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Introduction

Question

N = A1 ∪ · · · ∪ An, Ai ∩ Aj = ∅ for i 6= j .
Does there exist i and x , y such that x , y , x + y ∈ A?

Answer: yes! Issai Schur (1916)

Moreover: for every k there exist i and x0 < x1 < · · · < xk−1 such
that {Σt∈F xt |F ⊆ {0, 1, . . . , k − 1}} ⊆ Ai

(Folkman-Rado-Sanders)

Even more: there exist i and x0 < x1 < · · · < xk < . . . such that
{Σt∈F xt |F ⊂ N, |F | ≤ ∞} ⊆ Ai (N. Hindman 1974)
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IP-sets

Definition

A ⊆ N is an IP-set if there exist an infinite sequence
x0 < x1 < · · · < xk < . . . such that A contains all its finite sums with
distinct elements.

Example

The set of even numbers is IP-set. The set of odd numbers is not.

Question (typically difficult): Given A ⊆ N, is A an IP-set?

reformulation in terms of the algebraic/topological properties of the
Stone-Čech compactification of N (the set of all ultrafilters on N):

Theorem (Theorem 5.12 in [1])

A subset A ⊆ N is an IP-set if and only if A ∈ p for some idempotent
ultrafilter p on N.

[1] N. Hindman and D. Strauss, Algebra in the Stone-Čech
compactification: theory and applications, 2nd edition, Walter de Gruyter
& Co., Berlin, 2012.
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compactification: theory and applications, 2nd edition, Walter de Gruyter
& Co., Berlin, 2012.

M. Bucci, N. Hindman, S. Puzynina, L. Q. Zamboni Additive combinatorics generated by uniformly recurrent words



IP-sets

Definition

A ⊆ N is an IP-set if there exist an infinite sequence
x0 < x1 < · · · < xk < . . . such that A contains all its finite sums with
distinct elements.

Example

The set of even numbers is IP-set. The set of odd numbers is not.

Question (typically difficult): Given A ⊆ N, is A an IP-set?

reformulation in terms of the algebraic/topological properties of the
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Partition regularity

Definition

A collection of sets S is partition regular if for each A ∈ S,
whenever A is partitioned into finitely many sets, at least one set
of the partition is in S.

Example

Partition regular collections of sets:

sets having positive upper density

sets having arbitrarily long arithmetic progressions
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Definitions

N = {0, 1, 2, 3, . . .} natural numbers
A ⊆ N a subset of naturals

FS(A) = {
∑

x∈F x
∣∣F ⊂ A, |F | <∞} finite sums of elements of A

FS≤k(A) = {
∑

x∈F x
∣∣F ⊂ A, |F | ≤ k} finite sums of at most k

elements of A

Definition

A is finite FS-big if for every positive integer k there exists
x0 < x1 < · · · < xk−1 such that FS〈xn〉k−1

n=0 ⊆ A.

A is infinite FS-big if for every positive integer k there exists
x0 < x1 < · · · < xn < . . . such that FS≤k〈xn〉∞n=0 ⊆ A.

A is an IP-set if there exists x0 < x1 < · · · < xn < . . . A such
that FS〈xn〉∞n=0 ⊆ A.

IP-sets ⊂ infinite FS-big ⊂ finite FS-big
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Partition regularity of additive properties

Theorem (Hindman, 1974)

The collection of all IP-sets is partition regular.

Theorem (Bucci, Hindman, P., Zamboni, 2013)

The collection of all finite FS-big sets is partition regular.

Theorem (Bucci, Hindman, P., Zamboni, 2013)

The collection of all infinite FS-big sets is not partition regular.
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Sets defined by words

alphabet: a finite non-empty set Σ
infinite word: w = w0w1 . . .wi . . ., where wi ∈ Σ
the set of infinite words: ΣN

factor u of w : u = wi . . .wi+j for some i , j ∈ N

Subset of N defined by occurrence of factor u in w :

w
∣∣
u

= {n ∈ N | unun+1 . . . un+|u|−1 = u}

w an aperiodic uniformly recurrent word.
Is w

∣∣
u

an IP-set?
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Thue-Morse word

the Thue-Morse word

T = 01101001100101101001 . . .

a fixed point of the morphism 0 7→ 01 and 1 7→ 10.

