Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

.....

Generalize

Carries Process

Diffic Chrift

(-b) - cas

Application

Summar

Generalized carry process and riffle shuffle

Fumihiko NAKANO¹ Taizo SADAHIRO²

¹Gakushuin University

²Tsuda College

11/03/2016

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

Amazing

Matrix

Generaliz Carries

Diffic Class

(-b) - cas

Application

Summar

Carries in addition

Adding $\underline{2}$ numbers with randomly chosen digits,

Fumihiko NAKANO, Taizo **SADAHIRO**

Introduction

Carries in addition

Adding 2 numbers with randomly chosen digits,

01111	00001	00000	01101	11111	00000	1100
71578	52010	72216	15692	99689	80452	46312
20946	60874	82351	32516	23823	30046	06870
92525	12885	54567	48209	20513	10498	53182

0 and 1 seem to appear at equal rate.

Fumihiko NAKANO, Taizo **SADAHIRO**

Introduction

Carries in addition

Adding 2 numbers with randomly chosen digits,

01111	00001	00000	01101	11111	00000	1100
71578	52010	72216	15692	99689	80452	46312
20946	60874	82351	32516	23823	30046	06870
92525	12885	54567	48209	20513	10498	53182

0 and 1 seem to appear at equal rate. Adding 3 numbers,

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

Generalize Carries

Riffle Shuffle

/ ->

(-b) - case

Аррисаці

Carries in addition

Adding 2 numbers with randomly chosen digits,

01111	00001	00000	01101	11111	00000	1100
71578	52010	72216	15692	99689	80452	46312
20946	60874	82351	32516	23823	30046	06870
92525	12885	54567	48209	20513	10498	53182

0 and 1 seem to appear at equal rate. Adding 3 numbers,

10111	10210	11102	11122	01011	11210	2112
43443	07082	04401	15299	64642	73497	38426
00171	55077	11440	95932	91116	17255	19649
49339	70267	68885	98147	70311	43856	37376
92954	32426	84728	09380	26070	34608	95451

then 1 seems to appear frequently. ($\sharp 0:\sharp 1:\sharp 2=7:20:7$),

Matrix

Generaliz Carries

D:m - Cl---

(-b) - cas

Application

Summary

Transition Probability 1

$$P_{ij} := \mathbf{P}(C_{k+1} = j \mid C_k = i), \quad i, j \in \{0, 1, \dots, n-1\}$$

Transition Probability 1

$$P_{ij} := \mathbf{P}(C_{k+1} = j \mid C_k = i), \quad i, j \in \{0, 1, \dots, n-1\}$$

Example 1 (
$$b = 2, n = 2$$
)

Fumihiko Taizo

NAKANO, **SADAHIRO**

Introduction

Transition Probability 1

$$P_{ij} := \mathbf{P}(C_{k+1} = j \mid C_k = i), \quad i, j \in \{0, 1, \dots, n-1\}$$

Example 1 (b = 2, n = 2)

$$\begin{array}{ccc}
 & 1 \\
 & 1 \\
\hline
 & 0
\end{array}
\implies (P_{0,0}, P_{0,1}) = \frac{1}{2^2} (3,1)$$

For
$$b = 2, n = 2$$

$$P = \frac{1}{2^2} \left(\begin{array}{cc} 3 & 1 \\ 1 & 3 \end{array} \right) \quad \Longrightarrow \quad \text{Stationary dist. } \pi = \left(\frac{1}{2}, \frac{1}{2} \right)$$

Amazing

Generalize Carries

Riffle Shufl

(-b) - cas

Application

Summar

Transition Probability 2

Example 2 (
$$b = 2, n = 3$$
)

Summary

Transition Probability 2

Example 2 (b = 2, n = 3)

0 0	0 0	1 0	1 0
0	1	1	1
0	0	1	1
0	0	0	1
0		0	1

$$\implies (P_{0,0}, P_{0,1}, P_{0,2}) = \frac{1}{2^3} \cdot (4, 4, 0)$$

Summar

Transition Probability 2

Example 2 (b = 2, n = 3)

$$\implies (P_{0,0}, P_{0,1}, P_{0,2}) = \frac{1}{2^3} \cdot (4, 4, 0)$$

For
$$b=2, n=3$$

$$P = \frac{1}{2^3} \begin{pmatrix} 4 & 4 & 0 \\ 1 & 6 & 1 \\ 0 & 4 & 4 \end{pmatrix} \implies \pi = \frac{1}{3!} \cdot (1, 4, 1)$$

Amazing

Generalize Carries

Process

Kiffle Shuff

(-b) - cas

Application

Summar

Carries Process

Add n base- b numbers $(b, n \in \mathbb{N}, b, n \ge 2)$

(-b) - case

Application

Summan

Carries Process

Add n base- b numbers $(b, n \in \mathbb{N}, b, n \ge 2)$

 C_k : the carry coming out in the k-th digit.

Process

Riffle Shuff

(-b) - cas

Applicatio

Summa

Carries Process

Add n base- b numbers $(b, n \in \mathbb{N}, b, n \ge 2)$

 C_k : the carry coming out in the k-th digit.

Choose $X_{j,k}$ uniformly at random from $\{0,1,\cdots,b-1\}$. In the k-th digit, C_k is determined by

Summa

Carries Process

Add n base- b numbers $(b, n \in \mathbb{N}, b, n \ge 2)$

 C_k : the carry coming out in the k-th digit.

Choose $X_{j,k}$ uniformly at random from $\{0,1,\cdots,b-1\}$. In the k-th digit, C_k is determined by

$$C_{k-1} + X_{1,k} + \dots + X_{n,k} = C_k b + S_k \ (0 \le S_k \le b - 1)$$

Generaliza

Process

Riffle Shuff

(-b) - cas

Applicatio

Summa

Carries Process

Add n base- b numbers $(b, n \in \mathbb{N}, b, n \ge 2)$

 C_k : the carry coming out in the k-th digit.

Choose $X_{j,k}$ uniformly at random from $\{0,1,\cdots,b-1\}$. In the k-th digit, C_k is determined by

$$C_{k-1} + X_{1,k} + \dots + X_{n,k} = \frac{C_k b}{b} + S_k \ (0 \le S_k \le b - 1)$$

 $\{C_k\}_{k=0}^{\infty}$ $(C_k \in \{0, \cdots, n-1\})$ is called the **carries process**.

Amazing Matrix: Holte(1997)

$$P_{ij} := \mathbf{P} \left(C_{k+1} = j \mid C_k = i \right), \quad i, j = \underline{0}, 1, \dots, n-1$$

$$P_{ij} = b^{-n} \sum_{r=0}^{\lfloor z/b \rfloor} (-1)^r \binom{n+1}{r} \binom{n+2ij-br}{n}$$

$$z_{ij} := (j+1)b - i - 1$$

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Amazing Matrix

Generalized

(-b) - case

Application

_

Amazing Matrix: Holte(1997)

$$P_{ij} := \mathbf{P} \left(C_{k+1} = j \mid C_k = i \right), \quad i, j = \underline{0}, 1, \dots, n-1$$

$$P_{ij} = b^{-n} \sum_{r=0}^{\lfloor z/b \rfloor} (-1)^r \binom{n+1}{r} \binom{n+2ij-br}{n}$$

$$z_{ij} := (j+1)b - i - 1$$

- E-values and left E-vectors of Amazing Matrix

E-values/ E-vectors depends only on b / n.

$$P=L^{-1}DL,\quad D=\ \mathrm{diag}\ \left(1,\frac{1}{b},\frac{1}{b^2},\cdots,\frac{1}{b^{n-1}}\right)$$

$$L_{ij} = v_{ij}(n) = \sum_{n=0}^{j} (-1)^r \binom{n+1}{r} (j-r+1)^{n-i}$$

Generalize Carries Process

Riffle Shuf

(-b) - cas

Application

Summary

Property of Left Eigenvectors

$$[1] \quad L = \left(\begin{array}{c} \text{(n-th Eulerian num.)} \\ \vdots \\ (-1)^j \big((n-1) \text{-th Pascal num.} \big) \end{array}\right)$$

(-b) - cas

Application

Summary

Property of Left Eigenvectors

[1]
$$L = \begin{pmatrix} (n-\text{th Eulerian num.}) \\ \vdots \\ (-1)^j ((n-1)-\text{th Pascal num.}) \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 4 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 11 & 11 & 1 \\ 1 & 3 & -3 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -3 & 3 & -1 \end{pmatrix}$$

(-b) - case

Application

Summai

Property of Left Eigenvectors

[1]
$$L = \begin{pmatrix} (n-\text{th Eulerian num.}) \\ \vdots \\ (-1)^{j}((n-1)-\text{th Pascal num.}) \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 4 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 11 & 11 & 1 \\ 1 & 3 & -3 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix}$$

 $E(n,k):=\sharp\{\ \sigma\in S_n\ \text{with}\ k\text{-descents}\ \}:\ n\text{-th}\ \text{Eulerian num}.$

$$(-b)$$
 - case

Applicatior

Summai

Property of Left Eigenvectors

$$[1] \quad L = \begin{pmatrix} & \text{(n-th Eulerian num.)} \\ & \vdots \\ & (-1)^j \big((n-1) \text{-th Pascal num.)} \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 4 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 11 & 11 & 1 \\ 1 & 3 & -3 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix}$$

$$E(n,k) := \sharp \{ \sigma \in S_n \text{ with } k\text{-descents } \} : n\text{-th Eulerian num}.$$

$$E(3,0) = \sharp\{(123)\} = 1,$$

 $E(3,1) = \sharp\{(1\underline{32}), (\underline{31}2), (2\underline{31}), (\underline{21}3)\} = 4,$
 $E(3,2) = \sharp\{(321)\} = 1.$

Fumihiko NAKANO, Taizo SADAHIRO

Amazina

Amazing Matrix

Generalize Carries

Riffle Shuffle

(-b) - case

Application

Summar

Property of Left Eigenvectors

[1]
$$L = \begin{pmatrix} (n-\text{th Eulerian num.}) \\ \vdots \\ (-1)^{j}((n-1)-\text{th Pascal num.}) \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 4 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 11 & 11 & 1 \\ 1 & 3 & -3 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix}$$

 $E(n,k):=\sharp\{\ \sigma\in S_n\ \text{with}\ k\text{-descents}\ \}:\ n\text{-th}\ \text{Eulerian num}.$

$$E(3,0) = \sharp\{(123)\} = 1,$$

 $E(3,1) = \sharp\{(1\underline{32}), (\underline{312}), (2\underline{31}), (\underline{213})\} = 4,$
 $E(3,2) = \sharp\{(321)\} = 1.$

[2] L is equal to the <u>Foulkes character table</u> of S_n (Diaconis-Fulman, 2012).

