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Random Sequences
Let us consider I = [0, 1]d . A random sequence x1, x2, . . . ∈ I is
called uniformly distributed if limN→∞DN(J) = 0 for any interval
J =

∏d
i=1[ai , bi ) (0 ≤ ai < bi ≤ 1). Here

DN(J) =

∣∣∣∣ 1N#{n ≤ N : xn ∈ J} − |J|
∣∣∣∣ ,

where |J| is the Lebesgue measure of J.
The discrepancy DN is defined by

DN = sup
J

DN(J),

where sup is taken over all the intervals J. When we restrict
intervals only for J =

∏d
i=1[0, bi ), we call it ∗–discrepancy and

denote it by D∗
N . There exists a constant C∗ such that

D∗
N ≤ DN ≤ C∗D

∗
N .

Thus there exists no difference of meaning in both discrepancy.



low Discrepancy Sequence
A random sequence x1, x2, . . . ∈ I is called of low discrepancy if
there exists a constant C > 0 such that

DN ≤ C
(logN)d

N
.

It is proved for d = 1, 2

DN ≥ O

(
(logN)d

N

)
,

and is expected the above inequality holds even for d ≥ 3. Namely,
the low discrepancy sequence will be the best uniformly distributed
sequence. Thus this is the best sequence to approximate an
integration numerically

1

N

N∑
n=1

f (xn) ∼
∫
I
f dx

by quasi Monte Carlo method.



Dynamical System

We consider a transformation F on I whcih is expanding:

ξ = lim inf
n→∞

1

n
ess inf

x
log |DF n(x)| > 0,

and has the invariant measure absolutely continuous to the
Lebesgue measure.
Let A be a finite set of symbols and a subinterval ⟨a⟩ ⊂ I
corresponds to each a ∈ A.

Example; β–transformation (d = 1, β > 1)

F (x) =

{
βx x ∈ [0, 1

β ),

βx − 1 x ∈ [ 1β , 1].

⟨0⟩ = [0, 1
β ), ⟨1⟩ = [ 1β , 1] and A = {0, 1}.



Words

For a finite sequence of symbols a1 · · · an (ai ∈ A) is called a word
and define

I |w | = n,

I ⟨w⟩ =
∩n−1

k=0 F
−k⟨ak+1⟩,

I if ⟨w⟩ ̸= ∅, then w is called admissible, and W expresses the
set of admissible words,

I we consider an empty word ϵ, and define ⟨ϵ⟩ = I .



van der Corput Sequence

For a word w and a point x ∈ I , we define wx such that
F |w |(wx) = x if it exists,
We give an order to the alphabet A, and we define for words
w = a1 · · · an and w ′ = b1 · · · bm, we define wx < w ′x , if both
points exist,

1. |w | < |w ′|,
2. |w | = |w ′| and there exists k such that

ak+1 · · · an = bk+1 · · · bn, and ak < bk .

We arrange all wx (w ∈ W) in the above order, and we call this
sequence the van der Corput sequence generated by the dynamical
system.



Original van der Corput sequence

Let F (x) = 2x (mod 1), and A = {0, 1}. Then

x , 0x , 1x , 00x , 10x , 01x , 11x , 000x , 100x , 010x , 110x , 001x , 101x , 010x , . . .

is our van der Corput sequence. The original sequence is x = 1
2 ,

and their binary expansions of points are

0.1, 0.01, 0.11, 0.001, 0.101, 0.011, 0.111, 0.0001, 0.1001, 0.0101, 0.1101, . . . ,

which is the reversed sequence of

1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1100, . . . ,

and add 0.



Perron–Frobenius operator

For a transformation F : I → I ,we define the Perron–Frobenius
operator by

Pf (x) =
∑

y : F (y)=x

f (y) |DF (y)|−1

=
∑
a∈A

f (ax) |DF (ax)|−1.

P is an operator on L1, but, in 1–dimensional cases, we restrict it
to the set of functions with bounded variation BV .



essential spectrum

1–dimensional cases: β = eξ.

1
β

1



spectra of the Perron–Frobenius operator

I 1 is an eigenvalue and the dimension of eigenspace equals the
number of ergodic components,

I If 1 is simple eigenvalue, then its eigenfuntion corresponds to
the density function dµ

dx of the dynamical system,

I If there exists no eigenvalues modulus 1 except 1, then the
dynamical system is mixing,

I the second greatest eigenvalue expresses the decay rate of
correlation:∫

f (x) g(F nx) dx →
∫

f (x) dx

∫
g dµ, (f ∈ BV , g ∈ L∞)



Markov cases
Let β = 1+

√
5

2 and

F (x) = βx (mod 1),

⟨0⟩ = [0, 1
β ),⟨1⟩ = [ 1β , 1], and A = {0, 1}.