Example

T|01 = {0, 3, 6, 10, 12, 15, . . . }
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Recurrent words

ω ∈ ΣN is recurrent if for each prefix u of ω the set ω
∣∣
u

is infinite.

ω ∈ ΣN is uniformly recurrent if for each prefix u of ω the set ω
∣∣
u

is syndetic, i.e., of bounded gap.

Proposition

Let ω = ω0ω1ω2 . . . ∈ ΣN be recurrent and set a = ω0. Then ω
∣∣
a

is
an IP-set.
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Recurrent words

ω ∈ ΣN is recurrent if for each prefix u of ω the set ω
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u

is infinite.

ω ∈ ΣN is uniformly recurrent if for each prefix u of ω the set ω
∣∣
u
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a

is
an IP-set.

Proof:

ω = ra ra
B1

x1

ra ra
B1

B2

x2+x1x2

ra ra
B1

ra ra
B2

B2

B3

x3 x3+x1 x3+x2x3+x2+x1x0 = 0
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Additive properties of sets defined by the Thue-Morse word

Definition

k ∈ N, A ⊆ N
A is k-summable, if there exists x0 < x1 < . . . < xk−1 such that
FS〈xn〉k−1

n=0 ⊆ A.

finite FS-big = k-summable for every k

Theorem

Let u be a factor of the Thue-Morse word T. Then

1 If u is a prefix of T then T
∣∣
u

is an IP-set.

2 If u is a prefix of T̃ then T
∣∣
u

is infinite FS-big but is not an
IP-set.

3 If u is neither a prefix of T nor a prefix of T̃ then T
∣∣
u

is not

3-summable. Moreover T
∣∣
u

is 2-summable if and only if u is a
prefix of τn(010) or of τn(101) for some n ≥ 0.
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Example: T|0 is an IP-set

Example

T|0 is an IP-set

[n]2 the binary expansion of n in base 2

T|0 = {n| the number of 1’s in [n]2 is even}

xi is defined by:
[xi ]2 = 11(00)i

[xi0 + · · ·+ xik−1
]2 = 11(00)ik−1−ik−211 . . . 11(00)i1−i0

so [xi0 + · · ·+ xik−1
]2 has even number of 1’s and hence is in T|0
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Example: T|0 is an IP-set

Example

T|0 is an IP-set

[n]2 the binary expansion of n in base 2

T|0 = {n| the number of 1’s in [n]2 is even}

xi is defined by:
[xi ]2 = 11(00)i
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Infinite FS-big is not partition regular

Definition

k ∈ N, A ⊆ N
A is k∞-summable, if there exists x0 < x1 < . . . such that
FS≤k〈xn〉∞n=0 ⊆ A.

infinite FS-big = k∞-summable for every k

Lemma

There exists a partition T
∣∣
1

= A0 ∪ A1 such that A0, A1 are not
2∞-summable.

Since T
∣∣
1

is infinite FS-big, we get:

Corollary

The collection of all infinite FS-big sets is not partition regular.

A0 and A1 are finite FS-big, but not infinite FS-big
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An open problem

An open problem of Imre Leader

The property k-summable or k∞-summable is not partition regular.

Consider the set

R∞(k) = {A ⊆ N |whenever r ∈ N and A =
r⋃

i=0

Ai ,

∃ 0 ≤ i ≤ r such that Ai is k∞-summable}

Then R∞(k) 6= ∅ (e.g., contains all IP-sets).

Question: does there exist a member of R∞(2) which is not an
IP-set?

V. Bergelson and B. Rothschild, A selection of open problems, Topology
Appl. 156 (2009), 2674–2681.
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ultrafilters

Definition

A set U of subsets of N is called an ultrafilter if

∅ /∈ U .
If A ∈ U and A ⊆ B, then B ∈ U .
A ∩ B ∈ U whenever both A and B belong to U .
For every A ⊆ N either A ∈ U or Ac ∈ U where Ac denotes
the complement of A.

