Sofic rotational beta expansions

Nathan Caalim

Joint Work with Prof Shigeki Akiyama

University of Tsukuba

June 10, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

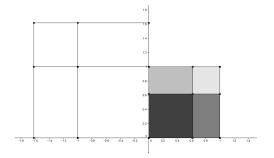
Let $1 < \beta \in \mathbb{R}$, $\zeta \in \mathbb{C} \setminus \mathbb{R}$ with $|\zeta| = 1$. Let $\eta_1, \eta_2, \xi \in \mathbb{C}$ such that $\eta_1/\eta_2 \notin \mathbb{R}$. Then $\mathcal{X} := \{\xi + x\eta_1 + y\eta_2 \mid x, y \in [0, 1)\}$ is a fundamental domain of the lattice $\mathcal{L} := \eta_1 \mathbb{Z} + \eta_2 \mathbb{Z}$ generated by η_1 and η_2 in \mathbb{C} .

Rotational beta transformation

A rotational beta transformation is a map $T: \mathcal{X} \to \mathcal{X}$ given by

$$T(z) = \beta \zeta z - d$$

where d = d(z) is the unique element in \mathcal{L} satisfying $\beta \zeta z \in \mathcal{X} + d$.



(日)、(型)、(E)、(E)、(E)、(O)()

Rotational beta expansion

For $z \in \mathcal{X}$, we have $z = \sum_{i=1}^{\infty} \frac{d_i}{(\beta\zeta)^i},$ where $d_i = d_i(z) = d(T^{i-1}(z))$. We say that the expansion of zwrt T is

$$d_T(z) := d_1 d_2 d_3 \dots$$

(日)、(型)、(E)、(E)、(E)、(O)()

Soficness

Denote by \mathcal{A} the digit set $\{d(z)|z \in \mathcal{X}\}$ of \mathcal{T} . We define \mathcal{A}^* (resp. $\mathcal{A}^{\mathbb{Z}}$) as the set of all finite (resp. bi-infinite) words over \mathcal{A} . We say $w \in \mathcal{A}^*$ is admissible if w appears in the expansion $d_{\mathcal{T}}(z)$ for some $z \in X$. Let

 $X_T := \{ w \in \mathcal{A}^{\mathbb{Z}} | \text{ all subwords } w_i w_{i+1} ... w_i \text{ are admissible} \}.$

The symbolic dynamical system associated to T is the topological dynamics (\mathcal{X}_T, s) given by the shift operator $s((w_i)) = (w_{i+1})$. We say (\mathcal{X}_T, s) (or simply, (\mathcal{X}, T)) is sofic if there is a finite directed graph G labeled by \mathcal{A} such that for each $w \in \mathcal{X}_T$, there exists a bi-infinite path in G labeled w and vice versa.

Sofic (1-dim'l) beta expansions

Theorem

- 1. (Parry, 1960) The shift associated to a beta expansion is sofic if and only if the expansion of 1 is eventually periodic.
- 2. (Bertrand, 1977) If β is a Pisot number, then for every $x \in \mathbb{Q}(\beta) \cap \mathbb{R}^+$, the beta expansion of x is eventually periodic.

(日)、(型)、(E)、(E)、(E)、(O)()

Theorem 1

Let $\partial(\mathcal{X})$ be the boundary of \mathcal{X} . The system (\mathcal{X}, T) is sofic if and only if $\bigcup_{n=1}^{\infty} T^n(\partial(\mathcal{X}))$ is a finite union of segments.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Idea of the proof of Theorem 1

For $z \in \mathcal{X}$, we define the predecessor set as

$$P(z) := \bigcup_{n=1}^{\infty} \left\{ d(z')d(T(z')) \dots d(T^{n-1}(z')) \mid z' \in T^{-n}(z) \right\}.$$

The set P(z) lists all trajectories going to z.

We define a relation on \mathcal{X} by

$$z_1 \sim z_2 \iff P(z_1) = P(z_2).$$

(日)、(型)、(E)、(E)、(E)、(O)()

Then (X, T) is sofic iff \mathcal{X} / \sim contains finitely many equivalent classes.

For any $n \in \mathbb{N}$, the set $\mathcal{X} \setminus \bigcup_{i=1}^{n} T^{i}(\partial(\mathcal{X}))$ consists of finite number of open polygons. Hence, $\bigcup_{i=1}^{n} T^{i}(\partial(\mathcal{X}))$ induces a partition of \mathcal{X} .

