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Dirichlet’s Theorem

Theorem (Dirichlet (1842))

Let θ, Q be real numbers with Q ≥ 1.
There exists an integer q with 1 ≤ q ≤ Q, such that

‖qθ‖ < 1

Q
.

where ‖t‖ = min
n∈Z
|t− n|.

there exist infinitely many q satisfying ‖qθ‖ < 1

q
.

there exist infinitely many p/q’s such that

∣∣∣∣θ − p

q

∣∣∣∣ < 1

q2
.
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Uniform approximation and asymptotic approximation

I Uniform approximation :

For all θ ∈ R

for all large Q, ‖nθ‖ < 1

Q
has a solution 1 ≤ n ≤ Q.

I Asymptotic approximation :

For all θ ∈ R

‖nθ‖ < 1

n
for infinitely many n.



Inhomogeneous approximation

Theorem (Minkowski (1907))

Let θ be an irrational. Let y be a real number which is not equal
to any mθ + ` with m, ` ∈ N. Then there exist infinitely many
integers n such that

‖nθ − y‖ < 1

4|n|
.

The inhomogeneous analogy of the uniform Dirichlet theorem
does NOT exist.
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Measure theoretic results of asymptotic approximation

I Khinchine (1924):

Leb({θ : ‖nθ‖ < ψ(n) infinitely often}) = 1

⇐⇒
∞∑
n=1

ψ(n) =∞.

I Szüsz (1958); Schmidt (1964):

Leb({θ : ‖nθ − y‖ < ψ(n) infinitely often}) = 1

⇐⇒
∞∑
n=1

ψ(n) =∞.



We fix irrational θ and find the set of y.

I Fuchs-K (2016):

Leb({y : ‖nθ − y‖ < ψ(n) for infinitely often}) = 1

⇐⇒
∞∑
k=0

qk+1−1∑
n=qk

min (ψ(n), ‖qkθ‖) =∞,

where qk is the denominator of the principal convergents of θ.

Kurzweil (1955), Cassels (1957), Berend-William (1992), Tseng
(2008), Chaika-Constantine (2013), Simons (2015) . . . ,

Also, K-Nakada (2011), K-Nakada-Natsui (2013)



For the example, Kurzweil (1955)

{θ : ∃c > 0 with ‖nθ‖ ≥ c/n for all n ≥ 1}

=

θ : ‖nθ − y‖ < ψ(n) i.o. ∀ψ(n),
∑
n≥1

ψ(n) =∞

 .

Tseng (2008)

{θ : ∃c > 0 with ‖nθ‖ ≥ c/nτ for all n ≥ 1}

=

θ : ‖nθ − y‖ < ψ(n) i.o. ∀ψ(n),
∑
n≥1

ψ(n)τ =∞

 .

and many others.



Hausdorff dimension for the asymptotic approximation

I Jarńık (1929); Besicovitch (1934): For τ ≥ 1,

dimH(
{
θ : ‖nθ‖ < n−τ infinitely often

}
) =

2

1 + τ
.

I Levesley (1998): For any y ∈ R, and τ ≥ 1:

dimH(
{
θ : ‖nθ − y‖ < n−τ infinitely often

}
) =

2

1 + τ
.

I Bugeaud (2003); Schmeling-Troubetzkoy (2003): For all
θ ∈ R \Q, τ ≥ 1,

dimH(
{
y : ‖nθ − y‖ < n−τ infinitely often

}
) =

1

τ
.



Uniformly well approximated numbers

I Khintchine (1926){
θ : for all large Q, 1 ≤ ∃n ≤ Q, ‖nθ‖ < Q−τ

}
=

{
Q if τ > 1

R if τ ≤ 1.

I K-Seo (2003)

Leb(
{
y : for all large Q, 1 ≤ ∃n ≤ Q, ‖nθ − y‖ < Q−τ

}
)

=

{
0 if τ > 1/w

1 if τ < 1/w.
.



Diophantine exponent

For an irrational number θ let

w(θ) = sup

{
s > 0 : lim inf

j→∞
js‖jθ‖ = 0

}
.

I For every irrational θ

w(θ) ≥ 1.

I The set of irrational numbers of w = 1 has measure 1 and
include the set of irrational numbers with bounded partial
quotients, which is of measure 0.

I There exist numbers of w =∞, called the Liouville
numbers.