sa(z , x) = (I − zP)−11⟨a⟩(x) =
∞∑
n=0

znPn1⟨a⟩(x) (a ∈ A)

Then

s0(z , x) = 1⟨0⟩(x) + z
∞∑
n=0

znPn(
∑
a∈A

1⟨0⟩(ax)β
−1)

= 1⟨0⟩(x) + zβ−1(s0(z , x) + s1(z , x))

s1(z , x) = 1⟨1⟩(x) + z
∞∑
n=0

znPn(
∑
a∈A

1⟨1⟩(ax)β
−1)

= 1⟨1⟩(x) + zβ−1s0(z , x)



Renewal equation

Let

Φ(z) =

(
zβ−1 zβ−1

zβ−1 0

)
.

Then (
s0(z , x)
s1(z , x)

)
=

(
1⟨0⟩(x)
1⟨1⟩(x)

)
+Φ(z)

(
s0(z , x)
s1(z , x)

)
= (I − Φ(z))−1

(
1⟨0⟩(x)
1⟨1⟩(x)

)
.

Moreover, we get

ζ(z) =
1

det(I − Φ(z))
.



Theorem

We can generalize the above results to general piecewise linear
cases, and get

Theorem. The reciprocals of the solutions of det(I − Φ(z)) = 0
is the eigenvalues in {z : |z | > e−ξ}.

Even for higher dimensional cases, we can prove similar results.



Spectra and Discrepancy

When |DF | = β (constant), then

Pnf (x) = β−n
∑
|w |=n

f (wx).

Thus for an indicator function 1J ,

Pn1J(x) = β−n ×#{wx ∈ J}.

Thus by the spectra of the Perron–Frobenius operator determine
the discrepancy of the van der Corput sequences.



1–dimensional cases

Assume that det(I − Φ(z)) = 0 has no solution in the annulus
{ 1
β < |z | ≤ 1} except 1, then the discrepancy of the van der

Corput sequence equals

(logN)k+1

N

where k is the number of endpoints which is not Markov.



higher dimension

For a function f ∈ L1 and 0 < r < 1, we define a norm

||f ||r = inf
∞∑
n=1

∑
|w |=n

|Cw |rn,

where inf is taken over all decomposition f =
∑

Cw1⟨w⟩.
We define a space B the set of functions f for which ||f ||r < ∞ for
any 0 < r < 1.
In 1–dimensional case, this space is a slight extension of the set of
functions with bounded variation.



Prime Field

Now we consider the prime field F2 of characteristic 2, and the
irreducible polynomial

β2 + β + 1 = 0 over F2.

Â is an additive group generated by 1 and β. We identify 0 to
(0, 0), 1 to (1, 0) and β to (0, 1). then γ = 1+ β = β2 is identified
with (1, 1).



Another type of Words
We also consider a set of words with this alphabet, and denote it
by W.

⟨0⟩ = ⟨0⟩ × ⟨0⟩ ⟨1⟩ = ⟨1⟩ × ⟨0⟩

⟨β⟩ = ⟨0⟩ × ⟨1⟩ ⟨γ⟩ = ⟨1⟩ × ⟨1⟩



Matrix U

To determine F , we introduce an infinite dimensional matrix U of
the form U = (u, 0u, 00u, 03u, . . .), where u is an infinite
dimensional vector and the transpose of the vector 0ku is given by

u =

u1
u2
...

 , 0ku =



0
...
0
u1
u2
...


.

U =


u1 0 0 · · ·
u2 u1 0 · · ·
u3 u2 u1 · · ·
...

...
...

. . .

 .



Let U−1FU be a shift operator, that is,

U−1FU =


0 1 0 0 · · ·
0 0 1 0 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .

 .

We will determine the components of u inductively. To make the
notations simple, even when we restrict U and F̂ and so on to
finite dimensions, we use the same notations. Note that

0ℓu
U−1

−→ eℓ
U−1F kU−→ eℓ−k

U−→ 0ℓ−ku,

where for ℓ < k, 0k−ℓu is the zero vector.



Kernel

Thus the kernel of F k is generated by u, 0u, . . . , 0k−1u. When we
consider F k , we restrict the vector space to 2k dimension, thus we
need to construct vector u such that all the 2k dimensional vectors
which belong to the restriction of the subspace generated by
u, 0u, . . . , 0k−1u contain both 1 and β. Note also for any vector x
F k(0kx) = x .



Definition of u

When k = 1, we put (
u1
u2

)
=

(
1
β

)
.

Thus the kernel of F from Â2 to Â are(
0
0

)
,

(
1
β

)
,

(
β
γ

)
,

(
γ
1

)
,

and they contain both 1 and β.



Kernel, length=2



We can continue the procedure and get

u =


1
β
0
β
...

