Additive combinatorics generated by uniformly recurrent words

¹University of Turku, Finland

²Howard University, USA

³Sobolev Institute of Mathematics, Russia

⁴Université de Lyon, France

イロン イボン イヨン イヨン

additive Ramsey theory + combinatorics on words

- additive properties of sets of integers
- using infinite words for building sets with additive properties
- methods: ultrafilters, substitutive dynamics, numeration systems
- connections with Pisot conjecture

・回 と くほ と く ほ と

 $\mathbb{N} = A_1 \cup \cdots \cup A_n$, $A_i \cap A_j = \emptyset$ for $i \neq j$. Does there exist *i* and *x*, *y* such that *x*, *y*, *x* + *y* \in *A*?

★御★ ★注★ ★注★

 $\mathbb{N} = A_1 \cup \cdots \cup A_n$, $A_i \cap A_j = \emptyset$ for $i \neq j$. Does there exist *i* and *x*, *y* such that *x*, *y*, *x* + *y* \in *A*?

Answer: yes! Issai Schur (1916)

→ 同 → → 目 → → 目 →

 $\mathbb{N} = A_1 \cup \cdots \cup A_n$, $A_i \cap A_j = \emptyset$ for $i \neq j$. Does there exist *i* and *x*, *y* such that *x*, *y*, *x* + *y* \in *A*?

Answer: yes! Issai Schur (1916)

Moreover: for every k there exist i and $x_0 < x_1 < \cdots < x_{k-1}$ such that $\{\sum_{t \in F} x_t | F \subseteq \{0, 1, \dots, k-1\}\} \subseteq A_i$ (Folkman-Rado-Sanders)

▲祠 → ▲ 臣 → ▲ 臣 →

 $\mathbb{N} = A_1 \cup \cdots \cup A_n$, $A_i \cap A_j = \emptyset$ for $i \neq j$. Does there exist *i* and *x*, *y* such that *x*, *y*, *x* + *y* \in *A*?

Answer: yes! Issai Schur (1916)

Moreover: for every k there exist i and $x_0 < x_1 < \cdots < x_{k-1}$ such that $\{\sum_{t \in F} x_t | F \subseteq \{0, 1, \dots, k-1\}\} \subseteq A_i$ (Folkman-Rado-Sanders)

Even more: there exist *i* and $x_0 < x_1 < \cdots < x_k < \ldots$ such that $\{\sum_{t \in F} x_t | F \subset \mathbb{N}, |F| \le \infty\} \subseteq A_i$ (N. Hindman 1974)

 $A \subseteq \mathbb{N}$ is an IP-set if there exist an infinite sequence $x_0 < x_1 < \cdots < x_k < \ldots$ such that A contains all its finite sums with distinct elements.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

 $A \subseteq \mathbb{N}$ is an IP-set if there exist an infinite sequence $x_0 < x_1 < \cdots < x_k < \ldots$ such that A contains all its finite sums with distinct elements.

Example

The set of even numbers is IP-set. The set of odd numbers is not.

◆ロ > ◆母 > ◆臣 > ◆臣 > ○臣 - のへで

 $A \subseteq \mathbb{N}$ is an IP-set if there exist an infinite sequence $x_0 < x_1 < \cdots < x_k < \ldots$ such that A contains all its finite sums with distinct elements.

Example

The set of even numbers is IP-set. The set of odd numbers is not.

Question (typically difficult): Given $A \subseteq \mathbb{N}$, is A an IP-set?

 $A \subseteq \mathbb{N}$ is an IP-set if there exist an infinite sequence $x_0 < x_1 < \cdots < x_k < \ldots$ such that A contains all its finite sums with distinct elements.

Example

The set of even numbers is IP-set. The set of odd numbers is not.

Question (typically difficult): Given $A \subseteq \mathbb{N}$, is A an IP-set?

reformulation in terms of the algebraic/topological properties of the Stone-Čech compactification of \mathbb{N} (the set of all ultrafilters on \mathbb{N}):

Theorem (Theorem 5.12 in [1])

A subset $A \subseteq \mathbb{N}$ is an IP-set if and only if $A \in p$ for some idempotent ultrafilter p on \mathbb{N} .

[1] N. Hindman and D. Strauss, Algebra in the Stone-Čech compactification: theory and applications, 2nd edition, Walter de Gruyter & Co., Berlin, 2012.

M. Bucci, N. Hindman, S. Puzynina, L. Q. Zamboni

Additive combinatorics generated by uniformly recurrent words

A collection of sets S is partition regular if for each $A \in S$, whenever A is partitioned into finitely many sets, at least one set of the partition is in S.