Generalize Carries

Diffic Class

(-b) - cas

Application

Summai

Foulkes character

Example

$$\sharp \{ \sigma \in S_4 \mid \sigma(1) < \sigma(2) > \sigma(3) < \sigma(4) \}$$

= \{ (1324), (1423), (2314), (2413), (3412) \} = 5

Application

Summa

Foulkes character

Example

$$\sharp \{ \sigma \in S_4 \mid \sigma(1) < \sigma(2) > \sigma(3) < \sigma(4) \}$$

= \{ (1324), (1423), (2314), (2413), (3412) \} = 5

$$+-+$$
 \Longrightarrow $\stackrel{+}{+}$ \Longrightarrow $\stackrel{\lceil}{\stackrel{-}{+}}$ $\stackrel{+}{\times}$

(-b) - cas

Application

Summa

Foulkes character

Example

$$\sharp \{ \sigma \in S_4 \mid \sigma(1) < \sigma(2) > \sigma(3) < \sigma(4) \}$$

= \{ (1324), (1423), (2314), (2413), (3412) \} = 5

$$+-+ \implies +\times \implies +\times +-$$

$$\stackrel{LR}{\simeq}$$
 \bigoplus \bigoplus

$$\dim = 3$$
 $\dim = 2$

Riffle Shuf

(-b) - cas

Application

Summan

Property of Right Eigenvectors

Right Eigenvector of P

$$P = RDR^{-1}$$

$$R_{ij} = \sum_{r=n-j}^{n} (-1)^{n-r} \begin{bmatrix} n \\ r \end{bmatrix} \begin{pmatrix} r \\ n-j \end{pmatrix} (n-1-i)^{r-(n-j)}$$

Summai

Property of Right Eigenvectors

Right Eigenvector of P

$$P = RDR^{-1}$$

$$R_{ij} = \sum_{r=n-j}^{n} (-1)^{n-r} \begin{bmatrix} n \\ r \end{bmatrix} \begin{pmatrix} r \\ n-j \end{pmatrix} (n-1-i)^{r-(n-j)}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad \begin{pmatrix} 1 & 3 & 2 \\ 1 & 0 & -1 \\ 1 & -3 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 6 & 11 & 6 \\ 1 & 2 & -1 & -2 \\ 1 & -2 & -1 & 2 \\ 1 & -6 & 11 & -6 \end{pmatrix}$$

Fumihiko NAKANO, Taizo SADAHIRO

Introducti

Amazing Matrix

Generalize Carries

Riffle Shuff

(-b) - cas

Application

Summar

Property of Right Eigenvectors

Right Eigenvector of P

$$P = RDR^{-1}$$

$$R_{ij} = \sum_{r=n-j}^{n} (-1)^{n-r} \begin{bmatrix} n \\ r \end{bmatrix} \begin{pmatrix} r \\ n-j \end{pmatrix} (n-1-i)^{r-(n-j)}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad \begin{pmatrix} 1 & 3 & 2 \\ 1 & 0 & -1 \\ 1 & -3 & 2 \end{pmatrix} \quad \begin{pmatrix} 1 & 6 & 11 & 6 \\ 1 & 2 & -1 & -2 \\ 1 & -2 & -1 & 2 \\ 1 & -6 & 11 & -6 \end{pmatrix}$$

$$R(0,n-1-j)=S(n,j)$$

 $S(n,j):=\sharp\{\sigma\in S_n \text{ with } j\text{-cycles }\}$ Stirling num. of 1st kind

Fumihiko NAKANO, Taizo SADAHIRO

IIIIIOddctio

Amazing Matrix

Generalize Carries

Process

Killie Siluli

(-b) - cas

Application

Summar

Riffle Shuffle

Let $\{\sigma_1, \sigma_2, \cdots\}$ $(\sigma_0 = id)$, be the Markov chain on S_n induced by the repeated <u>b-riffle shuffles</u> on n-cards.

Summai

Riffle Shuffle

Let $\{\sigma_1, \sigma_2, \cdots\}$ $(\sigma_0 = id)$, be the Markov chain on S_n induced by the repeated <u>b-riffle shuffles</u> on n-cards.

Relation to Riffle Shuffles (Diaconis-Fulman, 2009)

$$\{C_k\}_{k=1}^{\infty} \stackrel{d}{=} \{d(\sigma_k)\}_{k=1}^{\infty}, \quad \frac{d(\sigma)}{}: \text{ the descent of } \sigma \in S_n.$$

In other words,

$$\mathbf{P}(C_1 = j_1, C_2 = j_2, \cdots, C_k = j_k \mid C_0 = 0)$$

= $\mathbf{P}(d(\sigma_1) = j_1, d(\sigma_2) = j_2, \cdots, d(\sigma_k) = j_k \mid \sigma_0 = id)$.

(-b) - cas

Application

Riffle Shuffle

Let $\{\sigma_1, \sigma_2, \cdots\}$ $(\sigma_0 = id)$, be the Markov chain on S_n induced by the repeated <u>b-riffle shuffles</u> on n-cards.

Relation to Riffle Shuffles (Diaconis-Fulman, 2009)

$$\{C_k\}_{k=1}^{\infty} \stackrel{d}{=} \{d(\sigma_k)\}_{k=1}^{\infty}, \quad \frac{d(\sigma)}{}: \text{ the descent of } \sigma \in S_n.$$

In other words,

$$\mathbf{P}(C_1 = j_1, C_2 = j_2, \cdots, C_k = j_k \mid C_0 = 0)$$

= $\mathbf{P}(d(\sigma_1) = j_1, d(\sigma_2) = j_2, \cdots, d(\sigma_k) = j_k \mid \sigma_0 = id)$.

Since the stationary dist. of $\{\sigma_k\}$ is uniform on S_n ,

$$P_{0j} = \mathbf{P}_{unif}(d(\sigma) = j) \propto E(n, j),$$

explaining why Eulerian num. appears.

Fumihiko NAKANO, Taizo SADAHIRO

Introductio

Amazing

Matrix
Generaliz
Carries

riocess

(-0) - cas

Application

Summary

Summary on Known Results

Amazing Matrix (the transition probability matrix P of the carries process) has the following properties.

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

Amazing

Matrix
Generalized

Dim Class

(-b) - cas

Application

Summar

Summary on Known Results

Amazing Matrix (the transition probability matrix P of the carries process) has the following properties.

(0) E-values depend only on \emph{b} , and E-vectors depend only on \emph{n}

Riffle Shuffle

(-b) - cas

Application

Summar

Summary on Known Results

Amazing Matrix (the transition probability matrix P of the carries process) has the following properties.

- (0) E-values depend only on \emph{b} , and E-vectors depend only on \emph{n}
- (1) Eulerian num. appears in the stationary distribution.

Summa

Summary on Known Results

Amazing Matrix (the transition probability matrix P of the carries process) has the following properties.

- (0) E-values depend only on b, and E-vectors depend only on n
- (1) Eulerian num. appears in the stationary distribution.
- (2) Left eigenvector matrix L equals to the Foulkes character table of S_n .

Summary on Known Results

Amazing Matrix (the transition probability matrix P of the carries process) has the following properties.

- (0) E-values depend only on \it{b} , and E-vectors depend only on \it{n}
- (1) Eulerian num. appears in the stationary distribution.
- (2) Left eigenvector matrix L equals to the Foulkes character table of S_n .
- (3) Stirling num. of 1st kind appears in the right eigenvector matrix R.

(-b) - case

Applicatio

Summary on Known Results

Amazing Matrix (the transition probability matrix P of the carries process) has the following properties.

- (0) E-values depend only on $\it b$, and E-vectors depend only on $\it n$
- (1) Eulerian num. appears in the stationary distribution.
- (2) Left eigenvector matrix L equals to the Foulkes character table of S_n .
- (3) Stirling num. of 1st kind appears in the right eigenvector matrix R.
- (4) carries process has the same distribution to the descent process of the riffle shuffle.