Example

∀n ∈ N, the set Un = {A ⊆ N | n ∈ A} is a principal ultrafilter.

This defines an injection i : N ↪→ βN by: n 7→ Un.

By way of Zorn’s lemma, one can show the existence of
non-principal (or free) ultrafilters.

M. Bucci, N. Hindman, S. Puzynina, L. Q. Zamboni Additive combinatorics generated by uniformly recurrent words



Stone-Čech compactification

Stone-Čech compactification βN of N: the set of all ultrafilters on
N with the Stone topology.

A ⊆ N, we set A◦ = {p ∈ βN|A ∈ p}.
B = {A◦|A ⊆ N}: a basis for the open sets of βN, defines a
topology on βN
βN is both compact and Hausdorff.
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addition of ultrafilters

addition of ultrafilters p, q

p + q = {A ⊆ N | {n ∈ N|A− n ∈ p} ∈ q}.

p + q is an ultrafilter

for each fixed p ∈ βN, the mapping q 7→ p + q defines a
continuous map from βN into itself

for principal ultrafilters: Um + Un = Um+n

in general addition of ultrafilters is associative and
non-commutative

βN is a compact left-topological semigroup
(i.e., ∀x ∈ βN the mapping y 7→ x + y is continuous)
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Idempotent ultrafilters

(S,+) a semigroup
An element p ∈ S is called an idempotent if p + p = p

Theorem (Ellis, 1958)

Let (S,+) be a compact left-topological semigroup. Then S
contains an idempotent.

=⇒ βN contains a non-principal ultrafilter p
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IP*-sets

Definition

A subset A ⊆ N is called an IP∗-set if A ∩ B 6= ∅ for every IP-set
B ⊆ N.

Every IP*-set is IP-set (follows from Hindman’s theorem).
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idempotent ultrafilters

link between IP-sets and idempotents in βN :

Theorem (Theorem 5.12 in [1])

A subset A ⊆ N is an IP-set if and only if A ∈ p for some
idempotent p ∈ βN.

Corollary

A is an IP∗-set if and only if A ∈ p for every idempotent p ∈ βN

[1] N. Hindman and D. Strauss, Algebra in the Stone-Čech
compactification: theory and applications, 2nd edition, Walter de
Gruyter & Co., Berlin, 2012.
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mapping p∗

Σ a non-empty finite set
p ∈ βN an ultrafilter

Definition

Define a mapping p∗ : ΣN → ΣN as follows:
For each ω ∈ ΣN, u ∈ Σ∗ is a prefix of p∗(ω) ⇐⇒ ω

∣∣
u
∈ p.

Lemma

The set ω
∣∣
u

is an IP-set if and only if u is a prefix of p∗(ω) for
some idempotent p ∈ βN.

Remark: our definition of p∗ coincides with the definition of p-lim
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mapping p∗

Theorem (Theorem 19.26 in [1])

Given two infinite words x , y ∈ ΣN. If x and y are proximal with y
uniformly recurrent, then there exists an idempotent p ∈ βN such
that p∗(x) = y .
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words and subshifts

topology in ΣN generated by the metric

d(x , y) =
1

2n
where n = inf{k : xk 6= yk}

whenever x , y ∈ ΣN

T : ΣN → ΣN the shift transformation defined by
T : (xn)n∈N 7→ (xn+1)n∈N.

Fω the set of factors of ω
ω is uniformly recurrent if for every u ∈ Fω the set ω

∣∣
u

is
syndedic, i.e., of bounded gap.

subshift on Σ: a pair (X ,T ) where X is a closed and
T -invariant subset of ΣN.

(X ,T ) is minimal whenever X and the empty set are the only
T -invariant closed subsets of X .
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words and subshifts

each ω ∈ ΣN is associated to the subshift (X ,T ) where X is
the shift orbit closure of ω.

If ω is uniformly recurrent, then the associated subshift
(X ,T ) is minimal.

Thus ∀x , y ∈ X have the same set of factors, i.e., Fx = Fy .

Denote by FX the set of factors of any word x ∈ X .