A collection of sets S is partition regular if for each $A \in S$, whenever A is partitioned into finitely many sets, at least one set of the partition is in S.

Example

Partition regular collections of sets:

- sets having positive upper density
- sets having arbitrarily long arithmetic progressions

 $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ natural numbers $A \subseteq \mathbb{N}$ a subset of naturals

 $FS(A) = \{\sum_{x \in F} x | F \subset A, |F| < \infty\}$ finite sums of elements of A

M. Bucci, N. Hindman, S. Puzynina, L. Q. Zamboni Additive combinatorics generated by uniformly recurrent words

(4回) (注) (注) (注) (注)

 $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ natural numbers $A \subseteq \mathbb{N}$ a subset of naturals

 $FS(A) = \{\sum_{x \in F} x \mid F \subset A, |F| < \infty\}$ finite sums of elements of A

 $FS_{\leq k}(A) = \{\sum_{x \in F} x \mid F \subset A, |F| \leq k\}$ finite sums of at most k elements of A

 $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ natural numbers $A \subseteq \mathbb{N}$ a subset of naturals

 $FS(A) = \{\sum_{x \in F} x | F \subset A, |F| < \infty\}$ finite sums of elements of A

 $FS_{\leq k}(A) = \{\sum_{x \in F} x \mid F \subset A, |F| \leq k\}$ finite sums of at most k elements of A

Definition

• A is finite FS-big if for every positive integer k there exists $x_0 < x_1 < \cdots < x_{k-1}$ such that $FS\langle x_n \rangle_{n=0}^{k-1} \subseteq A$.

イロト イポト イヨト イヨト

 $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ natural numbers $A \subseteq \mathbb{N}$ a subset of naturals

 $FS(A) = \{\sum_{x \in F} x | F \subset A, |F| < \infty\}$ finite sums of elements of A

 $FS_{\leq k}(A) = \{\sum_{x \in F} x \mid F \subset A, |F| \leq k\}$ finite sums of at most k elements of A

Definition

- A is finite FS-big if for every positive integer k there exists $x_0 < x_1 < \cdots < x_{k-1}$ such that $FS\langle x_n \rangle_{n=0}^{k-1} \subseteq A$.
- A is infinite FS-big if for every positive integer k there exists $x_0 < x_1 < \cdots < x_n < \ldots$ such that $FS_{\leq k} \langle x_n \rangle_{n=0}^{\infty} \subseteq A$.

・ロン ・回と ・ヨン ・ヨン

 $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ natural numbers $A \subseteq \mathbb{N}$ a subset of naturals

 $FS(A) = \{\sum_{x \in F} x | F \subset A, |F| < \infty\}$ finite sums of elements of A

 $FS_{\leq k}(A) = \{\sum_{x \in F} x \mid F \subset A, |F| \leq k\}$ finite sums of at most k elements of A

Definition

- A is finite FS-big if for every positive integer k there exists $x_0 < x_1 < \cdots < x_{k-1}$ such that $FS\langle x_n \rangle_{n=0}^{k-1} \subseteq A$.
- A is infinite FS-big if for every positive integer k there exists $x_0 < x_1 < \cdots < x_n < \ldots$ such that $FS_{\leq k} \langle x_n \rangle_{n=0}^{\infty} \subseteq A$.
- A is an IP-set if there exists $x_0 < x_1 < \cdots < x_n < \ldots$ A such that $FS\langle x_n \rangle_{n=0}^{\infty} \subseteq A$.

(ロ) (同) (E) (E) (E)

 $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ natural numbers $A \subseteq \mathbb{N}$ a subset of naturals

 $FS(A) = \{\sum_{x \in F} x | F \subset A, |F| < \infty\}$ finite sums of elements of A

 $FS_{\leq k}(A) = \{\sum_{x \in F} x \mid F \subset A, |F| \leq k\}$ finite sums of at most k elements of A

Definition

- A is finite FS-big if for every positive integer k there exists $x_0 < x_1 < \cdots < x_{k-1}$ such that $FS\langle x_n \rangle_{n=0}^{k-1} \subseteq A$.
- A is infinite FS-big if for every positive integer k there exists $x_0 < x_1 < \cdots < x_n < \ldots$ such that $FS_{\leq k} \langle x_n \rangle_{n=0}^{\infty} \subseteq A$.
- A is an IP-set if there exists $x_0 < x_1 < \cdots < x_n < \ldots$ A such that $FS\langle x_n \rangle_{n=0}^{\infty} \subseteq A$.