If z_1 and z_2 are separated by a discontinuity segment of $\bigcup_{i=1}^{\infty} T^i(\partial(\mathcal{X}))$ (i.e., z_1 and z_2 belong to different partition cells), then $P(z_1) \neq P(z_2)$.

Suppose $\bigcup_{i=1}^{\infty} T^i(\partial(\mathcal{X}))$ is a finite collection of line segments. Let P_1, \ldots, P_r be the polygons in the induced partition.

For i = 1, ..., r for some $\mathcal{I} \subseteq \{1, ..., r\}$,

$$T(P_i) = \bigcup_{j \in \mathcal{I}} P_j$$

For $d \in \mathcal{A}$, let $[d] := \{z \in \mathcal{X} | d_1(z) = d\}$. For some $\mathcal{I}^* \subseteq \mathcal{I}$, $T(P_i \cap [d]) = \bigcup_{i \in \mathcal{I}^*} P_j$.

We construct the sofic graph *G* as follows. Set the vertex set as $V(G) = \{P_1, ..., P_r\}$. We draw an edge from P_i to P_j labeled $d \in \mathcal{A}$ if P_j is contained in $T(P_i \cap [d])$.

Main Results

Theorem 2

Let ζ be a *q*-th root of unity (q > 2) and β be a Pisot number. Let $\eta_1, \eta_2, \xi \in \mathbb{Q}(\zeta, \beta)$ such that $\eta_1/\eta_2 \notin \mathbb{R}$. If $\zeta + \zeta^{-1} \in \mathbb{Q}(\beta)$, then the system (\mathcal{X}, T) is sofic.

(日)、(型)、(E)、(E)、(E)、(O)()

Main Results

Theorem 2

Let ζ be a *q*-th root of unity (q > 2) and β be a Pisot number. Let $\eta_1, \eta_2, \xi \in \mathbb{Q}(\zeta, \beta)$ such that $\eta_1/\eta_2 \notin \mathbb{R}$. If $\zeta + \zeta^{-1} \in \mathbb{Q}(\beta)$, then the system $(\mathcal{X}, \mathcal{T})$ is sofic.

Corollary 3

If ζ is a 3*rd*, 4*th* or 6*th* root of unity, then the system (\mathcal{X}, T) is sofic for any Pisot number β .

Idea of the Proof of Theorem 2

Since $[\mathbb{Q}(\zeta,\beta):\mathbb{Q}(\zeta+\zeta^{-1},\beta)]=2$, there exist $a_{ij}, b_i \in \mathbb{Q}(\zeta+\zeta^{-1})$ such that

$$\zeta \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}$$

and

$$(\beta\zeta-1)\xi=b_1\eta_1+b_2\eta_2.$$

We define an analog $U:[0,1)^2\longrightarrow [0,1)^2$ of ${\mathcal T}$ by

$$U\left(\begin{pmatrix}x\\y\end{pmatrix}\right) = \begin{pmatrix}\beta(a_{11}x + a_{12}y) + b_1 - \lfloor\beta(a_{11}x + a_{12}y) + b_1\rfloor\\\beta(a_{21}x + a_{22}y) + b_2 - \lfloor\beta(a_{21}x + a_{22}y) + b_2\rfloor\end{pmatrix}.$$

We keep track of the growth of $\bigcup_{i=1}^{K} U^{i}(\partial([0,1)^{2}))$ as K increases.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - わへぐ

We identify a discontinuity segment with the line

$$f(X, Y) = (A, B) \begin{pmatrix} X \\ Y \end{pmatrix} + C,$$

 $(0,0) \neq (A,B) \in \mathbb{R}^2$, containing it. Then we determine how the coefficients of $g \in U(f)$ evolve from (A, B, C).

