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Recall

Let 1 < S €R, ¢ € C\R with [(| = 1. Let n1,72,& € C such that
m/m2 € R. Then X :={{+xm +ym | x,y €[0,1)} is
fundamental domain of the lattice £ := mZ + 127 generated by 11

and 7 in C.



Rotational beta transformation

A rotational beta transformation isa map T : X — X given by
T(z)=p¢z—d

where d = d(z) is the unique element in L satisfying f(z € X +d.




Rotational beta expansion

For z € X, we have
o

d;
= 2

i=1
where d; = d;(z) = d(T'71(z)). We say that the expansion of z
wrt T is
dT(Z) = d1d2d3...



Soficness

Denote by A the digit set {d(z)|z € X} of T. We define A*
(resp. AZ) as the set of all finite (resp. bi-infinite) words over A.
We say w € A* is admissible if w appears in the expansion dr(z)

for some z € X. Let

Xt :={we .AZ| all subwords w;w;1...w; are admissible}.

The symbolic dynamical system associated to T is the topological
dynamics (X1, s) given by the shift operator s((w;)) = (wj41). We
say (X7,s) (or simply, (X, T)) is sofic if there is a finite directed
graph G labeled by A such that for each w € X1, there exists a

bi-infinite path in G labeled w and vice versa.



Sofic (1-dim’l) beta expansions

Theorem
1. (Parry, 1960) The shift associated to a beta expansion is sofic
if and only if the expansion of 1 is eventually periodic.

2. (Bertrand, 1977) If 3 is a Pisot number, then for every

x € Q(B) NRT, the beta expansion of x is eventually periodic.



Theorem 1
Let O(X) be the boundary of X'. The system (X, T) is sofic if and
only if [J;2; T"(9(X)) is a finite union of segments.



Idea of the proof of Theorem 1

For z € X', we define the predecessor set as
P(z) = [j {d(z’)d(T(z’))...d(T“_l(z’)) |2 e T "(2)}.
n=1
The set P(z) lists all trajectories going to z.
We define a relation on X' by
71 ~ zp <= P(z1) = P(z).

Then (X, T) is sofic iff X'/ ~ contains finitely many equivalent

classes.



For any n € N, the set X'\ J_; T'(9(X)) consists of finite
number of open polygons. Hence, |J7_; T/(0(X)) induces a
partition of X.

If z1 and z» are separated by a discontinuity segment of
U, TH(9(X)) (i-e., z1 and z belong to different partition cells),
then P(Zl) 75 P(ZZ).



Suppose J72; T/(9(X)) is a finite collection of line segments.

Pi,..., P, be the polygons in the induced partition.

Fori=1,....r forsomeZ C {1,...,r},

TPy =J P

JET

For d € A, let [d] := {z € X|di(z) = d}. For some Z* C 7,

T(Pin[d) = P

JET*

Let

We construct the sofic graph G as follows. Set the vertex set as

V(G) = {Px1,..., Pr}. We draw an edge from P; to P; labeled

d € Aif P;is contained in T(P;N[d]).



Main Results

Theorem 2
Let ¢ be a g-th root of unity (¢ > 2) and 3 be a Pisot number.

Let 111,72, € Q(C, B) such that mi/m2 ¢ R If ¢+ ¢1 € Q(P),
then the system (X', T) is sofic.



Main Results

Theorem 2
Let ¢ be a g-th root of unity (¢ > 2) and 3 be a Pisot number.

Let 111,m2,€ € Q(C, B) such that mu/m2 ¢ R If ¢+ ¢ € Q(P),
then the system (X', T) is sofic.

Corollary 3

If  is a 3rd, 4th or 6th root of unity, then the system (X, T) is

sofic for any Pisot number 3.



Idea of the Proof of Theorem 2

Since [Q(¢, B) : Q(¢ + ¢ 71, B)] = 2, there exist
aj, bi € Q(¢ + ¢71) such that

¢ m _ ail a2 m
2 ai2 a2 2

(B¢ = 1)§ = by + boano.

and



We define an analog U : [0,1)? — [0,1)? of T by

ul [ _ B(a11x + a12y) + b1 — [B(a11x + a2y) + b1
y B(a21x + azxy) + b2 — [ B(a21x + axy) + bo]

We keep track of the growth of U,K:1 U'(9([0,1)?)) as K increases.



We identify a discontinuity segment with the line

X
F(X,Y)=(AB) SR

(0,0) # (A, B) € R?, containing it. Then we determine how the
coefficients of g € U(f) evolve from (A, B, C).



If g € U(f), then

1
B

I

g(X7 Y) =

a —a X+c
(A, B) 22 12 1 Lc
—ap1 a1l Y+ o

| B(a11x + a12y) + b1| — by
| B(a21x + a22y) + bo| — b2

|

O<X,y<1}.



Iterating U, we produce a sequence of coefficients
(A("), B, C(ﬂ)) N (A("Jrl), B(nt+1), C(n+1)) 7

where

—azi ail

(A(”+1), B(n+1)) _ (A(n)’ B(”)) ( a alz) ’ (1)

and

C(n-‘rl) _ Bc(n) + (A(n)’ B(n)) ( an2 312) (Cl) (2)
—aoi a1l (&}

with (A@, B0, c)) = (A, B, C).



Since ¢ is a g-th root of unity, there are finitely many

(A" B(M)’s. We show that there are also finitely many C(")'s.

To this end, we look at |o4 (C(M)

, where o : Q(5) — Q(Bk) is

the conjugate map that sends 3 to its conjugate [S.

By the Pisot property of 3, we can show that |o4 (C(M) | is
bounded.



Theorem 4
Let £ =0,7m1 =1and g = ¢ = exp(2nv/—1/5). If § > 2.90332
such that /5 ¢ Q(3), then (X, T) is not a sofic system.

For instance, taking 5 = 3,4,5, we get a non-sofic system.



Idea of the Proof 4

_ 1+
Let w = 5

Since v/5 ¢ Q(3), there exists a Galois map
o € Gal(Q(B,w)/Q(B)) with o(w) = —1/w.

1o

We show that {|o(C()||n € N} diverges for some class of

coefficients C(M.



Example: 3-fold

B=1+V2,m=11mp=¢and (3¢ -1)¢=3-7
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Example: 5-fold

J.
H?_

Cand S

0,m=1mn

£

25

B




Example: 7-fold
€=0,m=1m=Cand =1+ 2cos(27/7), a cubic Pisot

number whose minimum polynomial is x> — 2x? — x + 1
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