Generaliz

Process

Killie Silui

(-b) - cas

Application

Summary

Our aim

We generalize the previous results by

Summa

Our aim

We generalize the previous results by

(1) taking the different digit set

$$\mathcal{D}_0 = \{0, 1, \cdots, b-1\} \quad \Longrightarrow \quad \mathcal{D}_d := \{\mathbf{d}, d+1, \cdots, d+b-1\}$$

(-b) - cas

Applicatio

Summa

Our aim

We generalize the previous results by

(1) taking the different digit set

$$\mathcal{D}_0 = \{0, 1, \dots, b-1\} \implies \mathcal{D}_d := \{d, d+1, \dots, d+b-1\}$$

and / or

(2) taking the negative base

$$b \implies -b$$

Summa

Generalized (+b)-expansion

Take the digit set as follows.

$$\mathcal{D}_{d} := \{d, d+1, \cdots, d+b-1\} \quad \text{(digit set)}$$

$$d \le 0, \quad d+b-1 \ge 0 \quad \text{(so that } 0 \in \mathcal{D}_{d}\text{)}$$

Holte's case corresponds to d = 0.

Summa

Generalized (+b)-expansion

Take the digit set as follows.

$$\mathcal{D}_{d} := \{d, d+1, \cdots, d+b-1\} \quad \text{(digit set)}$$
$$d \le 0, \quad d+b-1 \ge 0 \quad \text{(so that } 0 \in \mathcal{D}_{d}\text{)}$$

Holte's case corresponds to d = 0.

Then $\forall x \in \mathbf{N}$ can be represented uniquely as

$$x = a_n(+b)^n + a_{n-1}(+b)^{n-1} + \dots + a_0, \quad a_k \in \mathcal{D}_d$$

Generalized Carries

Carries Process

Riffle Shuff

(-b) - cas

Application

Summar

A Generalized Carry Process

 $\label{eq:Add} \mbox{Add } n \mbox{ base-} b \mbox{ numbers in the representation above}.$

Application

Summan

A Generalized Carry Process

Add n base-b numbers in the representation above.

 $\mathbf{C_k}$: the carry coming out in the k-th digit.

Carry	C_k	C_{k-1}	 C_1	$C_0 = 0$
Addends		$X_{1,k}$	 $X_{1,2}$	$X_{1,1}$
		÷	:	:
		$X_{n,k}$	 $X_{n,2}$	$X_{n,1}$
Sum		S_k	 S_2	S_1

miroductic

Amazing

Generalized Carries Process

Riffle Shuff

(-b) - cas

Application

Summar

A Generalized Carry Process

Add n base-b numbers in the representation above.

 C_k : the carry coming out in the k-th digit.

Choose $X_{j,k}$ uniformly at random from \mathcal{D}_d . In the k-th digit,

Riffle Shufl

(-b) - cas

Application

Summar

A Generalized Carry Process

Add n base-b numbers in the representation above.

 C_k : the carry coming out in the k-th digit.

Choose $X_{j,k}$ uniformly at random from \mathcal{D}_d . In the k-th digit,

$$C_{k-1} + X_{1,k} + \dots + X_{n,k} = \frac{C_k b}{b} + S_k, \ S_k \in \frac{D_d}{b}$$

(-b) - cas

Application

Summan

A Generalized Carry Process

Add n base-b numbers in the representation above.

 C_k : the carry coming out in the k-th digit.

Choose $X_{j,k}$ uniformly at random from \mathcal{D}_d . In the k-th digit,

$$C_{k-1} + X_{1,k} + \dots + X_{n,k} = C_k b + S_k, S_k \in \mathcal{D}_d$$

 $\{C_k\}$ $(C_k \in \mathcal{C}(b, n))$ is called a **(generalized) Carries Process**.

Carry set

(1) Let

$$\frac{l_+}{b-1} := \frac{d}{b-1} \le 0.$$

Carry set

Carry set

$$l_{+} := \frac{d}{b-1} \le 0.$$

Then the carry set C(b, n) is equal to

$$\mathcal{C}(b,n) = \{s, s+1, \cdots, t\}$$

$$\mathbf{s} := \lfloor (n-1)l_+ \rfloor, \quad t := \lceil (n-1)(l_++1) \rceil$$

Summa

Carry set

Carry set

(1) Let

$$l_{+} := \frac{d}{b-1} \le 0.$$

Then the carry set C(b, n) is equal to

$$\mathcal{C}(b,n) = \{s, s+1, \cdots, t\}$$

$$\mathbf{s} := \lfloor (n-1)l_+ \rfloor, \quad t := \lceil (n-1)(l_++1) \rceil$$

(2)
$$\sharp \mathcal{C}(b,n) = \begin{cases} n & (n-1)l_+ \in \mathbf{Z} \quad (\supset \text{ Holte's case }) \\ n+1 & (n-1)l_+ \notin \mathbf{Z} \end{cases}$$

Generalized Carries Process

$$F := \left\{ \frac{a_1}{b} + \dots + \frac{a_N}{b^N} \middle| N \in \mathbf{N}, \ a_j \in \mathcal{D}_d \right\} \hookrightarrow (l_+, l_+ + 1)$$

(-b) - cas

Application

Summa

$$F := \left\{ \frac{a_1}{b} + \dots + \frac{a_N}{b^N} \middle| N \in \mathbf{N}, \ a_j \in \mathcal{D}_d \right\} \hookrightarrow (l_+, l_+ + 1)$$

$$c \in \mathcal{C}(b, n) \iff \overbrace{(F + \dots + F)}^n \cap (c + F) \neq \emptyset.$$

(-b) - cas

Application

Summar

$$F := \left\{ \frac{a_1}{b} + \dots + \frac{a_N}{b^N} \middle| N \in \mathbf{N}, \ a_j \in \mathcal{D}_d \right\} \hookrightarrow (l_+, l_+ + 1)$$
$$c \in \mathcal{C}(b, n) \iff \overbrace{(F + \dots + F)}_n \cap (c + F) \neq \emptyset.$$

$$l_{+} 0 l_{+} + 1$$

$$(-b)$$
 - cas

Application

Summai

$$F := \left\{ \frac{a_1}{b} + \dots + \frac{a_N}{b^N} \middle| N \in \mathbf{N}, \ a_j \in \mathcal{D}_d \right\} \hookrightarrow (l_+, l_+ + 1)$$

$$c \in \mathcal{C}(b, n) \Longleftrightarrow \overbrace{(F + \dots + F)}^n \cap (c + F) \neq \emptyset.$$

$$\longleftarrow \qquad F + \dots + F \qquad \longrightarrow$$

$$nl_+ \qquad l_+ \qquad 0 \qquad l_+ + 1 \qquad n(l_+ + 1)$$

Application

Summar

Why?

$$F := \left\{ \frac{a_1}{b} + \dots + \frac{a_N}{b^N} \middle| N \in \mathbf{N}, \ a_j \in \mathcal{D}_d \right\} \hookrightarrow (l_+, l_+ + 1)$$

$$c \in \mathcal{C}(b, n) \iff \overbrace{(F + \dots + F)} \cap (c + F) \neq \emptyset.$$

$$\longleftarrow \qquad F + \dots + F \qquad \longrightarrow$$

$$nl_+ \qquad l_+ \qquad l_+ + 1 \qquad n(l_+ + 1)$$

[s+F][s+1+F]

[t+F]

Generalized Carries Process

Riffle Shuffl

(-b) - case

Application

Summar

$$F := \left\{ \frac{a_1}{b} + \dots + \frac{a_N}{b^N} \middle| N \in \mathbf{N}, \ a_j \in \mathcal{D}_d \right\} \hookrightarrow (l_+, l_+ + 1)$$

$$c \in \mathcal{C}(b, n) \iff \overbrace{(F + \dots + F)} \cap (c + F) \neq \emptyset.$$

$$\longleftarrow \qquad F + \dots + F \qquad \longrightarrow$$

$$nl_+ \qquad l_+ \qquad l_+ + 1 \qquad n(l_+ + 1)$$

$$\boxed{ [s + F][s + 1 + F]} \qquad \cdots \qquad [t + F]$$

$$s + l_+ \le nl_+ \implies s = \lfloor (n-1)l_+ \rfloor$$

(-b) - case

Application

Summar

Generalized Carries Process

D:(II) CI

(-b) - cas

Application

Summai

$$(b,n,p)$$
-process

Let
$$s := \min C(b, n)$$
, $p := (1 - \{(n-1)l_+\})^{-1} \in \mathbf{Q}$, and let $\tilde{P} := \{\tilde{P}_{ij}\}_{i,j}$, $\tilde{P}_{ij} := \mathbf{P}(C_{k+1} - s = j \mid C_k - s = i)$.

Riffle Shuff

(-b) - cas

Application

Summai

$$(b, n, p)$$
-process

Let $s := \min C(b, n)$, $p := (1 - \{(n-1)l_+\})^{-1} \in \mathbf{Q}$, and let $\tilde{P} := \{\tilde{P}_{ij}\}_{i,j}$, $\tilde{P}_{ij} := \mathbf{P}(C_{k+1} - s = j \mid C_k - s = i)$. Then

$$\tilde{P}_{ij} = b^{-n} \sum_{r=0}^{n+1} (-1)^r \binom{n+1}{r} \binom{n+1}{r} \binom{n+A_p(i,j) - br}{n}$$

$$i, j = 0, 1, \dots, \sharp \mathcal{C}(b,n) - 1, \quad \sharp \mathcal{C}(b,n) = \begin{cases} n & (p=1) \\ n+1 & (p>1) \end{cases}$$

Thus \tilde{P} is determined by (b, n, p) only.