Two points x , y in X are proximal if and only if for each
N > 0 there exists n ∈ N such that

xnxn+1 . . . xn+N = ynyn+1 . . . yn+N .
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Sturmian words

factor complexity of w ∈ ΣN: pw (n) = the number of distinct
factors of w of length n

Sturmian words are infinite words having the factor complexity
p(n) = n + 1 for all n ≥ 0.

p(1) = 2 ⇒ Sturmian words are binary

equivalent definitions:

via an irrational rotation on the circle of circumference one
mechanical words and cutting sequences
Sturmian morphisms
balance property
palindromic closure
standard factors

Example of Sturmian word: the Fibonacci word

01001010010010100101001001010010 . . .

fixed by the morphism 0 7→ 01 and 1 7→ 0.
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Sturmian words

special factor

A factor v of a word w is called right (resp., left) special if va and
vb (resp., av and bv) are factors of w for a 6= b ∈ Σ.

Example

Fibonacci word 01001010010010100101001001010010 . . .,
10 is right special (both 100 and 101 are factors), 01 is not (011 is
not a factor).
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Sturmian words

characteristic word

ω ∈ {0, 1}N a Sturmian word,
Ω the shift orbit closure of ω.
Ω contains a unique word all of whose prefixes are left special
factors of ω. Such a word is called the characteristic word ω̃.
Hence both 0ω̃, 1ω̃ ∈ Ω.

In the definition via mechanical words characteristic words
correspond to ρ = α.

singular word

A Sturmian word ω is called singular if T n(ω) = ω̃ for some n ≥ 1.
Otherwise it is said to be nonsingular.
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IP-sets and Sturmian words

Theorem (Bucci, P., Zamboni, 2013)

Let ω ∈ Ω be a nonsingular Sturmian word, and u a factor of ω.
Then ω

∣∣
u

is an IP-set if and only if u is a prefix of ω.

Theorem (Bucci, P., Zamboni, 2013)

Let ω ∈ Ω be a singular Sturmian word such that T n0(ω) = ω̃ with
n0 ≥ 1. Then ω

∣∣
u

is an IP-set if and only if either u is a prefix of ω
or a prefix of ω′ where ω′ is the unique other element of Ω with
T n0(ω′) = ω̃.
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IP-sets and Sturmian words

Corollary

For every prefix v of a nonsingular Sturmian word ω and n ∈ ω
∣∣
v
,

the set ω
∣∣
v
− n is an IP∗-set.

Remark: In general the property of being an IP∗-set is not
translation invariant.
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IP-sets and Sturmian words

Proof is based on

Lemma

Let ω ∈ {0, 1}N be a nonsingular Sturmian word and p ∈ βN an
idempotent ultrafilter. Then p∗(ω) = ω.

Lemma

If ω, ω′ ∈ Ω are such that T n0(ω) = T n0(ω′) = ω̃, and let p ∈ βN
be an idempotent ultrafilter. Then p∗(ω) = p∗(ω′) ∈ {ω, ω′}.

M. Bucci, N. Hindman, S. Puzynina, L. Q. Zamboni Additive combinatorics generated by uniformly recurrent words



Other partitions

partitions defined by words generated by substitution rules

fixed points of generalized Thue-Morse substitution to an alphabet
of size r ≥ 2 give

Theorem (Bucci, P., Zamboni, 2011)

For each pair of positive integers r and N there exists a partition of

N = A1 ∪ A2 ∪ · · · ∪ Ar

such that

Ai − n is an IP-set for each 1 ≤ i ≤ r and 1 ≤ n ≤ N.

For each n > N, exactly one of the sets
{A1 − n,A2 − n, . . . ,Ar − n} is an IP-set.

we prove and use the fact that each fixed point of the generalized
Thue-Morse substitution is distal (i.e., proximal only to itself)

M. Bucci, N. Hindman, S. Puzynina, L. Q. Zamboni Additive combinatorics generated by uniformly recurrent words



Other partitions

Theorem (Bucci, P., Zamboni, 2011)

For each positive integer r there exists a partition of
N = A1 ∪ A2 ∪ · · · ∪ Ar such that for each 1 ≤ i ≤ r and n ≥ 0,
the set Ai − n is an IP-set.

words generating minimal topologically weak mixing subshifts
e.g., subshift generated by the substitution
0 7→ 001
1 7→ 11001

A minimal subshift (X ,T ) is topologically weak mixing if for every
pair of factors u, v ∈ FX the set

{n ∈ N | uΣnv ∩ FX 6= ∅}

is thick, i.e., for every positive integer N, the set contains N
consecutive positive integers.
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Infinite partition

Definition

We denote with w (+) the right palindromic closure of the word w ,
i.e., the shortest palindrome which has w as a prefix.