 $\mathsf{IP}\mathsf{-sets} \subset \mathsf{infinite} \ \mathsf{FS}\mathsf{-big} \subset \mathsf{finite} \ \mathsf{FS}\mathsf{-big}$

M. Bucci, N. Hindman, S. Puzynina, L. Q. Zamboni

Partition regularity of additive properties

Theorem (Hindman, 1974)

The collection of all IP-sets is partition regular.

- (目) - (日) - (日)

Theorem (Hindman, 1974)

The collection of all IP-sets is partition regular.

Theorem (Bucci, Hindman, P., Zamboni, 2013)

The collection of all finite FS-big sets is partition regular.

(4月) (日)

Theorem (Hindman, 1974)

The collection of all IP-sets is partition regular.

Theorem (Bucci, Hindman, P., Zamboni, 2013)

The collection of all finite FS-big sets is partition regular.

Theorem (Bucci, Hindman, P., Zamboni, 2013)

The collection of all infinite FS-big sets is not partition regular.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Sets defined by words

alphabet: a finite non-empty set Σ infinite word: $w = w_0 w_1 \dots w_i \dots$, where $w_i \in \Sigma$ the set of infinite words: $\Sigma^{\mathbb{N}}$ factor u of w: $u = w_i \dots w_{i+j}$ for some $i, j \in \mathbb{N}$

Subset of \mathbb{N} defined by occurrence of factor *u* in *w*:

$$w|_{u} = \{n \in \mathbb{N} \mid u_{n}u_{n+1} \dots u_{n+|u|-1} = u\}$$

A (1) × (2) ×

alphabet: a finite non-empty set Σ infinite word: $w = w_0 w_1 \dots w_i \dots$, where $w_i \in \Sigma$ the set of infinite words: $\Sigma^{\mathbb{N}}$ factor u of w: $u = w_i \dots w_{i+j}$ for some $i, j \in \mathbb{N}$

Subset of \mathbb{N} defined by occurrence of factor u in w:

$$w|_{u} = \{n \in \mathbb{N} \mid u_{n}u_{n+1} \dots u_{n+|u|-1} = u\}$$

w an aperiodic uniformly recurrent word. Is $w|_u$ an IP-set?

A (1) × (2) ×

the Thue-Morse word

$\mathbb{T} = 01101001100101101001\dots$

a fixed point of the morphism $0\mapsto 01$ and $1\mapsto 10.$

- 4 回 2 - 4 □ 2 - 4 □

the Thue-Morse word

 $\mathbb{T} = 01101001100101101001\dots$

a fixed point of the morphism $0\mapsto 01$ and $1\mapsto 10.$

Example $\mathbb{T}|_{01} = \{0, 3, 6, 10, 12, 15, \dots\}$

Proposition

Let $\omega = \omega_0 \omega_1 \omega_2 \ldots \in \Sigma^{\mathbb{N}}$ be recurrent and set $a = \omega_0$. Then $\omega|_a$ is an IP-set.

Proposition

Let $\omega = \omega_0 \omega_1 \omega_2 \ldots \in \Sigma^{\mathbb{N}}$ be recurrent and set $a = \omega_0$. Then $\omega|_a$ is an IP-set.

Proof:

$$\omega = \overset{a}{\underset{x_0 = 0}{\bullet}}$$

Proposition

Let $\omega = \omega_0 \omega_1 \omega_2 \ldots \in \Sigma^{\mathbb{N}}$ be recurrent and set $a = \omega_0$. Then $\omega|_a$ is an IP-set.

Proof:

$$\omega = \underbrace{a}_{x_0} \underbrace{a}_{x_1} \underbrace{a}_{x_1}$$

Proposition

Let $\omega = \omega_0 \omega_1 \omega_2 \ldots \in \Sigma^{\mathbb{N}}$ be recurrent and set $a = \omega_0$. Then $\omega|_a$ is an IP-set.

Proof:

A (1) > (1) > (1)

Proposition

Let $\omega = \omega_0 \omega_1 \omega_2 \ldots \in \Sigma^{\mathbb{N}}$ be recurrent and set $a = \omega_0$. Then $\omega|_a$ is an IP-set.

Proof:

・ロン ・回 と ・ ヨ と ・ ヨ と

Additive properties of sets defined by the Thue-Morse word

Definition

 $k \in \mathbb{N}, A \subseteq \mathbb{N}$ A is *k*-summable, if there exists $x_0 < x_1 < \ldots < x_{k-1}$ such that $FS\langle x_n \rangle_{n=0}^{k-1} \subseteq A$.