If $g \in U(f)$, then

$$g(X,Y) = \frac{1}{\beta}(A,B)\begin{pmatrix}a_{22} & -a_{12}\\-a_{21} & a_{11}\end{pmatrix}\begin{pmatrix}X+c_1\\Y+c_2\end{pmatrix} + C,$$

where

$$\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} \in \Delta := \left\{ \begin{pmatrix} \lfloor \beta(a_{11}x + a_{12}y) + b_1 \rfloor - b_1 \\ \lfloor \beta(a_{21}x + a_{22}y) + b_2 \rfloor - b_2 \end{pmatrix} \middle| 0 \le x, y < 1 \right\}.$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < 0</p>

Iterating U, we produce a sequence of coefficients

$$\left(A^{(n)}, B^{(n)}, C^{(n)}\right) \to \left(A^{(n+1)}, B^{(n+1)}, C^{(n+1)}\right),$$

where

$$(A^{(n+1)}, B^{(n+1)}) = (A^{(n)}, B^{(n)}) \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix},$$
 (1)

 and

$$C^{(n+1)} = \beta C^{(n)} + (A^{(n)}, B^{(n)}) \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$
(2)

with $(A^{(0)}, B^{(0)}, C^{(0)}) = (A, B, C).$

Since ζ is a *q*-th root of unity, there are finitely many $(A^{(n)}, B^{(n)})$'s. We show that there are also finitely many $C^{(n)}$'s.

To this end, we look at $|\sigma_k(C^{(n)})|$, where $\sigma_k : \mathbb{Q}(\beta) \to \mathbb{Q}(\beta_k)$ is the conjugate map that sends β to its conjugate β_k .

By the Pisot property of β , we can show that $|\sigma_k(C^{(n)})|$ is bounded.

Theorem 4

Let $\xi = 0$, $\eta_1 = 1$ and $\eta_2 = \zeta = \exp(2\pi\sqrt{-1}/5)$. If $\beta > 2.90332$ such that $\sqrt{5} \notin \mathbb{Q}(\beta)$, then (\mathcal{X}, T) is not a sofic system.

For instance, taking $\beta = 3, 4, 5$, we get a non-sofic system.

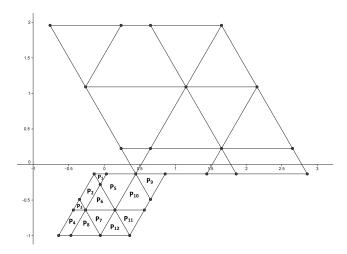
Idea of the Proof 4

Let $\omega = \frac{1+\sqrt{5}}{2}$. Since $\sqrt{5} \notin \mathbb{Q}(\beta)$, there exists a Galois map $\sigma \in Gal(\mathbb{Q}(\beta, \omega)/\mathbb{Q}(\beta))$ with $\sigma(\omega) = -1/\omega$.

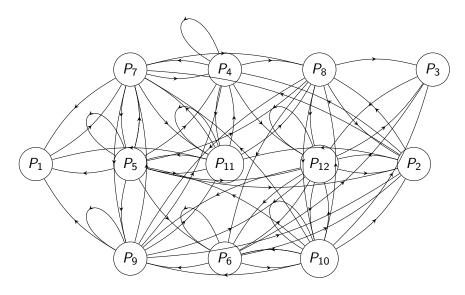
We show that $\{|\sigma(C^{(n)})||n \in \mathbb{N}\}$ diverges for some class of coefficients $C^{(n)}$.

Example: 3-fold

$$\beta = 1 + \sqrt{2}$$
, $\eta_1 = 1$, $\eta_2 = \zeta^2$ and $(\beta \zeta - 1)\xi = 3 - \beta$



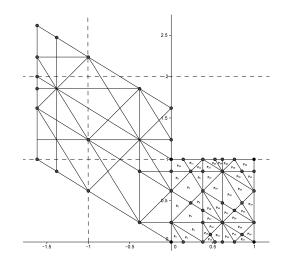
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - わへで



- * ロ > * 母 > * 目 > * 目 > ・ 目 ・ 少々ぐ

Example: 5-fold

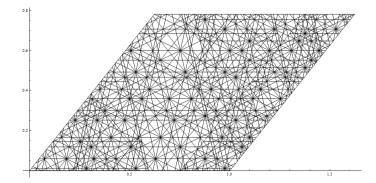
$$\xi = 0, \ \eta_1 = 1, \ \eta_2 = \zeta \text{ and } \beta = \frac{1+\sqrt{5}}{2}.$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example: 7-fold

 $\xi = 0$, $\eta_1 = 1$, $\eta_2 = \zeta$ and $\beta = 1 + 2\cos(2\pi/7)$, a cubic Pisot number whose minimum polynomial is $x^3 - 2x^2 - x + 1$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ つへで