(-h) - case

Application

Summa

$$(b, n, p)$$
-process

Let $s := \min C(b, n)$, $p := (1 - \{(n-1)l_+\})^{-1} \in \mathbf{Q}$, and let $\tilde{P} := \{\tilde{P}_{ij}\}_{i,j}$, $\tilde{P}_{ij} := \mathbf{P}(C_{k+1} - s = j \mid C_k - s = i)$. Then

$$\tilde{P}_{ij} = b^{-n} \sum_{r=0}^{n+1} (-1)^r \binom{n+1}{r} \binom{n+1}{r} \binom{n+A_p(i,j) - br}{n}$$

$$i, j = 0, 1, \dots, \sharp \mathcal{C}(b,n) - 1, \quad \sharp \mathcal{C}(b,n) = \begin{cases} n & (p=1) \\ n+1 & (p>1) \end{cases}$$

Thus \tilde{P} is determined by (b, n, p) only.

Conversely, if $\frac{n-1}{p} \in \mathbf{N}$, then \tilde{P} is a stochastic matrix although it may not correspond to a carries process.

Summa

(b, n, p)-process

Let $s := \min C(b, n)$, $p := (1 - \{(n-1)l_+\})^{-1} \in \mathbf{Q}$, and let $\tilde{P} := \{\tilde{P}_{ij}\}_{i,j}$, $\tilde{P}_{ij} := \mathbf{P}(C_{k+1} - s = j \mid C_k - s = i)$. Then

$$\tilde{P}_{ij} = b^{-n} \sum_{r=0}^{n+1} (-1)^r \binom{n+1}{r} \binom{n+1}{r} \binom{n+A_p(i,j)-br}{n}$$

$$i, j = 0, 1, \dots, \sharp \mathcal{C}(b,n) - 1, \quad \sharp \mathcal{C}(b,n) = \begin{cases} n & (p=1) \\ n+1 & (p>1) \end{cases}$$

Thus \tilde{P} is determined by (b, n, p) only.

Conversely, if $\frac{n-1}{p} \in \mathbf{N}$, then \tilde{P} is a stochastic matrix although it may not correspond to a carries process.

(b,n,p) - process : The Markov chain associated to \tilde{P}

(-b) - case

Applicatio

Summa

(b, n, p)-process

Let $s := \min C(b, n)$, $p := (1 - \{(n-1)l_+\})^{-1} \in \mathbf{Q}$, and let $\tilde{P} := \{\tilde{P}_{ij}\}_{i,j}$, $\tilde{P}_{ij} := \mathbf{P}(C_{k+1} - s = j \mid C_k - s = i)$. Then

$$\tilde{P}_{ij} = b^{-n} \sum_{r=0}^{n+1} (-1)^r \binom{n+1}{r} \binom{n+1}{r} \binom{n+A_p(i,j)-br}{n}$$

$$i, j = 0, 1, \dots, \sharp \mathcal{C}(b,n) - 1, \quad \sharp \mathcal{C}(b,n) = \begin{cases} n & (p=1) \\ n+1 & (p>1) \end{cases}$$

Thus \tilde{P} is determined by (b, n, p) only.

Conversely, if $\frac{n-1}{p} \in \mathbf{N}$, then \tilde{P} is a stochastic matrix although it may not correspond to a carries process.

(b,n,p) - process : The Markov chain associated to \tilde{P}

Remark : Holte's process $\implies p = 1$.

Generalized

Carries Process

Riffle Shut

(-b) - cas

Application

Summar

Left Eigenvectors

 $\tilde{P} = \{\tilde{P}_{ij}\}$: Transition probability of (b,n,p)- process.

$$\tilde{P}_{ij} = b^{-n} \sum_{r=0}^{n+1} (-1)^r \binom{n+1}{r} \binom{n+A_p(i,j) - br}{n}$$

Applicatio

Summa

Left Eigenvectors

 $\tilde{P} = \{\tilde{P}_{ij}\}$: Transition probability of (b,n,p)- process.

$$\tilde{P}_{ij} = b^{-n} \sum_{r=0}^{n+1} (-1)^r \binom{n+1}{r} \binom{n+A_p(i,j) - br}{n}$$

Theorem 1

$$\tilde{P} = L^{-1}DL, \ D = \operatorname{diag}\left(1, \frac{1}{b}, \cdots, \frac{1}{b^{\sharp \mathcal{C}(b,n)-1}}\right)$$

Applicatio

Summai

Left Eigenvectors

 $\tilde{P} = \{\tilde{P}_{ij}\}$: Transition probability of (b,n,p)- process.

$$\tilde{P}_{ij} = b^{-n} \sum_{r=0}^{n+1} (-1)^r \binom{n+1}{r} \binom{n+1}{r} \binom{n+A_p(i,j)-br}{n}$$

Theorem 1

$$\tilde{P} = L^{-1}DL, \ D = \operatorname{diag}\left(1, \frac{1}{b}, \cdots, \frac{1}{b^{\sharp \mathcal{C}(b,n)-1}}\right)$$

$$L_{ij} = v_{ij}^{(\mathbf{p})}(n) := \sum_{r=0}^{j} (-1)^r \binom{n+1}{r} \left\{ \mathbf{p}(j-r) + 1 \right\}^{n-i}$$

(-b) - cas

Application

Summa

Left Eigenvectors

 $\tilde{P} = \{\tilde{P}_{ij}\}$: Transition probability of (b,n,p)- process.

$$\tilde{P}_{ij} = b^{-n} \sum_{r=0}^{n+1} (-1)^r \binom{n+1}{r} \binom{n+1}{r} \binom{n+A_p(i,j)-br}{n}$$

Theorem 1

$$\begin{split} \tilde{P} &= L^{-1}DL, \ D = \operatorname{diag}\left(1, \frac{1}{b}, \cdots, \frac{1}{b^{\sharp \mathcal{C}(b,n)-1}}\right) \\ L_{ij} &= v_{ij}^{(\mathbf{p})}(n) := \sum_{r=0}^{j} (-1)^r \left(\begin{array}{c} n+1 \\ r \end{array}\right) \{ \mathbf{p}(j-r) + 1 \}^{n-i} \end{split}$$

D: independent of p

L: independent of b.

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

.....

Generalized Carries

Process

Riffle Shut

(-b) - cas

Application

Summar

Combinatorial meaning of L

[1] The stationary distribution $v_{0j}^{(\mathbf{p})}(n)$ gives

(1) p=1: Eulerian number (descent statistics of the permutation group)

Generalized Carries Process

Riffle Shuff

(-b) - cas

Applicatio

Summar

Combinatorial meaning of L

- [1] The stationary distribution $v_{0j}^{(p)}(n)$ gives
- (1) p = 1: Eulerian number (descent statistics of the permutation group)
- (2) p=2 : Macmahon number (descent statistics of the signed permutation group : 1-<2-<1+<2+<)

(-h) - cas

Application

Summar

Combinatorial meaning of L

- [1] The stationary distribution $v_{0j}^{(\mathbf{p})}(n)$ gives
- (1) p = 1: Eulerian number (descent statistics of the permutation group)
- (2) p=2: Macmahon number (descent statistics of the <u>signed</u> permutation group: 1-<2-<1+<2+<)

$$\begin{array}{l} M(2,0)=\sharp\{(1-,2-)\}=1,\\ M(2,1)=\sharp\{(1+,2+),(1+,2-),(1-,2+),(2+,1-),\\ \end{array}$$

$$(2-,1+), (2-,1-)$$
 = 6, $M(2,2) = \sharp\{(2+,1+)\} = 1$.

Summa

Combinatorial meaning of ${\cal L}$

- [1] The stationary distribution $v_{0j}^{(\mathbf{p})}(n)$ gives
- (1) p=1: Eulerian number (descent statistics of the permutation group)
- (2) p=2: Macmahon number (descent statistics of the <u>signed</u> permutation group: 1-<2-<1+<2+<)

$$M(2,0) = \sharp\{(1-,2-)\} = 1,$$

 $M(2,1) = \sharp\{(1+,2+),(1+,2-),(1-,2+),(2+,1-),$
 $(2-,1+),(2-,1-)\} = 6, M(2,2) = \sharp\{(2+,1+)\} = 1.$

(3) general $p \in \mathbf{N}$: descent statistics of the <u>colored</u> permutation group $G_{p,n}(\simeq \mathbf{Z}_p \wr S_n)$

Summar

Combinatorial meaning of L

- [1] The stationary distribution $v_{0j}^{(\mathbf{p})}(n)$ gives
- (1) p=1: Eulerian number (descent statistics of the permutation group)
- (2) p=2: Macmahon number (descent statistics of the <u>signed</u> permutation group: 1-<2-<1+<2+<)

$$M(2,0) = \sharp\{(1-,2-)\} = 1,$$

 $M(2,1) = \sharp\{(1+,2+),(1+,2-),(1-,2+),(2+,1-),$
 $(2-,1+),(2-,1-)\} = 6, M(2,2) = \sharp\{(2+,1+)\} = 1.$

- (3) general $p \in \mathbf{N}$: descent statistics of the <u>colored</u> permutation group $G_{p,n}(\simeq \mathbf{Z}_p \wr S_n)$
- [2] The left eigenvector matrix L equals to the Foulkes character table of $G_{n,n}$.

