Topology of of tiles associated with numeration systems

Benoît Loridant FAN-Workshop

Paris, 02.05.2013

Motivations

- Canonical number systems, β -numeration :
 - finiteness property \leftrightarrow 0 interior point
 - rationals with periodic expansions ↔ cut with real axes (Akiyama-Scheicher, Akiyama-Barat-Berthé-Siegel, Adamczewski-Frougny-Siegel)
 - simultaneous diophantine approximation (Hubert-Messaoudi,...)
- Substitutive dynamical systems : Markov partitions for hyperbolic toral automorphisms (Praggastis, ...)
- Questions : tiling property, connectivity, homeomorphy to the closed disk, fundamental group,...

Summary

- Boundary parametrization of self-affine tiles
- Application to canonical number systems
- Application to a family of cubic Rauzy fractals

Introduction

$$T = \left\{ \mathbf{a}_1 \alpha^{-1} + \mathbf{a}_2 \alpha^{-2} + \dots; \mathbf{a}_1, \mathbf{a}_2, \dots \in \mathcal{D} \right\}.$$

T is a planar integral self-affine tile if

$$\mathsf{A}T = igcup_{\mathsf{a}\in\mathcal{D}}(T+\mathsf{a})$$

with

- $\mathbf{A} \in \mathbb{Z}^{2 \times 2}$ expanding matrix : $|\operatorname{sp}(\mathbf{A})| \subset (1, +\infty)$.
- \mathcal{D} is a complete residue system of $\mathbb{Z}^d / \mathbf{A} \mathbb{Z}^d$.

Under these conditions, the compact $T = \overline{T^o}$ is called *tile* and

$$\mathcal{T} = \left\{ \sum_{j \geq 1} \mathbf{A}^{-j} \mathbf{a}_j; \mathbf{a}_j \in \mathcal{D}
ight\}.$$

T connected $\Rightarrow \partial T$ locally connected continuum (Tang 2005). Aim : parametrization $C : \mathbb{S}^1 \to \partial T$ with "good properties".

- T integral self-affine tile : $\mathbf{A}T = \bigcup_{a \in \mathcal{D}} (T + a)$.
- \blacktriangleright Then there is a $\mathcal{J} \subset \mathbb{Z}^2$ such that

$$\bigcup_{s\in\mathcal{J}}(T+s)=\mathbb{R}^2,$$

$$\lambda_2((T+s)\cap (T+s'))=0 ext{ for } s
eq s'\in \mathcal{J}.$$

This is the *tiling property* (Lagarias-Wang, Groechenig-Haas). • We will assume that $\mathcal{J} = \mathbb{Z}^2$.

Boundary of \mathbb{Z}^2 -self-affine tiles

Neighbors of the tile T:

$$\mathcal{S} = \{s \in \mathbb{Z}^2 \setminus \{0\}; T \cap (T + s) \neq \emptyset\}$$

is finite.

By the tiling property,

$$\partial T = \bigcup_{s \in S} \underbrace{T \cap (T+s)}_{B_s}.$$

• Since $T = \bigcup_{a \in D} \mathbf{A}^{-1}(T + a)$, we have

$$B_s = \bigcup_{a,a'} \mathbf{A}^{-1} (\underbrace{T \cap (T + a' + \mathbf{A}s - a)}_{=B_{s'}} + a).$$

$$s \xrightarrow{a|a'} s'$$
 iff $\mathbf{A}s + d' - d = s'$.

Example : boundary automaton of Knuth tile

Boundary automaton

- G can be computed algorithmically from $(\mathbf{A}, \mathcal{D})$.
- ▶ We have a graph iterated function system (GIFS) :

$$B_s = \bigcup_{s \xrightarrow{a} s'} \mathbf{A}^{-1} (B_{s'} + a),$$

$$\partial T = \bigcup_{s \in S} B_s$$

Boundary points : x = ∑_{j=1}[∞] A^{-j}a_j ∈ T ∩ (T + s) iff there is an infinite walk w = (a₁, a₂,...) in G

$$s \xrightarrow{a_1} s_1 \xrightarrow{a_2} s_2 \xrightarrow{a_3} \ldots$$

Surjective mapping :

$$\psi: \quad G \quad \to \quad \partial T \\ w \quad \mapsto \quad \mathbf{A}^{-1} \mathbf{a}_1 + \mathbf{A}^{-2} \mathbf{a}_2 + \dots$$

Aim : find φ such that [0, 1] → G → ∂T is continuous surjection.