Result on uniformly approximated numbers

I Cheung (2011), Cheung-Chevallier (2015){
(θ1, θ2) : for all large Q, 1 ≤ ∃n ≤ Q,

max{‖nθ1‖, ‖nθ2‖} < δQ−1/2
}

is of Hausdorff dimension 4/3

( d2

d+1 for higher dimensional cases).

I Kleinbock-Wadleigh (in more general form)

{(y, θ) : for all large Q, 1 ≤ ∃n ≤ Q, ‖nθ − y‖ < ψ(Q)}

has full Lebesgue measure if and only if

∞∑
n=1

1

n2ψ(n)
<∞.



Main problem

Let an irrational θ be fixed.

What is the size (Hausdorff dimension) of

Uτ [θ] :=
{
y : for all large Q, ‖nθ − y‖ < Q−τ

has a solution 1 ≤ n ≤ Q
}

Question of Bugeaud and Laurent (2005)



Theorem (K-Liao)

Let θ be an irrational with w = w(θ) > 1. Then

dimH (Uτ [θ]) =


lim
k→∞

log
(
n
1/τ+1
k

∏k−1
j=1 n

1/τ
j ‖njθ‖

)
log (nk‖nkθ‖−1)

,
1

w
< τ < 1,

lim
k→∞

− log
(∏k−1

j=1 nj‖njθ‖1/τ
)

log(nk‖nkθ‖−1)
, 1 < τ < w,

where nk is the (maximal) subsequence of (qk) such that

nk‖nkθ‖τ < 1, if 1/w < τ < 1,

nτk‖nkθ‖ < 2, if 1 < τ < w.



Theorem (K-Liao)

Let θ be an irrational with w = w(θ) ≥ 1. Then

Uτ [θ] = T if τ < 1/w,

Uτ [θ] = {iθ ∈ T : i ≥ 1} if τ > w.

Moreover, for τ = 1

1

w + 1
≤ dimH (U1[θ]) ≤

2

w + 1

Theorem (K-Liao)

For each irrational θ, dimH(Uτ [θ]) is a continuous function of τ
on (0, 1) ∪ (1,∞).
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Theorem (K-Liao)

Let θ be an irrational with w(θ) = 1. Then

1

2
≤ dimH (U1[θ]) ≤ 1.

For any irrational θ with w(θ) = w > 1 we have

w/τ − 1

w2 − 1
≤dimH (Uτ [θ]) ≤ 1/τ + 1

w + 1
,

1

w
≤ τ ≤ 1,

0 ≤dimH (Uτ [θ]) ≤ w/τ − 1

w2 − 1
, 1 < τ ≤ w.

If w(θ) =∞, then dimH (Uτ [θ]) = 0.



-
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Remarks

Remark 1: The results depend on w(θ).

Remark 2: For the case τ > 1,

dimH (Uτ [θ]) ≤ 1

2τ
(
τ +
√
τ2 − 1

) < 1

2τ
.

I Uτ [θ] ⊂ Lτ [θ] except for a countable set of points.

I dimH(Lτ [θ]) = τ .

Remark 3: No mass transference principle for uniform
approximations.



Examples

(i) Let θ be an irrational with w(θ) = w > 1 and qk+1 > qwk for
all k. Then for each 1/w < τ < w we have

dimH (Uτ [θ]) =
w/τ − 1

w2 − 1
.

(ii) Assume that θ is an irrational of w(θ) = w > 1 with
subsequence {ki} of qki+1 > qwki satisfying that

an+1 = 1 for n 6= ki and qki+1
> (qki)

2i .

Then we have

dimH (Uτ [θ]) =


1/τ + 1

w + 1
, for

1

w
< τ ≤ 1,

0, for τ > 1.



Examples-continued

(iii) Let θ =
√
5−1
2 , of which partial quotients ak = 1 for all k.

Note that w(θ) = 1. Then Uτ [θ] = T for τ = 1. Thus, we have

dimH (Uτ [θ]) =

{
1, τ ≤ 1,

0 τ > 1.

(iv) Let θ be the irrational with partial quotient ak = k for all
k. Then w(θ) = 1 and

dimH (Uτ [θ]) =


1, τ < 1,
1
2 , τ = 1,

0 τ > 1.



Construction of Cantor sets

Uτ [θ] = {y : for all large Q, 1 ≤ ∃n ≤ Q, ‖nθ − y‖ < Q−τ} .
Let

Gn =

n⋃
i=1

B

(
iθ,

1

nτ

)
, Fk =

qk+1−1⋂
n=qk

Gn.

