %7 T = 17
0 =>1



Construction of Cantor sets

U 0] ={y :for all large Q, 1 < In < Q, ||nf —y||<Q "}.
Let

n 1 qr+1—1
@:UB@WJ, Fr= () G
=1 n=q

Then - e o o
U0 =J () Gn=J ) Fr:
(=1 n=¢ (=1 k=t
We calculate the Hausdorff dimensions of (72, Fj.
Take .
Epm = () Fk-
k=1

Then FE,, is the union of the intervals at level m.



Dimension calculation (from Falconer’s book)
Let
oo
EyD>E;DE;>... and F = () En.
n=0

Suppose each interval of Fj_; contains at least my, intervals of
Ey (k=1,2,...) which are separated by gaps of at least ey,
where 0 < €41 < € for each k. Then

log(my -+ -mg_1)

dimg (F) > lim
() koo — log(mper)

Suppose F' can be covered by ¢ sets of diameter at most Jx
with 6 — 0 as k — 0o. Then
log ¢,

dimyg(F) < lim .
#( )_ho—Ingsk




Distribution of orbit points

Given an irrational number 6 and a positive integer IV, if one
arranges the points {6}, {260}, ...,{N6} in ascending order, the
distance between consecutive points can have at most three
different lengths, and if there are three, one will be the sum of
the other two. (Sés (1958) ...)



Distribution of orbit points

Given an irrational number 6 and a positive integer IV, if one
arranges the points {6}, {260}, ...,{N6} in ascending order, the
distance between consecutive points can have at most three
different lengths, and if there are three, one will be the sum of
the other two. (Sés (1958) ...)

If N = g, for some k£ > 0, then there are
gk — qx—1 intervals of length ||gx—10||

and
qrk—1 intervals of length ||gx—10| + ||qrb| -



Structure of n-th level intervals

Lemma
If
1 T
2 () 2 w0 + st
dk+1
then
F,=T.
Consequently,

» If 1/w <7 <1 and gl qf||” > 1, then Fj, =T.
» If 7 < 1/w, then Fj, =T.
» If 7 =1 and ag41 =1, then Fj, =T.



Structure of n-th level intervals

Lemma
For any 7 <1, we have

dk

: Ol =
U (w Gty 0+ Cr (”q;; ™ —2uqk9u)

i=1

9k

Cc F, C U (ZG—qu, 10+ C; (H‘J;jH)
=1

3t

1 T
where Cr = 77+ + 7~ 71, Note that 1 < C; < 2.



Structure of n-th level intervals

Lemma
If .0 +a," <lla0|, then we have

dk

Fo =] B (i0,¢,7,) -

i=1
Lemma
If T > 1, then for large q,
max(ck,1) gk (ck+2)qx
J B(ibg)cFc |J B(ibgr).
i=1 i=1

where cj, = {(queﬂqg)fl/(ﬂrlw .



Lower bound for 1/w <7 <1

Take (k;)i>1 those that g, ||qk,||” < 1. Then

8

Fi = () Fx,.
k=1 =1

Define

Ei = h Fk]., and F' = ﬁEz
j=1 i=1

Let m;+1 be the number of intervals of F;1; contained in F;.

Then .
Qk; SOl T
M1 > +1 <||Qk H) )
5 qx;

Let ¢; be the smallest gap between the intervals in E;. Then

1



Upper bound for 1/w <7 < 1

The set F; can be covered by #¢; sets of diameter at most d;,
with

1 — 1 ==
l; < 2CT(T7) o). 20,<T7) i),
ar, llax, 01l qr.  llar .0l

=
5, = 2C. <H%9l> o
dk;




Some words for the other cases

More efforts are needed for 7 = 1.

Lemma
Put

L, if ag+1 = 2,
Tht1 = 4 2 if a1 =4, a2 > 2,

|VA4ar41 +5] —3,  otherwise.

Then we have

U (0 — b, i0+ Fkr10k0 — qei16) C Fi.
1<i<qr



Thank you for attention!!