Ordered automaton G° (boundary substitution)

Dumont-Thomas number system

Let L the incidence matrix and u be defined by

$$(u_1, u_2, u_3, u_4, u_5, u_6)^T \mathbf{L} = \beta(u_1, u_2, u_3, u_4, u_5, u_6)$$

and $u_1 + \ldots + u_6 = 1$. We have $u_j > 0$ and $u_j \in \mathbb{Q}(\beta)$. • Define

$$egin{array}{cccc} \Phi: & G^o & o & [0,1] \ & (i;o_1,o_2,o_3,\ldots) & \mapsto & t \end{array}$$

. . .

The above procedure defines :

$$\Phi: \begin{array}{ccc} G^o & \to & [0,1] \\ v = (i; o_1, o_2, \ldots) & \mapsto & x(v) \end{array}$$

Since $\mathbf{u} > 0$, Φ is almost 1:1.

The identifications are trivial :

We have a natural transition mapping :

$$\begin{bmatrix} 0,1 \end{bmatrix} \quad \stackrel{\phi}{\underset{\leftarrow}{\Phi}} \quad G^o \quad \stackrel{\text{digits}}{\longrightarrow} \quad G \quad \stackrel{\psi}{\longrightarrow} \quad \partial T \\ t \quad \mapsto \quad v \quad \mapsto \quad w = (a_1,a_2,\ldots) \quad \mapsto \quad \sum_{k\geq 1} \mathbf{A}^{-k} a_k$$

Compatibility Lemma :

$$\Phi(\mathbf{v}) = \Phi(\mathbf{v}') \Rightarrow \psi(\operatorname{digits}(\mathbf{v})) = \psi(\operatorname{digits}(\mathbf{v}')).$$

This is by choice of ordering. By GIFS property, finitely many equalities have to be checked.

▶ **Proposition**. $C : \mathbf{S}^1 \xrightarrow{\phi} G^o \xrightarrow{digits} G \xrightarrow{\psi} \partial T$ is Hölder continuous.

The exponent is $\alpha = 1/\dim_{\mathrm{H}} \partial T$ if **A** is a similarity.

Boundary approximations

Theorem (Akiyama-L.)

Let T be the integral self-affine tile satisfying $\mathbf{A}T = T + D$, where D is a collinear digit set : $D = \{0, \mathbf{v}, \dots, (|\det(\mathbf{A})| - 1)\mathbf{v}\}$. Then there exists $C : [0, 1] \rightarrow \partial T$ continuous onto mapping and an hexagon $Q \subset \mathbb{R}^2$ with the following properties. Let $T_0 := Q$ and

$$\mathbf{A}T_n = \bigcup_{\mathbf{a}\in\mathcal{D}}(T_{n-1}+\mathbf{a}).$$

be the sequence of approximations of T associated to Q. Then : (1) $\lim_{n\to\infty} \partial T_n = \partial T$ (Hausdorff metric).

- (2) For all $n \in \mathbb{N}$, ∂T_n is a polygonal simple closed curve.
- (3) Denote by V_n the set of vertices of ∂T_n . For all $n \in \mathbb{N}$, $V_n \subset V_{n+1} \subset C(\mathbb{Q}(\beta) \cap [0,1])$.

Note : β is the dominant eigenvalue of the incidence matrix of a strongly connected **contact graph** (Gröchenig-Haas).

-2 + i

Relation to Dekking's recurrent set method

Lemma. $Q + \mathbb{Z}^2$ is a tiling of \mathbb{R}^2 .

Relation to Dekking's recurrent set method : compatible homomorphism

To each letter $1, 2, 3, \dot{1}, \dot{2}, \dot{3}$, we associate a side of the hexagon Q :

$$\begin{split} \mathbf{v}_1 &:= C_2 - C_1, & \mathbf{v}_2 &:= C_3 - C_2, & \mathbf{v}_3 &:= C_4 - C_3, \\ \mathbf{v}_1 &:= C_5 - C_4 = -\mathbf{v}_1, & \mathbf{v}_2 &:= C_6 - C_1 = -\mathbf{v}_2, & \mathbf{v}_3 &:= C_1 - C_6 = -\mathbf{v}_3. \end{split}$$

Directed curves in the plane. Let the homomorphism

$$\begin{array}{rcccc} g & :<1,2,3> & \rightarrow & \mathbb{R}^2\\ & o_1o_2\ldots o_n & \rightarrow & \mathbf{v}_{o_1}+\ldots+\mathbf{v}_{o_n}. \end{array}$$

Then g connects the action of σ on the words and the action of **A** on the plane.