(4月) (4日) (4日)

Additive properties of sets defined by the Thue-Morse word

Definition

 $k \in \mathbb{N}, A \subseteq \mathbb{N}$ A is *k*-summable, if there exists $x_0 < x_1 < \ldots < x_{k-1}$ such that $FS\langle x_n \rangle_{n=0}^{k-1} \subseteq A$.

finite FS-big = k-summable for every k

(本間) (本語) (本語)

Additive properties of sets defined by the Thue-Morse word

Definition

 $k \in \mathbb{N}, A \subseteq \mathbb{N}$ A is *k*-summable, if there exists $x_0 < x_1 < \ldots < x_{k-1}$ such that $FS\langle x_n \rangle_{n=0}^{k-1} \subseteq A$.

finite FS-big = k-summable for every k

Theorem

Let u be a factor of the Thue-Morse word $\mathbb{T}.$ Then

- If u is a prefix of \mathbb{T} then $\mathbb{T}|_{u}$ is an IP-set.
- 3 If u is a prefix of $\tilde{\mathbb{T}}$ then $\mathbb{T}|_{u}$ is infinite FS-big but is not an IP-set.
- If u is neither a prefix of \mathbb{T} nor a prefix of $\tilde{\mathbb{T}}$ then $\mathbb{T}|_{u}$ is not 3-summable. Moreover $\mathbb{T}|_{u}$ is 2-summable if and only if u is a prefix of $\tau^{n}(010)$ or of $\tau^{n}(101)$ for some $n \geq 0$.

 $\mathbb{T}|_0$ is an IP-set

M. Bucci, N. Hindman, S. Puzynina, L. Q. Zamboni Additive combinatorics generated by uniformly recurrent words

・ロン ・回 と ・ ヨン ・ ヨン

æ

 $\mathbb{T}|_0$ is an IP-set

 $[n]_2$ the binary expansion of n in base 2

 $\mathbb{T}|_0 = \{n | \text{ the number of 1's in } [n]_2 \text{ is even} \}$

イロン イヨン イヨン イヨン

 $\mathbb{T}|_0$ is an IP-set

 $[n]_2$ the binary expansion of n in base 2

```
\mathbb{T}|_0 = \{n| \text{ the number of 1's in } [n]_2 \text{ is even}\}
```

x_i is defined by:

 $[x_i]_2 = 11(00)^i$

イロン イヨン イヨン イヨン

 $\mathbb{T}|_0$ is an IP-set

 $[n]_2$ the binary expansion of n in base 2

 $\mathbb{T}|_0 = \{n| \text{ the number of 1's in } [n]_2 \text{ is even}\}$

x_i is defined by:

 $[x_i]_2 = 11(00)^i$

 $[x_{i_0} + \dots + x_{i_{k-1}}]_2 = 11(00)^{i_{k-1}-i_{k-2}}11\dots 11(00)^{i_1-i_0}$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

 $\mathbb{T}|_0$ is an IP-set

 $[n]_2$ the binary expansion of n in base 2

 $\mathbb{T}|_0 = \{n | \text{ the number of 1's in } [n]_2 \text{ is even} \}$

x_i is defined by:

 $[x_i]_2 = 11(00)^i$

$$[x_{i_0} + \dots + x_{i_{k-1}}]_2 = 11(00)^{i_{k-1}-i_{k-2}}11\dots 11(00)^{i_1-i_0}$$

so $[x_{i_0} + \dots + x_{i_{k-1}}]_2$ has even number of 1's and hence is in $\mathbb{T}|_0$

イロン イヨン イヨン イヨン

Infinite FS-big is not partition regular

Definition

 $k \in \mathbb{N}, A \subseteq \mathbb{N}$ A is k^{∞} -summable, if there exists $x_0 < x_1 < \ldots$ such that $FS_{\leq k} \langle x_n \rangle_{n=0}^{\infty} \subseteq A$.

▲□→ ▲注→ ▲注→

3

Infinite FS-big is not partition regular

Definition

 $k \in \mathbb{N}, A \subseteq \mathbb{N}$ A is k^{∞} -summable, if there exists $x_0 < x_1 < \ldots$ such that $FS_{\leq k} \langle x_n \rangle_{n=0}^{\infty} \subseteq A$.

infinite FS-big = k^{∞} -summable for every k

・ロン ・回 と ・ ヨ と ・ ヨ と

Infinite FS-big is not partition regular

Definition

 $k \in \mathbb{N}, A \subseteq \mathbb{N}$ A is k^{∞} -summable, if there exists $x_0 < x_1 < \ldots$ such that $FS_{\leq k} \langle x_n \rangle_{n=0}^{\infty} \subseteq A$.

infinite FS-big = k^{∞} -summable for every k

Lemma

There exists a partition $\mathbb{T}|_1 = A_0 \cup A_1$ such that A_0 , A_1 are not 2^{∞} -summable.