Summar

Combinatorial meaning of ${\cal L}$

- [1] The stationary distribution $v_{0j}^{(\mathbf{p})}(n)$ gives
- (1) p = 1: Eulerian number (descent statistics of the permutation group)
- (2) p=2: Macmahon number (descent statistics of the <u>signed</u> permutation group: 1-<2-<1+<2+<)

$$M(2,0) = \sharp\{(1-,2-)\} = 1,$$

$$M(2,1) = \sharp\{(1+,2+),(1+,2-),(1-,2+),(2+,1-),$$

$$(2-,1+),(2-,1-)\} = 6, M(2,2) = \sharp\{(2+,1+)\} = 1.$$

- (3) general $p \in \mathbf{N}$: descent statistics of the <u>colored</u> permutation group $G_{p,n}(\simeq \mathbf{Z}_p \wr S_n)$
- [2] The left eigenvector matrix L equals to the Foulkes character table of $G_{p,n}$.
- [3] For $p \notin \mathbf{N}$, we do not know...

Examples of L(n=3)

$$p = 1: \begin{pmatrix} 1 & 4 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix} \quad p = 2: \begin{pmatrix} 1 & 23 & 23 & 1 \\ 1 & 5 & -5 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -3 & 3 & -1 \end{pmatrix}$$

Examples of L(n=3)

$$p = 1: \begin{pmatrix} 1 & 4 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix} \quad p = 2: \begin{pmatrix} 1 & 23 & 23 & 1 \\ 1 & 5 & -5 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -3 & 3 & -1 \end{pmatrix}$$
$$p = 3: \begin{pmatrix} 1 & 60 & 93 & 8 \\ 1 & 23 & -9 & -4 \\ 1 & 0 & -3 & 2 \\ 1 & -3 & 3 & -1 \end{pmatrix} \quad p = 3/2: \begin{pmatrix} 1 & \frac{93}{8} & \frac{15}{2} & \frac{1}{8} \\ 1 & \frac{9}{4} & -3 & -\frac{1}{4} \\ 1 & -\frac{3}{2} & 0 & \frac{1}{2} \\ 1 & -3 & 3 & -1 \end{pmatrix}$$

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

Amazing Matrix

Generalized Carries Process

(-b) - case

Application

Summar

Examples of L(n=3)

$$p = 1: \begin{pmatrix} 1 & 4 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix} \quad p = 2: \begin{pmatrix} 1 & 23 & 23 & 1 \\ 1 & 5 & -5 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -3 & 3 & -1 \end{pmatrix}$$

$$p = 3: \begin{pmatrix} 1 & 60 & 93 & 8 \\ 1 & 23 & -9 & -4 \\ 1 & 0 & -3 & 2 \\ 1 & -3 & 3 & -1 \end{pmatrix} \quad p = 3/2: \begin{pmatrix} 1 & \frac{93}{8} & \frac{15}{2} & \frac{1}{8} \\ 1 & \frac{9}{4} & -3 & -\frac{1}{4} \\ 1 & -\frac{3}{2} & 0 & \frac{1}{2} \\ 1 & -3 & 3 & -1 \end{pmatrix}$$

$$p = 5/2: \begin{pmatrix} 1 & \frac{31}{8} & \frac{101}{2} & \frac{27}{8} \\ 1 & \frac{33}{4} & -7 & -\frac{9}{4} \\ 1 & -\frac{1}{2} & -2 & \frac{3}{2} \\ 1 & -3 & 3 & -1 \end{pmatrix}$$

No hits on OEIS...

Generalized

Carries Process

Riffle Shuf

(-b) - cas

Application

Summar

Right Eigenvector

Theorem 2

$$R_p := L_p^{-1} = \{u_{ij}^{(p)}(n)\}_{i,j=0,\cdots,\sharp\mathcal{C}_p(n)-1}$$

Riffle Shut

(-b) - cas

Application

Summar

Right Eigenvector

Theorem 2

$$R_p := L_p^{-1} = \{u_{ij}^{(p)}(n)\}_{i,j=0,\cdots,\sharp \mathcal{C}_p(n)-1}$$

$$u_{ij}^{(p)} = \sum_{k=i}^n \sum_{l=n-j}^k \frac{s(k,l)(-1)^{n-j-l}}{k! \, p^l} \begin{pmatrix} l \\ n-j \end{pmatrix} \begin{pmatrix} n-i \\ n-k \end{pmatrix}$$

Killie Shull

(-b) - cas

Application

Summar

Right Eigenvector

Theorem 2

$$R_p := L_p^{-1} = \{u_{ij}^{(p)}(n)\}_{i,j=0,\cdots,\sharp\mathcal{C}_p(n)-1}$$

$$u_{ij}^{(p)} = \sum_{k=i}^n \sum_{l=n-i}^k \frac{s(k,l)(-1)^{n-j-l}}{k! p^l} \binom{l}{n-j} \binom{n-i}{n-k}$$

s(n,k) is the Stirling number with sign :

$$s(n,k) := (-1)^{n-k} \sharp \{ \sigma \in S_n \text{ with } k \text{ cycles } \}.$$

Application

Summar

Right Eigenvector

Theorem 2

$$R_p := L_p^{-1} = \{u_{ij}^{(p)}(n)\}_{i,j=0,\cdots,\sharp\mathcal{C}_p(n)-1}$$

$$u_{ij}^{(p)} = \sum_{k=i}^n \sum_{l=n-i}^k \frac{s(k,l)(-1)^{n-j-l}}{k! p^l} \binom{l}{n-j} \binom{n-i}{n-k}$$

s(n,k) is the Stirling number with sign :

$$s(n,k) := (-1)^{n-k} \sharp \{ \sigma \in S_n \text{ with } k \text{ cycles } \}.$$

If $p \in \mathbf{N}$

(1) $\overline{n!p^nu_{0,n-j}^{(p)}}$ is equal to the Stirling-Frobenius cycle number.

Summar

Right Eigenvector

Theorem 2

$$R_p := L_p^{-1} = \{u_{ij}^{(p)}(n)\}_{i,j=0,\cdots,\sharp\mathcal{C}_p(n)-1}$$

$$u_{ij}^{(p)} = \sum_{k=i}^n \sum_{l=n-j}^k \frac{s(k,l)(-1)^{n-j-l}}{k! p^l} \binom{l}{n-j} \binom{n-i}{n-k}$$

s(n,k) is the Stirling number with sign :

$$s(n,k) := (-1)^{n-k} \sharp \{ \sigma \in S_n \text{ with } k \text{ cycles } \}.$$

If $p \in \mathbf{N}$

- (1) $\overline{n!p^nu_{0,n-j}^{(p)}}$ is equal to the Stirling-Frobenius cycle number.
- $(2) \ u_{ij}^{(p)}(n) = \\ [x^{n-j}]\sharp \left\{ \sigma \in G_{p,n} \ \middle| \ \sigma : (x,n,p) \text{-shuffle with } d(\sigma^{-1}) = i \right\}$

A --- -- i -- --

Generali: Carries

Riffle Shuffle

(-b) - cas

Application

Summar

$$\Sigma := [n] \times \mathbf{Z}_p \ ([n] := \{1, 2, \cdots, n\}), \ \underline{p \in \mathbf{N}}$$

Generaliz Carries

Riffle Shuffle

$$(-b)$$
 - cas

Application

Summar

$$\begin{array}{l} \underline{\Sigma} := [n] \times \mathbf{Z}_p \ ([n] := \{1, 2, \cdots, n\}), \ \underline{p \in \mathbf{N}} \\ \underline{T_q} : \ (i, r) \mapsto (i, r + q), \ (i, r) \in \Sigma : \ q\text{-shift on colors} \end{array}$$

Amazing

Generalize Carries Process

Riffle Shuffle

(-b) - cas

Application

Summar

$$\begin{split} & \boldsymbol{\Sigma} := [n] \times \mathbf{Z}_p \; ([n] := \{1, 2, \cdots, n\}), \, \underline{p \in \mathbf{N}} \\ & \boldsymbol{T_q} : \; (i, r) \mapsto (i, r + q), \; (i, r) \in \Sigma : \, q\text{-shift on colors} \\ & \boldsymbol{G_{p,n}} := \{\sigma : \text{ bijection on } \boldsymbol{\Sigma} \, | \, \sigma \circ T_q = T_q \circ \sigma \}. \end{split}$$

(-b) - cas

Application

Summar

$$\begin{split} & \Sigma := [n] \times \mathbf{Z}_p \; ([n] := \{1, 2, \cdots, n\}), \; \underline{p \in \mathbf{N}} \\ & T_q : \; (i, r) \mapsto (i, r + q), \; (i, r) \in \Sigma : \; q\text{-shift on colors} \\ & G_{p,n} := \{\sigma : \; \text{bijection on} \; \Sigma \, | \, \sigma \circ T_q = T_q \circ \sigma \}. \end{split}$$
 Example $(n = 4, \; p = 3) : (1, 0) \; (2, 0) \; (3, 0) \; (4, 0)$

$$(4,1)$$
 $(1,0)$ $(2,2)$ $(3,2)$

(-b) - cas

Application

Summar

$$\begin{split} & \boldsymbol{\Sigma} := [n] \times \mathbf{Z}_p \; ([n] := \{1, 2, \cdots, n\}), \, \underline{p \in \mathbf{N}} \\ & \boldsymbol{T_q} : \; (i, r) \mapsto (i, r + q), \; (i, r) \in \Sigma : \, q\text{-shift on colors} \\ & \boldsymbol{G_{p,n}} := \{\sigma : \text{ bijection on } \boldsymbol{\Sigma} \, | \, \sigma \circ T_q = T_q \circ \sigma \}. \end{split}$$