Then

Uτ [θ] =

∞⋃
`=1

∞⋂
n=`

Gn =

∞⋃
`=1

∞⋂
k=`

Fk.

We calculate the Hausdorff dimensions of
⋂∞
k=` Fk.

Take

Em :=

m⋂
k=1

Fk.

Then Em is the union of the intervals at level m.



Dimension calculation (from Falconer’s book)

Let

E0 ⊃ E1 ⊃ E2 ⊃ . . . and F =

∞⋂
n=0

En.

Suppose each interval of Ek−1 contains at least mk intervals of
Ek (k = 1, 2, . . . ) which are separated by gaps of at least εk,
where 0 < εk+1 < εk for each k. Then

dimH(F ) ≥ lim
k→∞

log(m1 · · ·mk−1)

− log(mkεk)
.

Suppose F can be covered by `k sets of diameter at most δk
with δk → 0 as k →∞. Then

dimH(F ) ≤ lim
k→∞

log `k
− log δk

.



Distribution of orbit points

Given an irrational number θ and a positive integer N , if one
arranges the points {θ}, {2θ}, . . . , {Nθ} in ascending order, the
distance between consecutive points can have at most three
different lengths, and if there are three, one will be the sum of
the other two. (Sós (1958) . . . )

If N = qk, for some k ≥ 0, then there are

qk − qk−1 intervals of length ‖qk−1θ‖

and
qk−1 intervals of length ‖qk−1θ‖+ ‖qkθ‖.
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Structure of n-th level intervals

Lemma
If

2

(
1

qk+1

)τ
≥ ‖qk−1θ‖+ ‖qkθ‖,

then
Fk = T.

Consequently,

I If 1/w < τ < 1 and qk‖qkθ‖τ ≥ 1, then Fk = T.

I If τ < 1/w, then Fk = T.

I If τ = 1 and ak+1 = 1, then Fk = T.



Structure of n-th level intervals

Lemma
For any τ ≤ 1, we have

qk⋃
i=1

(
iθ − q−τk+1, iθ + Cτ

(‖qkθ‖
qk

) τ
τ+1 − 2‖qkθ‖

)

⊂ Fk ⊂
qk⋃
i=1

(
iθ − q−τk+1, iθ + Cτ

(‖qkθ‖
qk

) τ
τ+1

)
,

where Cτ = τ
1
τ+1 + τ−

τ
τ+1 . Note that 1 < Cτ ≤ 2.



Structure of n-th level intervals

Lemma
If q−τk+1 + q−τk ≤ ‖qkθ‖, then we have

Fk =

qk⋃
i=1

B
(
iθ, q−τk+1

)
.

Lemma
If τ > 1, then for large qk,

max(ck,1)·qk⋃
i=1

B
(
iθ, q−τk+1

)
⊂ Fk ⊂

(ck+2)qk⋃
i=1

B
(
iθ, q−τk+1

)
.

where ck =
⌊
(‖qkθ‖qτk)−1/(τ+1)

⌋
.



Lower bound for 1/w < τ < 1

Take (ki)i≥1 those that qki‖qki‖τ < 1. Then

∞⋂
k=1

Fk =

∞⋂
i=1

Fki .

Define

Ei =

i⋂
j=1

Fkj , and F =

∞⋂
i=1

Ei.

Let mi+1 be the number of intervals of Ei+1 contained in Ei.
Then

mi+1 ≥
qki+1

5

(
‖qkiθ‖
qki

) τ
τ+1

.

Let εi be the smallest gap between the intervals in Ei. Then

εi ≥
1

2
‖qki−1θ‖.



Upper bound for 1/w < τ < 1

The set Ei can be covered by `i sets of diameter at most δi,
with

`i ≤

(
2Cτ

( 1

qτk1‖qk1θ‖

) 1
τ+1

+ 2

)
· · ·

(
2Cτ

( 1

qτki−1
‖qki−1

θ‖

) 1
τ+1

+ 2

)
,

δi = 2Cτ

(
‖qkiθ‖
qki

) τ
τ+1

.



Some words for the other cases

More efforts are needed for τ = 1.

Lemma
Put

r̃k+1 :=


1, if ak+1 = 2,

2, if ak+1 = 4, ak+2 ≥ 2,

b
√

4ak+1 + 5c − 3, otherwise.

Then we have⋃
1≤i≤qk

(iθ − qkθ, iθ + r̃k+1qkθ − qk+1θ) ⊂ Fk.



Thank you for attention!!