Lemma

For all words $w \in <1,2,3>$, $g(\sigma(w)) = \mathbf{A}g(w)$.

Proposition. Let $T_0 := Q$ and $T_{n+1} = \mathbf{A}^{-1}(T_n + D)$ the associated sequence of approximations. Then

$$\mathbf{A}^{-n}p(\sigma^n(123456))=\partial T_n+k_n.$$

Consider the strongly connected GIFS in \mathbb{R}^d

$$\partial T = \bigcup_{s \in S} B_s,$$

$$B_{s} = \bigcup_{\substack{s \xrightarrow{a} \\ s \xrightarrow{s' \in G}}} \mathbf{A}^{-1}(B_{s'} + a).$$
(1)

We say that the GIFS satisfies the *open set condition* if there are open sets V_s ($s \in S$) such that for all $s \in S$

$$V_s \supset \bigcup_{s \xrightarrow{a} s' \in G} \mathbf{A}^{-1}(V_{s'} + a)$$
 (disjoint).

Relation to the Hausdorff measure \mathcal{H}^{α} (He-Lau, Luo-Yang)

If **A** is a similarity, OSC implies that
(i) dim
$$\partial T$$
 d $\log(\beta)$

(1)
$$\dim_{\mathrm{H}} \partial I = d \frac{\log(\beta)}{\log(\det(\mathbf{A}))}$$

- (ii) $0 < \mathcal{H}^{\alpha}(\partial T) < \infty$.
- (iii) The union (1) is disjoint for the Hausdorff measure $\mathcal{H}^{\alpha}.$

(iii)' Let
$$f_a(x) := \mathbf{A}^{-1}(x+a)$$
 and $f_{a_1...a_n} := f_{a_1} \circ \ldots \circ f_{a_n}$. Then

$$\mathcal{H}^{\alpha}(f_{a_1a_2\ldots a_n}(B_{s_n})\cap f_{a'_1a'_2\ldots a'_n}(B_{s'_n}))=0,$$

for
$$s \xrightarrow{a_1} s_1 \dots \xrightarrow{a_n} s_n$$
 and $s \xrightarrow{a'_1} s_1 \dots \xrightarrow{a'_n} s'_n$ distinct.

If **A** is just affinity, the above results remain true for a Hausdorff measure \mathcal{H}^{α}_{w} with respect to a pseudo norm w:

$$w(\mathbf{A}x) = |\det(\mathbf{A})|^{1/2}w(x) \ (x \in \mathbb{R}^2).$$

Lemma

OSC holds for integral self-affine tiles.

Theorem (Akiyama-L.)

Let T as in the previous theorem and C the corresponding parametrization. Furthermore, let w be a pseudo-norm for **A** and $\alpha := 2 \frac{\log(\beta)}{\log(|\det(\mathbf{A})|)}$. Then, for each boundary part B_s ,

 $\infty > \mathcal{H}^{\alpha}_{w}(B_{s}) > 0.$

Moreover, there is a subdivision of the interval [0, 1], $t_0 := 0 < t_1 < \ldots < t_6 := 1$ such that

$$\frac{1}{c}\mathcal{H}^{\alpha}_{w}(\ C([t_{i},t))\)\ =\ t-t_{i}\ (t_{i}\leq t\leq t_{i+1}),$$

where $c := \sum_{s} \mathcal{H}^{\alpha}_{w}(B_{s})$. If $\det(\mathbf{A}) \geq 2$, then $\mathcal{H}^{\alpha}(B_{s} \cap B_{s'}) = 0$ for $s \neq s'$ and $\mathcal{H}^{\alpha}(C([0, t]))$

$$t = \frac{\mathcal{H}^{\alpha}(\mathcal{C}([0, t)))}{\mathcal{H}^{\alpha}(\partial T)}$$

Class of substitutions over the alphabet $\mathcal{A} = \{1, 2, 3\}$

Let
$$a \ge b \ge 1$$
 and
 $\sigma_{a,b}(1) = \underbrace{1 \dots 1}_{a} 2$ $\sigma_{a,b}(2) = \underbrace{1 \dots 1}_{b} 3$ $\sigma_{a,b}(3) = 1$,
 $\sigma(uv) = \sigma(u)\sigma(u)$ for all $u, v \in \mathcal{A}^*$
The incidence matrix $\mathbf{M} = \begin{pmatrix} a & b & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