Since $\mathbb{T}|_1$ is infinite FS-big, we get:

Corollary

The collection of all infinite FS-big sets is not partition regular.

 A_0 and A_1 are finite FS-big, but not infinite FS-big,

M. Bucci, N. Hindman, S. Puzynina, L. Q. Zamboni

Additive combinatorics generated by uniformly recurrent words

An open problem of Imre Leader

The property *k*-summable or k^{∞} -summable is not partition regular. Consider the set

$$\mathcal{R}^{\infty}(k) = \{A \subseteq \mathbb{N} \mid \text{whenever } r \in \mathbb{N} \text{ and } A = \bigcup_{i=0}^{r} A_i, \\ \exists 0 \le i \le r \text{ such that } A_i \text{ is } k^{\infty} \text{-summable} \}$$

Then $\mathcal{R}^{\infty}(k) \neq \emptyset$ (e.g., contains all IP-sets).

Question: does there exist a member of $\mathcal{R}^\infty(2)$ which is not an IP-set?

V. Bergelson and B. Rothschild, *A selection of open problems*, Topology Appl. **156** (2009), 2674–2681.

・ロン ・回 と ・ ヨ と ・ ヨ と

M. Bucci, N. Hindman, S. Puzynina, L. Q. Zamboni Additive combinatorics generated by uniformly recurrent words

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

A set $\mathcal U$ of subsets of $\mathbb N$ is called an ${\color{black} \textit{ultrafilter}}$ if

- $\emptyset \notin \mathcal{U}$.
- If $A \in \mathcal{U}$ and $A \subseteq B$, then $B \in \mathcal{U}$.
- $A \cap B \in \mathcal{U}$ whenever both A and B belong to \mathcal{U} .
- For every A ⊆ N either A ∈ U or A^c ∈ U where A^c denotes the complement of A.

Example

 $\forall n \in \mathbb{N}$, the set $\mathcal{U}_n = \{A \subseteq \mathbb{N} \mid n \in A\}$ is a principal ultrafilter.

This defines an injection $i : \mathbb{N} \hookrightarrow \beta \mathbb{N}$ by: $n \mapsto \mathcal{U}_n$.

By way of Zorn's lemma, one can show the existence of non-principal (or *free*) ultrafilters.

・ロット (四) (日) (日)

3

Stone-Čech compactification $\beta \mathbb{N}$ of \mathbb{N} : the set of all ultrafilters on \mathbb{N} with the *Stone topology.*

- $A \subseteq \mathbb{N}$, we set $A^{\circ} = \{ p \in \beta \mathbb{N} | A \in p \}$.
- B = {A° | A ⊆ ℕ}: a basis for the open sets of βℕ, defines a topology on βℕ
- $\beta \mathbb{N}$ is both compact and Hausdorff.

addition of ultrafilters p, q

$$p+q = \{A \subseteq \mathbb{N} \mid \{n \in \mathbb{N} \mid A-n \in p\} \in q\}.$$

p + q is an ultrafilter

for each fixed $p \in \beta \mathbb{N}$, the mapping $q \mapsto p + q$ defines a continuous map from $\beta \mathbb{N}$ into itself

for principal ultrafilters: $U_m + U_n = U_{m+n}$

in general addition of ultrafilters is associative and non-commutative

 $\beta \mathbb{N}$ is a compact *left-topological semigroup* (i.e., $\forall x \in \beta \mathbb{N}$ the mapping $y \mapsto x + y$ is continuous)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$(\mathcal{S},+)$ a semigroup An element $p\in\mathcal{S}$ is called an idempotent if p+p=p

Theorem (Ellis, 1958)

Let (S, +) be a compact left-topological semigroup. Then S contains an idempotent.

 $\implies \beta \mathbb{N}$ contains a non-principal ultrafilter p

・ロン ・回と ・ヨン ・ヨン

A subset $A \subseteq \mathbb{N}$ is called an IP^* -set if $A \cap B \neq \emptyset$ for every IP-set $B \subseteq \mathbb{N}$.

Every IP*-set is IP-set (follows from Hindman's theorem).

M. Bucci, N. Hindman, S. Puzynina, L. Q. Zamboni Additive combinatorics generated by uniformly recurrent words

(ロ) (同) (E) (E) (E)

link between IP-sets and idempotents in $\beta\mathbb{N}$:

Theorem (Theorem 5.12 in [1])

A subset $A \subseteq \mathbb{N}$ is an IP-set if and only if $A \in p$ for some idempotent $p \in \beta \mathbb{N}$.