 ,

and the kernel F 2 are 16 vectors generated by
1
β
0
β

 ,


0
1
β
0

 .



Kernel, length=4



We can continue the procedure and get

u =



1
β
0
β
0
0
0
β
...


.



Matrix U

U =



1 0 0 0 · · ·
β 1 0 0 · · ·
0 β 1 0 · · ·
β 0 β 1 · · ·
0 β 0 β · · ·
0 0 β 0 · · ·
0 0 0 β · · ·
β 0 0 0 · · ·
...

...
...

...
. . .


.



From this theorem, we can prove all the indicator functions of
rectangular belong to B, that is, the space B is rich enough.
Moreover, we can calculate the spectra of the Perron–Frobenius
operator restricted to this space, and get the essential spectrum
radius equals 1

4 , and there exists no eigenvalues in |z | > 1
4 except 1

which is simple. Therefore, the dynamical system is mixing and the
decay rate of correlation equals 1

4 .



rectangular



1st approximation



2nd approximation



3rd approximation



Number of rectangles

There exists two types of rectangles:

I first type(strip) generates one first type.

I second type(rectangle) generates two first types and one
second type.

Let

M =

(
1 0
2 1

)
.

Then the number of rectangles in n–th approximation is at most
of order

Mn ∼ n.

This shows the indicator function of any rectangle belongs to B.



3–dimensional transformation

For three dimensional cases, we consider

β3 + β + 1 = 0.

In 2–dimensional case, we can determine a matrix U by one vector
u. However, in 3–dimensional cases, U = (uij) has a fractal
structure.
We consider

W3 = {w = (w1,w2,w3) : w1,w2,w3 ∈ W1, |wi | = 0 (mod 3)},

and define |w | = |w1|+|w2|+|w3|
3 .

We want to construct F such that for all w ∈ W3

F |w | : ⟨w⟩ → I

is 1 to 1 and onto.



Let

A =

 1
β
β2

 , B =

 1
β2

β4

 , C =

 1
β4

β8

 .

Then a matrix (ABC ) has inverse

X
Y
Z

,where

X = (1, β2, β), Y = (1, β + β2, β2), Z = (1, β, β + β2).



We define U as



Rule to determine U

ũij =

{
ũi−1,j−1 + ũi .j−1 (mod 2) j = 0, 2 (mod 3),

ũi−1,j−1 j = 1 (mod 3).







Then its inverse can be expressed as



Rule to determine inverse matrix

ṽij =

{
ṽi−1,j + ṽi .j+1 (mod 2) j = 0, 2 (mod 3),

ṽi−1,j−1 j = 1 (mod 3).







Kernel, F 2 : {1}3 → A



Kernel, F 3 : {1}3 → A



Kernel, F : {1, β}2 → A2



As in 2 dimensional case, there exists 3 types of cubes.

I first type (face) generates one first type.

I second type(stick) generates 2 first types and one second type.

I third type(cube) generates 3 first types, 3 second types and
one third type.

Let

M =

1 0 0
2 1 0
3 3 1

 .

Thus, the number of cubes to approximate any cube, its order is

Mn ∼ n2.

This shows any indicator of any cube belongs to B.



Cantor carpet



A is generated by 1 and β mod 3

0−1 1

−1− β −β 1− β

−1 + β β 1 + β



First we construct U from F (x) = 3x (mod 1) just in the same
way as before with the irreducible polynomial

β2 + 1 = 0 on F3.

The essential spectrum radius of this dynamical system equals 9−1,
and we can construct low discrepancy sequences.

We want to remake this transformation to the dynamical system
on the cantor carpet.



We denote by ν the Hausdorff measure on the cantor carpet. Then
the Perron–Frobenius operator defined by∫

Pf (x) g(x) dν =

∫
f (x) g(F (x)) dν

satisfies
Pf (x) =

∑
a∈A

f (ax) 8−1.



Construction of F̂ n : C → C
Let A0 = A\{0}. For a m–dimensional vector u ∈ Am

0 (m > n),
we consider (Fm)

n(u) ∈ Am−n. Then

I if (Fm)
n(u) ∈ Am−n

0 , then u′ = u.

I Otherwise, let i be the smallest i such that ((Fm)
n(u))i = 0,

then

u1j =

{
uj j ̸= n + i ,

0 j = n + i ,

and if (Fm)
n(u1) ∈ Am−n

0 , we define u′ = u1.

I We have made uk but still (Fm)
n(uk) ̸∈ Am−n

0 , we again do
the same procedure as above, and define uk+1, and if
(Fm)

n(uk+1) ∈ Am−n
0 , we define u′ = uk+1. Otherwise, we

continue the same procedure.