-is primitive

-has characteristic polynomial $x^3 - ax^2 - bx - 1$. The roots are

$$\beta > 1, \quad \alpha, \alpha' \text{ with } |\alpha|, |\alpha'| < 1$$

(β is a Pisot unit). Decomposition of the space.

$$\mathbb{R}^3 = \underbrace{\mathbb{H}_e}_{\mathbb{R}\cdot\mathbf{v}_\beta} \oplus \ \mathbb{H}_c,$$

and $\mathbf{M}_{|\mathbb{H}_c} =: \mathbf{h}$ is a contraction.

Tribonacci substitution

Approximation of $\mathbb{H}_e = \mathbb{R} \cdot \mathbf{v}_{\beta}$

Substitution tiles as graph directed self-affine sets

Theorem (Sirvent and Wang, 1999)

Let σ be a primitive unit Pisot substitution over the alphabet A. The central tile \mathcal{R} and the subtiles \mathcal{R}_i are compact sets satisfying $\mathcal{R} = \overline{\mathcal{R}^o}$ and $\mathcal{R}_i = \overline{\mathcal{R}_i^o}$. Moreover, the subtiles satisfy

$$\begin{aligned} \mathcal{R}_{i} &= \bigcup_{\underline{\sigma(j) = pis}\atop_{i \xrightarrow{p}_{j \in \mathcal{P}}}} \mathbf{h} \mathcal{R}_{j} + \pi f(p) \\ &= \left\{ \sum_{k \ge 0} \mathbf{h}^{k} \pi f(p_{k}) ; i \xrightarrow{p_{0}} j_{1} \xrightarrow{p_{1}} \dots \text{ infinite walk in } \mathcal{P} \right\} \end{aligned}$$

(h-ary representation).

Let σ be a primitive unit Pisot substitution over the alphabet \mathcal{A} . Define

$$\mathsf{\Gamma}_{\textit{srs}} := \left\{ [\pi(\mathbf{x}), i] \in \pi(\mathbb{Z}^n) \times \mathcal{A} \text{ ; } 0 \leq \langle \mathbf{x}, \mathbf{v}_\beta \rangle < \langle \mathbf{e}_i, \mathbf{v}_\beta \rangle \right\}.$$

Theorem (Ito-Rao 2006)

Let σ be a primitive unit Pisot substitution over the alphabet \mathcal{A} . Then

$$\mathbb{H}_{c} = \bigcup_{[\gamma, i] \in \Gamma_{srs}} \mathcal{R}_{i} + \gamma$$

is a tiling if and only if σ satisfies the super coincidence condition. **Remark** : $\sigma_{a,b}$ satisfies the super coincidence condition (Solomyak, Barge-Kwapisz).

Boundary graph

Define the graph \mathcal{G} with : • nodes $[i, \gamma, j] \in \mathcal{A} \times \pi(\mathbb{Z}^n) \times \mathcal{A}$ s.t. $||\gamma|| \leq 2 \frac{\max\{||\pi f(p)||; p \text{ label of } \mathcal{P}\}}{1 - \max\{|\alpha_1|, |\alpha_2|\}}.$ • edges $[i, \gamma, j] \xrightarrow{p|p'} [i_1, \gamma_1, j_1]$ iff $i \xrightarrow{p} i_1 \in \mathcal{P}, j \xrightarrow{p'} j_1 \in \mathcal{P}$ and $\mathbf{h}\gamma_1 = \gamma + \pi(f(p') - f(p)).$

Remove the states of \mathcal{G} that are not the starting state of an infinite walk \longrightarrow finite boundary graph $\mathcal{G}(\mathcal{S})$.