Colored Permutation Group

$$\begin{split} & \boldsymbol{\Sigma} := [n] \times \mathbf{Z}_p \; ([n] := \{1, 2, \cdots, n\}), \, \underline{p} \in \mathbf{N} \\ & \boldsymbol{T}_q : \; (i, r) \mapsto (i, r + q), \; (i, r) \in \boldsymbol{\Sigma} : \; q\text{-shift on colors} \\ & \boldsymbol{G}_{p,n} := \{\sigma : \text{ bijection on } \boldsymbol{\Sigma} \, | \, \sigma \circ \boldsymbol{T}_q = \boldsymbol{T}_q \circ \sigma \}. \end{split}$$

Example
$$(n = 4, p = 3)$$
: $(1,0) (2,0) (3,0) (4,0)$ $(1,1) (3,1)$

$$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \Rightarrow \quad \downarrow \quad \downarrow$$

This σ is determined by (4,1) (1,0) (2,2) (3,2). so we abuse to write $\sigma = ((4,1),(1,0),(2,2),(3,2)).$

Colored Permutation Group

$$\begin{split} & \boldsymbol{\Sigma} := [n] \times \mathbf{Z}_p \; ([n] := \{1, 2, \cdots, n\}), \, \underline{p \in \mathbf{N}} \\ & \boldsymbol{T}_q : \; (i, r) \mapsto (i, r + q), \; (i, r) \in \boldsymbol{\Sigma} : \; q\text{-shift on colors} \\ & \boldsymbol{G}_{p, n} := \{\sigma : \text{ bijection on } \boldsymbol{\Sigma} \,|\, \sigma \circ \boldsymbol{T}_q = \boldsymbol{T}_q \circ \sigma\}. \end{split}$$

Example
$$(n = 4, p = 3)$$
:

$$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$$

This σ is determined by (4,1) (1,0) (2,2) (3,2). so we abuse to write $\sigma = ((4, 1), (1, 0), (2, 2), (3, 2)).$

In general, setting $(\sigma(i), \sigma^c(i)) := \sigma(i, 0) \in \Sigma$, $i = 1, 2, \dots, n$.

Colored Permutation Group

$$\begin{split} & \boldsymbol{\Sigma} := [n] \times \mathbf{Z}_p \ ([n] := \{1, 2, \cdots, n\}), \ \underline{p \in \mathbf{N}} \\ & \boldsymbol{T_q} : \ (i, r) \mapsto (i, r + q), \ (i, r) \in \boldsymbol{\Sigma} : \ q\text{-shift on colors} \\ & \boldsymbol{G_{p,n}} := \{\sigma : \text{ bijection on } \boldsymbol{\Sigma} \,|\, \sigma \circ T_q = T_q \circ \sigma\}. \end{split}$$

Example
$$(n = 4, p = 3)$$
:

$$(1,0) (2,0) (3,0) (4,0)$$
 $(1,1) (3,1)$

$$\downarrow \quad \downarrow \quad \downarrow \quad \Rightarrow \quad \downarrow \quad \downarrow$$

This σ is determined by (4,1) (1,0) (2,2) (3,2). so we abuse to write $\sigma = ((4, 1), (1, 0), (2, 2), (3, 2)).$

In general, setting
$$(\sigma(i), \sigma^c(i)) := \sigma(i, 0) \in \Sigma$$
, $i = 1, 2, \dots, n$,

we write
$$\sigma = ((\sigma(1), \sigma^c(1)), (\sigma(2), \sigma^c(2)), \cdots, (\sigma(n), \sigma^c(n))).$$

Generalize

Carries Process

Riffle Shuffle

(-b) - cas

Application

Summar

Descent on $G_{p,n}$

Define a ordering on $\boldsymbol{\Sigma}$

$$(1,0) < (2,0) < \cdots < (n,0)$$

 $<(1,p-1) < (2,p-1) < \cdots < (n,p-1)$
 $<(1,p-2) < (2,p-2) < \cdots < (n,p-2)$
 \cdots
 $<(1,1) < \cdots < (n,1).$

Matrix Generalize

Carries Process

Riffle Shuffle

(-b) - case

Application

Summa

Descent on $G_{p,n}$

Define a ordering on $\boldsymbol{\Sigma}$

$$(1,0) < (2,0) < \dots < (n,0)$$

 $<(1,p-1) < (2,p-1) < \dots < (n,p-1)$
 $<(1,p-2) < (2,p-2) < \dots < (n,p-2)$
 \dots
 $<(1,1) < \dots < (n,1).$

" $\sigma \in G_{p,n}$ has a descent at i " $\overset{def}{\longleftrightarrow}$

(i)
$$(\sigma(i), \sigma^c(i)) > (\sigma(i+1), \sigma^c(i+1))$$
 (for $i = 1, 2, \cdots, n-1$)

(ii)
$$\sigma^c(n) \neq 0$$
 (for $i = n$).

Generalize

Carries Process

Riffle Shuffle

(-b) - cas

Application

Summai

Descent on $G_{p,n}$

Define a ordering on $\boldsymbol{\Sigma}$

$$(1,0) < (2,0) < \dots < (n,0)$$

 $<(1,p-1) < (2,p-1) < \dots < (n,p-1)$
 $<(1,p-2) < (2,p-2) < \dots < (n,p-2)$
 \dots
 $<(1,1) < \dots < (n,1).$

" $\sigma \in G_{p,n}$ has a descent at i " $\overset{def}{\longleftrightarrow}$

(i)
$$(\sigma(i), \sigma^c(i)) > (\sigma(i+1), \sigma^c(i+1))$$
 (for $i = 1, 2, \dots, n-1$)

(ii) $\sigma^c(n) \neq 0$ (for i = n).

 $d(\sigma)$: the number of descents of σ .

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

....

Amazing

Generaliz Carries

Process

Riffle Shuffle

Summary

Generalized Riffle Shuffle

 $\begin{array}{l} n \ {\rm cards} \\ {\rm with} \ p \ {\rm colors} \end{array}$

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

Amazing

Generalize Carries

Riffle Shuffle

(-b) - cas

Application

Summan

Generalized Riffle Shuffle

 $\begin{array}{l} n \text{ cards} \\ \text{with } p \text{ colors} \end{array}$

b-piles by multinomial

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

Amazing

Generalize Carries

Riffle Shuffle

(-b) - cas

Application

Summar

Generalized Riffle Shuffle

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

. .

Generalize Carries

Riffle Shuffle

(-b) - cas

Application

Summar

Generalized Riffle Shuffle

Generalized carry process and riffle shuffle

Fumihiko NAKANO, Taizo SADAHIRO

Introduction

Δ....

Generalize

Riffle Shuffle

(-h) - case

Application

Generalized Riffle Shuffle

This process defines a Markov chain $\{\sigma_r\}_{r=0}^{\infty}$ on $G_{p,n}$. (called the (b,n,p)-shuffle)

Generaliz Carries

Riffle Shuffle

(-b) - cas

Application

Summai

Carries Process and Riffle Shuffle

$$\{ {\color{black} \kappa_r} := C_r - s \}_{r=1}^\infty : \, (b,n,p)$$
 - process

$$(-b)$$
 - cas

Application

Summar

Carries Process and Riffle Shuffle

$$\{ {\color{black} \kappa_r} := C_r - s \}_{r=1}^\infty : \, (b,n,p)$$
 - process

 $\{\sigma_r\}_{r=1}^{\infty}$: (b,n,p) - shuffle

Summa

Carries Process and Riffle Shuffle

$$\{ {\color{blue}\kappa_r}:=C_r-s\}_{r=1}^\infty:\,(b,n,p) \text{ - process}$$

$$\{\sigma_r\}_{r=1}^\infty:\,(b,n,p) \text{ - shuffle}$$

Theorem 3

$$\{\kappa_r\} \stackrel{d}{=} \{d(\sigma_r)\}$$

In other words,

$$\mathbf{P}(\kappa_1 = j_1, \kappa_2 = j_2, \cdots, \kappa_k = j_k \mid \kappa_0 = 0)$$

$$= \mathbf{P}(d(\sigma_1) = j_1, d(\sigma_2) = j_2, \cdots, d(\sigma_k) = j_k \mid \sigma_0 = id)$$

Summai

Carries Process and Riffle Shuffle

$$\{ {\color{blue}\kappa_r}:=C_r-s\}_{r=1}^\infty:\,(b,n,p) \text{ - process}$$

$$\{\sigma_r\}_{r=1}^\infty:\,(b,n,p) \text{ - shuffle}$$

Theorem 3

$$\{\kappa_r\} \stackrel{d}{=} \{d(\sigma_r)\}$$

In other words,

$$\mathbf{P}(\kappa_1 = j_1, \kappa_2 = j_2, \cdots, \kappa_k = j_k \mid \kappa_0 = 0)$$

=
$$\mathbf{P}(d(\sigma_1) = j_1, d(\sigma_2) = j_2, \cdots, d(\sigma_k) = j_k \mid \sigma_0 = id)$$

Theorem 3 explains why the descent statistics of $G_{p,n}$ appears in the stationary distribution of (b,n,p) - process.