Corollary

A is an IP*-set if and only if $A \in p$ for every idempotent $p \in \beta \mathbb{N}$

[1] N. Hindman and D. Strauss, *Algebra in the Stone-Čech compactification: theory and applications,* 2nd edition, Walter de Gruyter & Co., Berlin, 2012.

 Σ a non-empty finite set $p \in \beta \mathbb{N}$ an ultrafilter

Definition

Define a mapping $p^* : \Sigma^{\mathbb{N}} \to \Sigma^{\mathbb{N}}$ as follows: For each $\omega \in \Sigma^{\mathbb{N}}$, $u \in \Sigma^*$ is a prefix of $p^*(\omega) \iff \omega|_{\mu} \in p$.

▲祠 → ▲ 臣 → ▲ 臣 →

 Σ a non-empty finite set $p \in \beta \mathbb{N}$ an ultrafilter

Definition

Define a mapping $p^* : \Sigma^{\mathbb{N}} \to \Sigma^{\mathbb{N}}$ as follows: For each $\omega \in \Sigma^{\mathbb{N}}$, $u \in \Sigma^*$ is a prefix of $p^*(\omega) \iff \omega |_u \in p$.

Lemma

The set $\omega|_u$ is an IP-set if and only if u is a prefix of $p^*(\omega)$ for some idempotent $p \in \beta \mathbb{N}$.

Remark: our definition of p^* coincides with the definition of p-lim

Theorem (Theorem 19.26 in [1])

Given two infinite words $x, y \in \Sigma^{\mathbb{N}}$. If x and y are proximal with y uniformly recurrent, then there exists an idempotent $p \in \beta \mathbb{N}$ such that $p^*(x) = y$.

・ロン ・回 と ・ ヨ と ・ ヨ と

words and subshifts

 \bullet topology in $\Sigma^{\mathbb{N}}$ generated by the metric

$$d(x,y) = rac{1}{2^n}$$
 where $n = \inf\{k : x_k \neq y_k\}$

whenever $x, y \in \Sigma^{\mathbb{N}}$

- $T: \Sigma^{\mathbb{N}} \to \Sigma^{\mathbb{N}}$ the shift transformation defined by $T: (x_n)_{n \in \mathbb{N}} \mapsto (x_{n+1})_{n \in \mathbb{N}}$.
- \mathcal{F}_{ω} the set of factors of ω ω is uniformly recurrent if for every $u \in \mathcal{F}_{\omega}$ the set $\omega|_{u}$ is syndedic, i.e., of bounded gap.
- subshift on Σ: a pair (X, T) where X is a closed and T-invariant subset of Σ^ℕ.
- (X, T) is minimal whenever X and the empty set are the only T-invariant closed subsets of X.

words and subshifts

- each ω ∈ Σ^N is associated to the subshift (X, T) where X is the shift orbit closure of ω.
- If ω is uniformly recurrent, then the associated subshift (X, T) is minimal.

Thus $\forall x, y \in X$ have the same set of factors, i.e., $\mathcal{F}_x = \mathcal{F}_y$. Denote by \mathcal{F}_X the set of factors of any word $x \in X$.

• Two points x, y in X are proximal if and only if for each N > 0 there exists $n \in \mathbb{N}$ such that

$$x_n x_{n+1} \dots x_{n+N} = y_n y_{n+1} \dots y_{n+N}.$$

- 小田 ト イヨト 一日

Sturmian words

- factor complexity of w ∈ Σ^N: p_w(n) = the number of distinct factors of w of length n
- Sturmian words are infinite words having the factor complexity p(n) = n + 1 for all $n \ge 0$.
- $p(1) = 2 \Rightarrow$ Sturmian words are binary
- equivalent definitions:
 - via an irrational rotation on the circle of circumference one
 - mechanical words and cutting sequences
 - Sturmian morphisms
 - balance property
 - palindromic closure
 - standard factors
- Example of Sturmian word: the Fibonacci word

0100101001001010010010010010010010...

fixed by the morphism $0 \mapsto 01$ and $1 \mapsto 0$.

special factor

A factor v of a word w is called right (resp., left) special if va and vb (resp., av and bv) are factors of w for $a \neq b \in \Sigma$.

Example

Fibonacci word 01001010010010010010010010010..., 10 is right special (both 100 and 101 are factors), 01 is not (011 is not a factor).

(4月) (日)

characteristic word

 $\omega \in \{\mathbf{0}, \mathbf{1}\}^{\mathbb{N}}$ a Sturmian word,

 Ω the shift orbit closure of $\omega.$

 Ω contains a unique word all of whose prefixes are left special factors of ω . Such a word is called the characteristic word $\tilde{\omega}$. Hence both $0\tilde{\omega}, 1\tilde{\omega} \in \Omega$.