Lemma

$$\sum_{k\geq 0} \mathbf{h}^k \pi f(\mathbf{p}_k) = \gamma + \sum_{k\geq 0} \mathbf{h}^k \pi f(\mathbf{p}'_k) \in \mathcal{R}_i \cap (\gamma + \mathcal{R}_j)$$

if and only if there is an infinite walk

$$[i, \gamma, j] \xrightarrow{p_0|p'_0} [i_1, \gamma_1, j_1] \xrightarrow{p_1|p'_1} \ldots \in \mathcal{G}(\mathcal{S}).$$

Let $\mathcal{G}(\mathcal{S})^+$ be the graph with *initial states* $[i, \gamma, j]$ s.t. $[\gamma, j] \in \Gamma_{srs}$. Theorem (Siegel-Thuswaldner 2010)

Let σ be a primitive unit Pisot substitution satisfying the super coincidence condition. Let $B_{[i,\gamma,j]}$ be the solution of the graph directed system :

$$B_{[i,\gamma,j]} = \bigcup_{[i,\gamma,j] \xrightarrow{p} [i_1,\gamma_1,j_1] \in \mathcal{G}(\mathcal{S})} \mathbf{h} B_{[i_1,\gamma_1,j_1]} + \pi f(p).$$

Then

$$\partial \mathcal{R} = \bigcup_{[i,\gamma \neq \mathbf{0}, j] \in \mathcal{G}(\mathcal{S})^+} B_{[i,\gamma, j]}$$

and $B_{[i,\gamma,j]} = \mathcal{R}_i \cap (\mathcal{R}_j + \gamma)$.

A subgraph of the boundary graph for the substitution $\sigma_{a,b}$

Boundary parametrization

We obtain a mapping $C : [0,1] \rightarrow \mathcal{G} \rightarrow \partial \mathcal{R}$. Continuity.

$$t = u_{1^+} \rightarrow \begin{array}{ccc} (1^+; o_{max}, o_{max}, \ldots) & \rightarrow & \sum_{k \ge 0} \mathbf{h}^k \pi f(p_k) \\ (2^+; 1, 1, \ldots) & \rightarrow & \sum_{k \ge 0} \mathbf{h}^k \pi f(p'_k) \end{array} \right\} = ?$$

By self-affinity, only finitely many equalities to be checked \hookrightarrow use boundary graph.

Theorem

Consider the substitution $\sigma_{a,b}$ ($a \ge b \ge 1$). Let λ be the largest root of $x^4 + (1-b)x^3 + (b-a)x^2 - (a+1)x - 1$.

Then there exists a surjective Hölder continuous mapping $C : [0,1] \rightarrow \partial \mathcal{R}$ with C(0) = C(1) and a sequence of polygonal curves $(\Delta_n)_{n\geq 0}$ such that

- $\lim_{n\to\infty} \Delta_n = \partial \mathcal{R}$ (Hausdorff metric).
- Denote by V_n the set of vertices of Δ_n . Then

 $V_n \subset V_{n+1} \subset C(\mathbb{Q}(\lambda) \cap [0,1]).$

Theorem

Let \mathcal{R} be the tile associated to the substitution $\sigma_{a,b}$ ($a \ge b \ge 1$). If $2b - a \ge 4$, then \mathcal{R} is not homeomorphic to a closed disk.

Proof.
$$\begin{cases} t: 5^+ \xrightarrow{a-1} 6^- \xrightarrow{a-2} 5^+ \\ t': 12^+ \xrightarrow{a-1} 5^+ \xrightarrow{a-2} 6^- \\ \hline \\ Thus \ t < t' \ and \ C(t) = C(t'): C \ is not a simple closed curve. \end{cases}$$

Remark.

- Siegel and Thuswaldner (2010) give a criterion of homeomorphy to the closed disk algorithmically checkable.
- Messaoudi 2006 : if a = 1, then \mathcal{R} is disk-like.

Theorem

Let \mathcal{R} be the tile associated to the substitution $\sigma_{a,b}$ ($a \ge b \ge 1$). If $2b - a \le 3$, then $\partial \mathcal{R}$ is a simple closed curve. Therefore, \mathcal{R} is homeomorphic to a closed disk.

Proof. Check that all identifications are trivial in the parametrization (use boundary automaton from L. - Messaoudi - Surer - Thuswaldner 2013).

 $\sigma_{4,4}$

 $\sigma_{7,10}$

- Other classes, for example among the substitutions generated by the Arnoux-Rauzy substitutions. See V. Berthé, T. Jolivet and A. Siegel for the connectedness of the fractals associated to σ = τ₁ · · · τ_r, where r ≥ 3 and {τ₁,...,τ_r} = {σ₁, σ₂, σ₃} (σ_i are the Arnoux-Rauzy substitutions).
- Further topological information (description of cut points, interior components). Difficulty : complementation of Büchi automata.

Heighway dragon

Non trivial identifications : cutpoints

Non trivial identifications (P, P') in the number system.

Thank you !