Amazing

Generalize Carries

Riffle Shufl

(-b) - case

Application

Summar

What about (-b)-case ?

$$x = a_n(-b)^n + a_{n-1}(-b)^{n-1} + \dots + a_0, \quad a_k \in \mathcal{D}_d$$

Summar

What about (-b)-case ?

$$x = a_n(-b)^n + a_{n-1}(-b)^{n-1} + \dots + a_0, \quad a_k \in \mathcal{D}_d$$

$$l_+ = \frac{d}{b-1} \implies l_- = -\frac{b+d}{b+1}$$

Summai

What about (-b)-case ?

$$x = a_n(-b)^n + a_{n-1}(-b)^{n-1} + \dots + a_0, \quad a_k \in \mathcal{D}_d$$

$$l_{+} = \frac{d}{b-1} \implies l_{-} = -\frac{b+d}{b+1}$$

 $s_{+} = \lfloor (n-1)l_{+} \rfloor \implies s_{-} = \lfloor (n-1)l_{-} \rfloor$

Summar

What about (-b)-case ?

$$x = a_n(-b)^n + a_{n-1}(-b)^{n-1} + \dots + a_0, \quad a_k \in \mathcal{D}_d$$

$$l_{+} = \frac{d}{b-1} \implies l_{-} = -\frac{b+d}{b+1}$$

$$s_{+} = \lfloor (n-1)l_{+} \rfloor \implies s_{-} = \lfloor (n-1)l_{-} \rfloor$$

$$1 - \frac{1}{p_{+}} = \{(n-1)l_{+}\} \implies 1 - \frac{1}{p_{-}} = \{(n-1)l_{-}\}$$

Summai

What about (-b)-case ?

$$x = a_n(-b)^n + a_{n-1}(-b)^{n-1} + \dots + a_0, \quad a_k \in \mathcal{D}_d$$

$$\begin{split} l_+ &= \frac{d}{b-1} &\implies l_- = -\frac{b+d}{b+1} \\ s_+ &= \lfloor (n-1)l_+ \rfloor &\implies s_- = \lfloor (n-1)l_- \rfloor \\ 1 - \frac{1}{p_+} &= \{ (n-1)l_+ \} &\implies 1 - \frac{1}{p_-} = \{ (n-1)l_- \} \\ \operatorname{Ev} : 1, \frac{1}{b}, \frac{1}{b^2}, \cdots &\implies 1, \left(-\frac{1}{b} \right), \left(-\frac{1}{b} \right)^2, \cdots, \end{split}$$

Summai

What about (-b)-case ?

Any $x \in \mathbf{Z}$ can be expanded uniquely as

$$x = a_n(-b)^n + a_{n-1}(-b)^{n-1} + \dots + a_0, \quad a_k \in \mathcal{D}_d$$

$$\begin{split} l_+ &= \frac{d}{b-1} &\implies l_- = -\frac{b+d}{b+1} \\ s_+ &= \lfloor (n-1)l_+ \rfloor &\implies s_- = \lfloor (n-1)l_- \rfloor \\ 1 - \frac{1}{p_+} &= \{ (n-1)l_+ \} &\implies 1 - \frac{1}{p_-} = \{ (n-1)l_- \} \\ \operatorname{Ev} : 1, \frac{1}{b}, \frac{1}{b^2}, \cdots &\implies 1, \left(-\frac{1}{b} \right), \left(-\frac{1}{b} \right)^2, \cdots, \end{split}$$

 L_{\pm} , R_{\pm} have the same dependence on p.

Generalize

Carries Process

Riffle Shufl

(-b) - case

Application

Summar

$\mathsf{Dash} \, \hbox{-} \, \mathsf{Descent} \, \, \mathsf{on} \, \, G_{p,n}$

(1) " Dash - order " <' on Σ :

$$(1,0) <' (2,0) <' \cdots <' (n,0)$$
 $<' (1,1) <' (2,1) <' \cdots <' (n,1)$
 $<' \cdots$
 $<' (1,p-1) <' (2,p-1) <' \cdots <' (n,p-1)$

.....

Generalize Carries

Dim Cl

(-b) - case

Application

Summa

Dash - Descent on $G_{p,n}$

(1) " Dash - order " <' on Σ :

$$(1,0) <' (2,0) <' \cdots <' (n,0)$$
 $<' (1,1) <' (2,1) <' \cdots <' (n,1)$
 $<' \cdots$
 $<' (1,p-1) <' (2,p-1) <' \cdots <' (n,p-1)$

(2) " $\sigma \in G_{p,n}$ has a <u>dash-descent</u> at i "

$$(\sigma(i), \sigma^c(i)) >' (\sigma(i+1), \sigma^c(i+1))$$
 (for $i = 1, 2, \dots, n-1$) $\sigma^c(n) = p-1$ (for $i = n$).

Application

Summai

Dash - Descent on $G_{p,n}$

(1) " Dash - order " <' on Σ :

$$(1,0) <' (2,0) <' \cdots <' (n,0)$$
 $<' (1,1) <' (2,1) <' \cdots <' (n,1)$
 $<' \cdots$
 $<' (1,p-1) <' (2,p-1) <' \cdots <' (n,p-1)$

(2) " $\sigma \in G_{p,n}$ has a <u>dash-descent</u> at i "

$$(\sigma(i), \sigma^c(i)) >' (\sigma(i+1), \sigma^c(i+1)) \text{ (for } i = 1, 2, \dots, n-1)$$

$$\sigma^c(n) = p-1 \text{ (for } i = n).$$

(3) $d'(\sigma)$: the number of dash-descents of $\sigma \in G_{p,n}$.

$$d(\sigma) = d'(\sigma)$$
 for $p = 1$
 $E'_{n}(n, k) = E_{n}(n, n - k)$.

Matrix

Generalize Carries

Riffle Shuff

$$(-b)$$
 - case

Application

Summar

Shuffles for (-b, n, p) - process

$$\{ {\color{red} \kappa^-_r} = C^-_r - s^- \}_{r=1}^{\infty} : \, (-b,n,p)$$
 - process

Application

Summar

Shuffles for (-b, n, p) - process

$$\begin{split} \{ \kappa_{r}^{-} &= C_{r}^{-} - s^{-} \}_{r=1}^{\infty} : \ (-b,n,p) \text{ - process} \\ \{ \sigma_{r} \}_{r=1}^{\infty} : \ (+b,n,p) \text{-shuffle} \\ \\ d_{r}^{-} &:= \left\{ \begin{array}{ll} n - d'(\sigma_{r}) & (r: \text{ odd }) \\ d(\sigma_{r}) & (r: \text{ even }) \end{array} \right. \end{split}$$

Shuffles for (-b, n, p) - process

$$\begin{split} \{\kappa_{r}^{-} &= C_{r}^{-} - s^{-}\}_{r=1}^{\infty}: \ (-b,n,p) \text{ - process} \\ \{\sigma_{r}\}_{r=1}^{\infty}: \ (+b,n,p)\text{-shuffle} \\ \\ d_{r}^{-} &:= \left\{ \begin{array}{ll} n - d'(\sigma_{r}) & (r: \text{ odd }) \\ d(\sigma_{r}) & (r: \text{ even }) \end{array} \right. \end{split}$$

Theorem 4

$$\{\kappa_r^-\}_r \stackrel{d}{=} \{d_r^-\}_r$$

Generalize Carries

Process

(-b) - cas

Application

Summary

Limit Theorem

For any $p\geq 1$, and for $n\geq 2$, $k=0,1,\cdots,n$, let

$$\left\langle \begin{array}{c} n \\ k \end{array} \right\rangle_p := \sum_{r=0}^k (-1)^r \left(\begin{array}{c} n+1 \\ r \end{array} \right) \{p(k-r)+1\}^n,$$

Summarv

Limit Theorem

For any $p \ge 1$, and for $n \ge 2$, $k = 0, 1, \dots, n$, let

$$\left\langle \begin{array}{c} n \\ k \end{array} \right\rangle_p := \sum_{r=0}^k (-1)^r \left(\begin{array}{c} n+1 \\ r \end{array} \right) \{p(k-r)+1\}^n,$$

Let Y_1, \dots, Y_n be the independent, uniformly distributed r.v.'s on [0,1],

Summary

Limit Theorem

For any $p \ge 1$, and for $n \ge 2$, $k = 0, 1, \dots, n$, let

$$\left\langle \begin{array}{c} n \\ k \end{array} \right\rangle_p := \sum_{r=0}^k (-1)^r \left(\begin{array}{c} n+1 \\ r \end{array} \right) \{p(k-r)+1\}^n,$$

Let Y_1, \dots, Y_n be the independent, uniformly distributed r.v.'s on [0,1], and let $S_n := Y_1 + \dots + Y_n$.

Application

Limit Theorem

For any p > 1, and for n > 2, $k = 0, 1, \dots, n$, let

$$\left\langle \begin{array}{c} n \\ k \end{array} \right\rangle_p := \sum_{r=0}^k (-1)^r \left(\begin{array}{c} n+1 \\ r \end{array} \right) \{p(k-r)+1\}^n,$$

Let Y_1, \dots, Y_n be the independent, uniformly distributed r.v.'s on [0, 1], and let $S_n := Y_1 + \cdots + Y_n$.