In the definition via mechanical words characteristic words correspond to $\rho=\alpha.$

singular word

A Sturmian word ω is called singular if $T^n(\omega) = \tilde{\omega}$ for some $n \ge 1$. Otherwise it is said to be nonsingular.

・ロト ・日本 ・モート ・モート

Theorem (Bucci, P., Zamboni, 2013)

Let $\omega \in \Omega$ be a nonsingular Sturmian word, and u a factor of ω . Then $\omega|_u$ is an IP-set if and only if u is a prefix of ω .

Theorem (Bucci, P., Zamboni, 2013)

Let $\omega \in \Omega$ be a singular Sturmian word such that $T^{n_0}(\omega) = \tilde{\omega}$ with $n_0 \ge 1$. Then $\omega|_u$ is an IP-set if and only if either u is a prefix of ω or a prefix of ω' where ω' is the unique other element of Ω with $T^{n_0}(\omega') = \tilde{\omega}$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Corollary

For every prefix v of a nonsingular Sturmian word ω and $n \in \omega|_{v}$, the set $\omega|_{v} - n$ is an IP*-set.

Remark: In general the property of being an $\mathsf{IP}^*\text{-set}$ is not translation invariant.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Proof is based on

Lemma

Let $\omega \in \{0,1\}^{\mathbb{N}}$ be a nonsingular Sturmian word and $p \in \beta \mathbb{N}$ an idempotent ultrafilter. Then $p^*(\omega) = \omega$.

Lemma

If $\omega, \omega' \in \Omega$ are such that $T^{n_0}(\omega) = T^{n_0}(\omega') = \tilde{\omega}$, and let $p \in \beta \mathbb{N}$ be an idempotent ultrafilter. Then $p^*(\omega) = p^*(\omega') \in \{\omega, \omega'\}$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Other partitions

partitions defined by words generated by substitution rules

fixed points of generalized Thue-Morse substitution to an alphabet of size $r \ge 2$ give

Theorem (Bucci, P., Zamboni, 2011)

For each pair of positive integers r and N there exists a partition of

 $\mathbb{N} = A_1 \cup A_2 \cup \cdots \cup A_r$

such that

- $A_i n$ is an IP-set for each $1 \le i \le r$ and $1 \le n \le N$.
- For each n > N, exactly one of the sets $\{A_1 n, A_2 n, \dots, A_r n\}$ is an IP-set.

we prove and use the fact that each fixed point of the generalized Thue-Morse substitution is distal (i.e., proximal only to itself)

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

Other partitions

Theorem (Bucci, P., Zamboni, 2011)

For each positive integer r there exists a partition of $\mathbb{N} = A_1 \cup A_2 \cup \cdots \cup A_r$ such that for each $1 \leq i \leq r$ and $n \geq 0$, the set $A_i - n$ is an IP-set.

words generating minimal topologically weak mixing subshifts e.g., subshift generated by the substitution $0 \mapsto 001$ $1 \mapsto 11001$

A minimal subshift (X, T) is topologically weak mixing if for every pair of factors $u, v \in \mathcal{F}_X$ the set

$$\{n \in \mathbb{N} \mid u\Sigma^n v \cap \mathcal{F}_X \neq \emptyset\}$$

is thick, i.e., for every positive integer N, the set contains N consecutive positive integers.

M. Bucci, N. Hindman, S. Puzynina, L. Q. Zamboni Additive combinatorics generated by uniformly recurrent words

We denote with $w^{(+)}$ the right palindromic closure of the word w, i.e., the shortest palindrome which has w as a prefix.

For example, $abaa^{(+)} = abaaba$.

Definition

The iterated palindromic operator ψ is defined inductively:

- $\psi(\varepsilon) = \varepsilon$,
- For any word w and any letter a, $\psi(wa) = (\psi(w)a)^{(+)}$.

For example, $\psi(aaba) = aabaaabaa$.

소리가 소문가 소문가 소문가

Proposition [Bucci, P., Zamboni, 2011]

- Δ a right infinite word on an infinite alphabet Σ
- each letter $a \in \Sigma$ occurs in Δ an infinite number of times
- $\omega = \psi(\Delta)$

Then,

- for any $a \in \Sigma$, the set $a\omega|_a$ is an IP-set,
- $\{\omega\big|_{a}+1\}_{a\in\Sigma}$ is an infinite partition of $\mathbb{N}-\{0\}$ into IP-sets

Central sets

$$A \subset \mathbb{N}$$

 $\chi(A) \in \{0,1\}^{\mathbb{N}}: \ \chi_n = \begin{cases} 1, & \text{if } n \in A, \\ 0, & \text{otherwise.} \end{cases}$
Equivalently: $A = \chi(A)|_1$.