Now for a1a2 · · · (ai ∈ A0), we define

F̂ n(a1a2 · · · ) = lim
m→∞

(Fm)
n(a1 · · · am) = lim

m→∞
(Fm)

n((a1 · · · am)′).



F and F̂ on ⟨β⟩
(
1
β

)(
β
a

)
= β + a · β.

F F̂

1 1 + β 1− β

0 β −β

-1 −1 + β −1− β

1 1 + β 1− β

β undefined −β

-1 −1 + β −1− β



From the construction, for a square ⟨w⟩ corresponding to a word
with length n F̂ n maps ⟨w⟩ to I one to one and onto.
For J = ⟨w1⟩ × ⟨w2⟩ such that |w1| = k and |w2| = −k + 2n, we
consider squares inside J with length k . There exists 2n − 2k such
words, and F n(J) = I .
We divide it into two types

I w ∈ AJ , if w has no zero, and w ∈ Ai
J if the number of 0 in

F k+n(⟨w⟩) equals i .
I w ∈ BJ , if there exists 0 in w , and w ∈ B l ,m

J if the number of
0 in w equals l and the number of 0 in F k+n(⟨w⟩) equals m.



The worst case:J(a word with length n) consists words only of type
AJ . Then

sJ(z , x) =
∞∑

m=0

zmPF̂m1J(x)

=
∞∑

m=0

zm
∑

|w |=m

1J(wx)8
−m

=
∞∑

m=0

zm
n∑

k=0

∑
w∈Ak

J

1J(wx)8
−m

=
n∑

k=0

n+k−1∑
m=0

zm
∑
w∈Ak

J

1J(wx)8
−m

+
n∑

k=0

∞∑
m=n+k−1

zm
∑
w∈Ak

J

1J(wx)8
−m.



Second Term

The Second Term = zn8−n
n∑

k=0

zk8−k

(
n
k

)
s I (z , x).

= zn8−n(1 + z8−1)ns I (z , x).

Especially,

s I (z , x) = 1 + z8−1 × 8s I (z , x) = 1 + zs I (z , x).

Thus for a rectangular J with length n, the main term equals

sJ(z , x) = zn8−n(1 + z8−1)n
1

1− z
.



∞∑
n=0

zn8−n(1 + z8−1)n × n

has the minimal singularity at −1+
√
5

2 × 8 < 8. Thus the
discrepancy of the random number generated by this dynamical
system is not of low discrepancy.



Triangle



Words with Length 2



A =

{(
1
1

)
,

(
1
0

)
,

(
1
β

)
,

(
0
γ

)
,

(
β
1

)
,

(
β
0

)
,

(
β
β

)
,

(
γ
0

)}
A′ =

{(
1
γ

)
,

(
0
β

)
,

(
0
0

)
,

(
0
1

)
,

(
β
γ

)
,

(
γ
β

)
,

(
γ
0

)
,

(
γ
1

)}
B ′ =

{(
1
1

)
,

(
1
0

)
,

(
1
γ

)
,

(
0
β

)
,

(
γ
1

)
,

(
γ
0

)
,

(
γ
γ

)
,

(
β
β

)}
B =

{(
1
β

)
,

(
0
γ

)
,

(
0
0

)
,

(
0
1

)
,

(
γ
β

)
,

(
β
γ

)
,

(
β
0

)
,

(
β
1

)}
C =

{(
β
β

)
,

(
β
0

)
,

(
β
γ

)
,

(
0
1

)
,

(
γ
β

)
,

(
γ
0

)
,

(
γ
γ

)
,

(
1
1

)}
C ′ =

{(
β
1

)
,

(
0
γ

)
,

(
0
0

)
,

(
0
β

)
,

(
γ
1

)
,

(
1
γ

)
,

(
1
0

)
,

(
1
β

)}



ABC =

{(
β
0

)}
AB ′C ′ =

{(
1
0

)}
A′BC ′ =

{(
0
0

)}
A′B ′C =

{(
γ
0

)}
A′B ′C ′ =

{(
γ
1

)
,

(
0
β

)
,

(
1
γ

)}
A′BC =

{(
0
1

)
,

(
γ
β

)
,

(
β
γ

)}
AB ′C =

{(
1
1

)
,

(
β
β

)
,

(
γ,
γ

)}
ABC ′ =

{(
β
1

)
,

(
1
β

)
,

(
0
γ

)}



AB =

{(
β
0

)
,

(
β
1

)
,

(
1
β

)
,

(
0
γ

)}
AB ′ =

{(
1
0

)
,

(
1
1

)
,

(
β
β

)
,

(
γ
γ

)}
A′B =

{(
0
0

)
,

(
0
1

)
,

(
γ
β

)
,

(
β
γ

)}
A′B ′ =

{(
γ
0

)
,

(
γ
1

)
,

(
0
β

)
,

(
1
γ

)}