Theorem 5

$$\mathbf{P}\left(S_n\in\frac{1}{p}+[k-1,k]\right)=\left\langle\begin{array}{c}n\\k\end{array}\right\rangle_p(p^nn!)^{-1}$$
 for $k=0,1,\cdots,n.$

Amazina

Generalize

Carries Process

Riffle Shuff

(-b) - cas

Application

Summar

(1)
$$n=3$$
, $p=1$: (Eulerian number)

Generalize

Carries Process

Riffle Shuf

(-b) - cas

Application

Summar

(1)
$$n = 3$$
, $p = 1$: (Eulerian number)
$$1 \times \frac{1}{3}$$

Generaliza

Carries Process

Riffle Shuf

(-b) - cas

Application

Summar

(1)
$$n = 3$$
, $p = 1$: (Eulerian number)
$$1 \qquad 1 \qquad 4 \qquad \times \frac{1}{3}$$

Process

Riffle Shufl

(-b) - cas

Application

Summar

(1)
$$n = 3$$
, $p = 1$: (Eulerian number)
$$1 \qquad 1 \qquad 4 \qquad 2 \qquad 1 \qquad 3 \qquad \times \frac{1}{2}$$

(-b) - cas

Application

Summa

(1)
$$n = 3$$
, $p = 1$: (Eulerian number)

(2)
$$n = 3$$
, $p = 2$: (Macmahon number)

(-b) - cas

Application

Summar

(1)
$$n=3$$
, $p=1$: (Eulerian number)

(2)
$$n = 3$$
, $p = 2$: (Macmahon number)

(-b) - case

Application

Summar

(1)
$$n=3$$
, $p=1$: (Eulerian number)

(2)
$$n = 3$$
, $p = 2$: (Macmahon number)

(-b) - cas

Application

Summar

(1)
$$n=3$$
, $p=1$: (Eulerian number)

(2)
$$n=3$$
, $p=2$: (Macmahon number)

Generalize Carries

Riffle Shuff

(-b) - cas

Application

Summar

(1)
$$n = 3$$
, $p = 1$: (Eulerian number)

(2)
$$n = 3$$
, $p = 2$: (Macmahon number)

Amazina

Generalize

Carries Process

Riffle Shuff

(-b) - cas

Application

Summary

Idea of Proof

Let X_1',\cdots,X_m' be independent, uniformly distributed r.v.'s on [l,l+1], and let $S_m':=X_1'+\cdots+X_m'$.

Generaliz

Carries Process

Riffle Shuff

(-b) - case

Application

Summary

Idea of Proof

Let X_1',\cdots,X_m' be independent, uniformly distributed r.v.'s on [l,l+1], and let $S_m':=X_1'+\cdots+X_m'$.

Carry	C_k	C_{k-1}		C_1	C_0	
Addends		$X_{1,k}$		$X_{1,2}$	$X_{1,1}$	$=X_1^{(k)}$
		:		:	:	:
		$X_{m,k}$		$X_{m,2}$	$X_{m,1}$	$= X_m^{(k)}$
Sum		S_k	• • •	S_2	S_1	

Application

Idea of Proof

Let X'_1, \dots, X'_m be independent, uniformly distributed r.v.'s on [l, l+1], and let $S'_m := X'_1 + \cdots + X'_m$.

Since
$$X_i^{(k)} \overset{k \to \infty}{\to} X_i'$$
, $X_1^{(k)} + \dots + X_m^{(k)} \overset{k \to \infty}{\to} S_m'$.

(-b) - case

Application

C

Idea of Proof

Let X_1', \cdots, X_m' be independent, uniformly distributed r.v.'s on [l, l+1], and let $S_m' := X_1' + \cdots + X_m'$.

Since
$$X_i^{(k)} \stackrel{k \to \infty}{\to} X_i'$$
, $X_1^{(k)} + \dots + X_m^{(k)} \stackrel{k \to \infty}{\to} S_m'$.

$$\mathbf{P}(C_k = j) = \mathbf{P}(X_1^{(k)} + \dots + X_m^{(k)} \in [l, l+1] + j)$$

Fumihiko NAKANO, Taizo SADAHIRO

Amazing

Generaliz

Process

Killie Siluli

(-b) - case

Application

Summary

Idea of Proof

Let X_1', \dots, X_m' be independent, uniformly distributed r.v.'s on [l, l+1], and let $S_m' := X_1' + \dots + X_m'$.

Carry	C_k	C_{k-1}	 C_1	C_0	
Addends		$X_{1,k}$	 $X_{1,2}$	$X_{1,1}$	$=X_1^{(k)}$
		:	:	:	:
		$X_{m,k}$	 $X_{m,2}$	$X_{m,1}$	$=X_m^{(k)}$
Sum		S_k	 S_2	S_1	

Since $X_i^{(k)} \stackrel{k \to \infty}{\to} X_i'$, $X_1^{(k)} + \dots + X_m^{(k)} \stackrel{k \to \infty}{\to} S_m'$.

$$\mathbf{P}(C_k = j) = \mathbf{P}(X_1^{(k)} + \dots + X_m^{(k)} \in [l, l+1] + j)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\pi(j) \quad \mathbf{P}(S_m' \in [l, l+1] + j)$$

meroducero

Generaliz Carries

Carries Process

Kiffle Shuff

(-b) - cas

Application

Summary

Summary

[1] We study the generalization of the carries process $\{\kappa_r\}_r$, called $(\pm b, n, p)$ - process, and derived the left/right eigenvectors of its transition probability matrix.

Generalize Carries Process

Riffle Shuff

(-b) - cas

Application

Summary

Summary

[1] We study the generalization of the carries process $\{\kappa_r\}_r$, called $(\pm b, n, p)$ - process, and derived the left/right eigenvectors of its transition probability matrix.

For $p \in \mathbf{N}$,

(1) Stationary distribution gives the descent statistics of $G_{p,n}$

Process

Kiffle Shuffle

(-b) - cas

Application

Summary

Summary

[1] We study the generalization of the carries process $\{\kappa_r\}_r$, called $(\pm b, n, p)$ - process, and derived the left/right eigenvectors of its transition probability matrix.

- (1) Stationary distribution gives the descent statistics of $G_{p,n}$
- (2) Left eigenvector matrix is equal to the Foulkes character table of ${\cal G}_{p,n}$

Summary

Summary

[1] We study the generalization of the carries process $\{\kappa_r\}_r$, called $(\pm b, n, p)$ - process, and derived the left/right eigenvectors of its transition probability matrix.

- (1) Stationary distribution gives the descent statistics of $G_{p,n}$
- (2) Left eigenvector matrix is equal to the Foulkes character table of ${\cal G}_{p,n}$
- (3) Stirling Frobenius cycle number and the number of (b,n,p)-shuffles appear in the right eigenvector matrix

(-b) - case

Application

Summary

Summary

[1] We study the generalization of the carries process $\{\kappa_r\}_r$, called $(\pm b, n, p)$ - process, and derived the left/right eigenvectors of its transition probability matrix.

- (1) $\overline{\mathsf{Station}}$ distribution gives the descent statistics of $G_{p,n}$
- (2) Left eigenvector matrix is equal to the Foulkes character table of ${\cal G}_{p,n}$
- (3) Stirling Frobenius cycle number and the number of (b,n,p)-shuffles appear in the right eigenvector matrix
- [2] We consider a generalization of riffle shuffle $\{\sigma_r\}$ on $G_{p,n}$, called (b,n,p) shuffle, for $p\in\mathbf{N}$.

Summary

Summary

[1] We study the generalization of the carries process $\{\kappa_r\}_r$, called $(\pm b, n, p)$ - process, and derived the left/right eigenvectors of its transition probability matrix.

- (1) Stationary distribution gives the descent statistics of $G_{p,n}$
- (2) Left eigenvector matrix is equal to the Foulkes character table of ${\cal G}_{p,n}$
- (3) Stirling Frobenius cycle number and the number of (b,n,p)-shuffles appear in the right eigenvector matrix
- [2] We consider a generalization of riffle shuffle $\{\sigma_r\}$ on $G_{p,n}$, called (b,n,p) shuffle, for $p \in \mathbf{N}$.
- (4) $\{\kappa_r\}_r \stackrel{d}{=} \{d(\sigma_r)\}_r$ or $\stackrel{d}{=} \{d_r^-\}_r$, which explains (1).

(-b) - cas

Application

Summary

Summary

[1] We study the generalization of the carries process $\{\kappa_r\}_r$, called $(\pm b, n, p)$ - process, and derived the left/right eigenvectors of its transition probability matrix.

- (1) Stationary distribution gives the descent statistics of $G_{p,n}$
- (2) Left eigenvector matrix is equal to the Foulkes character table of ${\cal G}_{p,n}$
- (3) Stirling Frobenius cycle number and the number of (b,n,p)-shuffles appear in the right eigenvector matrix
- [2] We consider a generalization of riffle shuffle $\{\sigma_r\}$ on $G_{p,n}$, called (b,n,p) shuffle, for $p \in \mathbf{N}$.
- (4) $\{\kappa_r\}_r \stackrel{d}{=} \{d(\sigma_r)\}_r$ or $\stackrel{d}{=} \{d_r^-\}_r$, which explains (1).
- [3] for $p \notin \mathbf{N}$, no combinatorial meaning is known so far...

Summary

References

- [1] Nakano, F., and Sadahiro, T., A generalization of carries process and Eulerian numbers, Adv. in Appl. Math., **53**(2014), 28-43.
- [2] Nakano, F., and Sadahiro, T., A generalization of carries process and riffle shuffles, Disc. Math. **339**(2016), 974-991.
- [3] Fujita, T., Nakano, F., and Sadahiro, T., A generalization of carries process, DMTCS proc. **AT**(2014), 61-70.