Definition

 $A \subset \mathbb{N}$ is a central set if $\chi(A)$ is proximal to a uniformly recurrent word beginning with 1.

- Every central set is an IP-set.
- Some IP-sets are not central.
 - Example: the set $\mathbf{s}|_0$, where \mathbf{s} is a Sierpinski word $\mathbf{s} = 01011101011111111010111010 \cdots$ (a fixed point of $0 \rightarrow 010, 1 \rightarrow 111$). $\mathbf{s}|_1$ is central
- Originally defined by Furstenberg in terms of topological dynamics.
- most of our results on IP-sets apply also to central sets

Central sets: equivalent definition

 $(\mathcal{S},+)$ a semigroup

- $\mathcal{I} \subseteq S$ is a right (resp. left) ideal if $\mathcal{I} + S \subseteq \mathcal{I}$ (resp. $S + \mathcal{I} \subseteq \mathcal{I}$).
- It is a *two sided ideal* if it is both a left and right ideal.
- A right (resp. left) ideal \mathcal{I} is *minimal* if every right (resp. left) ideal \mathcal{J} included in \mathcal{I} coincides with \mathcal{I} .
- every compact Hausdorff left-topological semigroup S (e.g., $\beta \mathbb{N}$) admits the smallest two sided ideal K(S)
- idempotents in K(S) are called minimal

Definition

A subset $A \subset \mathbb{N}$ is called central if it is a member of some minimal idempotent in $\beta \mathbb{N}$.

Equivalence: Bergelson and Hindman, 1990

M. Bucci, N. Hindman, S. Puzynina, L. Q. Zamboni Additive combinatorics generated by uniformly recurrent words

イロン スポン イヨン イヨン

Theorem (M. Barge, L. Zamboni, 2013)

Let τ be an irreducible primitive substitution of Pisot type. Then for any pair of fixed points x and y of τ the following are equivalent:

- A and y are strongly coincident.
- 2 x and y are proximal.
- There exists a minimal idempotent p ∈ βN such that y = p*(x).
- For any prefix u of y, the set $x|_{u}$ is a central set.

・ 同・ ・ ヨ・

Pisot substitutions and strong coincidence condition

• $\Sigma = \{1, 2, \dots, n\}, \ n \ge 2; \ \tau : \Sigma \to \Sigma^+$ a substitution

• the Abelianization of au is the square matrix $M_{ au}$: $m_{ij} = | au(j)|_i$

- τ is *primitive* if all the entries of M_{τ}^{n} are strictly positive.
- In this case M_{τ} has a simple positive Perron-Frobenius eigenvalue called the *dilation* of τ .
- τ is *irreducible* if the minimal polynomial of its dilation is equal to the characteristic polynomial of M_{τ} .
- τ is of *Pisot type* if its dilation is a Pisot number.
- a Pisot number is an algebraic integer greater than 1 all of whose algebraic conjugates lie strictly inside the unit circle
- A primitive substitution τ satisfies the strong coincidence condition if and only if any pair of fixed points x and y are strongly coincident, i.e., we can write x = scx', and y = tcy' for some s, t ∈ Σ⁺, c ∈ Σ, and x', y' ∈ Σ[∞] with s ~_{ab} t.
- Conjecture: if τ is an *irreducible* primitive substitution of Pisot type, then τ satisfies the strong coincidence condition.

References

- M. Bucci, N. Hindman, S. P., L. Q. Zamboni Additive properties of sets defined by the Thue-Morse word. Journal of Combinatorial Theory, Series A, 120 (2013), 1235–1245.
- M. Bucci, S. P. and L.Q. Zamboni, *Central sets generated by* uniformly recurrent words. to appear in Ergodic Theory and Dynamical Systems, doi:10.1017/etds.2013.69.
- S. P. and L.Q. Zamboni, *Additive properties of sets and substitutive dynamics*. To appear in a forthcoming book "Recent Mathematical Developments in Aperiodic Order" edited by J. Kellendonk, D. Lenz and J. Savinien.
- M. Barge and L.Q. Zamboni, *Central sets and substitutive dynamical systems*. Adv. Math. 248 (2013), 308-323.
- N. Hindman and D. Strauss, Algebra in the Stone-Čech compactification: Theory and applications, 2nd edition, Walter de Gruyter & Co., Berlin, 2012.

(日) (四) (王) (王) (王)