For example, abaa(+) = abaaba.

Definition

The iterated palindromic operator ψ is defined inductively:

ψ(ε) = ε,

For any word w and any letter a, ψ(wa) = (ψ(w)a)(+).

For example, ψ(aaba) = aabaaabaa.
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Infinite partition into IP-sets

Proposition [Bucci, P., Zamboni, 2011]

∆ a right infinite word on an infinite alphabet Σ

each letter a ∈ Σ occurs in ∆ an infinite number of times

ω = ψ(∆)

Then,

for any a ∈ Σ, the set aω
∣∣
a

is an IP-set,

{ω
∣∣
a

+ 1}a∈Σ is an infinite partition of N− {0} into IP-sets
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Central sets

A ⊂ N

χ(A) ∈ {0, 1}N: χn =

{
1, if n ∈ A,

0, otherwise.

Equivalently: A = χ(A)
∣∣
1
.

Definition

A ⊂ N is a central set if χ(A) is proximal to a uniformly recurrent
word beginning with 1.

Every central set is an IP-set.
Some IP-sets are not central.

Example: the set s
∣∣
0
, where s is a Sierpinski word

s = 010111010111111111010111010 · · · (a fixed point of
0→ 010, 1→ 111). s

∣∣
1

is central

Originally defined by Furstenberg in terms of topological
dynamics.

most of our results on IP-sets apply also to central sets
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Central sets: equivalent definition

(S,+) a semigroup

I ⊆ S is a right (resp. left) ideal if I + S ⊆ I (resp.
S + I ⊆ I).

It is a two sided ideal if it is both a left and right ideal.

A right (resp. left) ideal I is minimal if every right (resp. left)
ideal J included in I coincides with I.
every compact Hausdorff left-topological semigroup S (e.g.,
βN) admits the smallest two sided ideal K (S)

idempotents in K (S) are called minimal

Definition

A subset A ⊂ N is called central if it is a member of some minimal
idempotent in βN.

Equivalence: Bergelson and Hindman, 1990
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Pisot conjecture and central sets

Theorem (M. Barge, L. Zamboni, 2013)

Let τ be an irreducible primitive substitution of Pisot type. Then
for any pair of fixed points x and y of τ the following are
equivalent:

1 x and y are strongly coincident.

2 x and y are proximal.

3 There exists a minimal idempotent p ∈ βN such that
y = p∗(x).

4 For any prefix u of y , the set x
∣∣
u

is a central set.
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Pisot substitutions and strong coincidence condition

Σ = {1, 2, . . . , n}, n ≥ 2; τ : Σ→ Σ+ a substitution

the Abelianization of τ is the square matrix Mτ : mij = |τ(j)|i
τ is primitive if all the entries of Mn

τ are strictly positive.

In this case Mτ has a simple positive Perron-Frobenius
eigenvalue called the dilation of τ.

τ is irreducible if the minimal polynomial of its dilation is
equal to the characteristic polynomial of Mτ .

τ is of Pisot type if its dilation is a Pisot number.

a Pisot number is an algebraic integer greater than 1 all of
whose algebraic conjugates lie strictly inside the unit circle

A primitive substitution τ satisfies the strong coincidence
condition if and only if any pair of fixed points x and y are
strongly coincident, i.e., we can write x = scx ′, and y = tcy ′

for some s, t ∈ Σ+, c ∈ Σ, and x ′, y ′ ∈ Σ∞ with s ∼ab t.

Conjecture: if τ is an irreducible primitive substitution of
Pisot type, then τ satisfies the strong coincidence condition.
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