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Referesher on Zp

Each nonzero x ∈ Q has a unique expression x = pna
b where a and b

are coprime to each other and also to p.
The p-adic absolute value | · |p is defined on Q by |0|p := 0 and

|x |p = |p
na
b
|p := p−n.

Define Qp to be the completion of (Q,d), with d(x , y) = |x − y |p on Q,
The p-adic integers Zp is the closed unit ball in Qp. It is a compact
metric space. Every point z in Zp has a unique expression
z =

∑∞
k=0 zkpk with zk ∈ {0, . . . ,p − 1} for all k .

Examples
7 = . . .+ 0 · 32 + 2 · 31 + 1 · 30 = . . . 021· in Z3.
−1 = 2

1−3 =
∑∞

k=0 2 · 3k = . . . 222· in Z3.
Zp is the inverse limit of the rings Z/pnZ, and is a discrete valuation
ring with unique maximal ideal pZp.
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Catalan numbers modulo 2

What do combinatorial sequences look like modulo pα?

C(n)n≥0 = 1,1,2,5,14,42,132,429, . . . C(n) = 1
n+1

(2n
n

)

C(3) = 5

(C(n) mod 2)n≥0 = 1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,1, . . .

Theorem (follows from Kummer 1852)
For all n ≥ 0, C(n) is odd if and only if n + 1 is a power of 2.
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Automatic sequences

C(n) is odd if and only if n + 1 is a power of 2.

This automaton outputs C(n) mod 2 when fed the base-2 digits of n,
starting with the least significant digit.
(C(n) mod 2)n≥0 is 2-automatic.

Theorem (Cobham)
r -automatic sequences are precisely the letter-to-letter codings of fixed
points of constant length-r substitutions.
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Which combinatorial sequences?

Let Df denote the diagonal of a multivariate formal power series f :
The diagonal of a formal power series is

D

 ∑
n1,...,nk≥0

an1,...,nk xn1
1 · · · x

nk
k

 :=
∑
n≥0

an,...,nxn.

A sequence (an)n≥0 of integers is algebraic if its generating function∑
n≥0 anxn is algebraic over Q(x). Equivalently: P(x ,

∑
n≥0 anxn) = 0

for some P(x , y) ∈ Z[x , y ].

Theorem (Furstenberg 1967, CKMFR 1980)
Let (an)n≥0 be a sequence of elements in Fp. Then (an)n≥0 is
automatic iff (an)n≥0 is algebraic over Fp[x ] iff (an)n≥0 is the diagonal
of a rational function P(x ,y)

Q(x ,y) ∈ Fp(x , y).
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Which combinatorial sequences?

Theorem (Denef–Lipshitz 1987)

Let f (x) =
∑∞

n=0 anxn be algebraic over Zp[x ]. Then f = D( P(x ,y)
Q(x ,y) )

where P(x , y),Q(x , y) ∈ Zp[x , y ].

Theorem (Denef–Lipshitz 1987)
Let α ≥ 1. Let P(x),Q(x) ∈ Zp[x] such that Q(0, . . . ,0) 6≡ 0 mod p.
Then the coefficient sequence of

(
D P(x)

Q(x)

)
mod pα is p-automatic.

The combinatorial sequences we consider are those that project
mod pα to (codings of ) fixed points of length p substitutions for all α.
If the sequence is algebraic over Q(x), then it projects mod pα to
(codings of ) fixed points of length p substitutions for all α and all p.
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Catalan numbers modulo 4∑
n≥1

C(n)xn is the diagonal of

y(2xy2 + 2xy − 1)

xy2 + 2xy + x − 1
= 0x0y0 + 1x0y1 + 0x0y2 + 0x0y3 + 0x0y4 + 0x0y5 + · · ·

+ 0x1y0 + 1x1y1 + 0x1y2 − 1x1y3 + 0x1y4 + 0x1y5 + · · ·

+ 0x2y0 + 1x2y1 + 2x2y2 + 0x2y3 − 2x2y4 − 1x2y5 + · · ·

+ 0x3y0 + 1x3y1 + 4x3y2 + 5x3y3 + 0x3y4 − 5x3y5 + · · ·

+ 0x4y0 + 1x4y1 + 6x4y2 + 14x4y3 + 14x4y4 + 0x4y5 + · · ·

+ 0x5y0 + 1x5y1 + 8x5y2 + 27x5y3 + 48x5y4 + 42x5y5 + · · ·
+ · · · .

We look at combinatorial sequences of integers (an)n≥0 as inverse
limits of substitution sequences. What shifts do they generate in Zp?
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Given a sequence
a = (a(n))n≥0 ∈ ZN

p ,

let
aα = (a(n) mod pα)n≥0 ∈ Z/pαZ.

If aα is p-automatic, let

Mα = (Sα,Σp, δα, s0,Z/(pαZ), τα)

be the minimal finite state machine that generates aα in direct reading.
Let uα be the sequence generated in direct reading by

M∗α = (Sα,Σp, δα, s0),

the finite state machine without output: uα is the fixed point of a
constant length substitution θα.
Given a sequence u, let (Xu, σ) be the substitution shift generated by u.
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Proposition (Rowland-Y, 2015)
Suppose that a ∈ ZN

p is such that for each α ≥ 0, aα is p-automatic.
There are projection maps π∗α,α+1 : Xuα+1 → Xuα , there is a shift (Xu, σ)
and a letter-to-letter projection τ : Xu → Xa, there are length-p
substitutions (θα)α≥0 and θ such that θα(uα) = uα for each α, θ(u) = u,
and the following diagrams commute:

1

· · ·
π∗
α−1,α←− (Xuα , σ)

π∗
α,α+1←− (Xuα+1 , σ)

π∗
α+1,α+2←− (Xuα+2 , σ) · · · (Xu , σ)

↓τα ↓τα+1 ↓τα+2 ↓τ

· · ·
πα−1,α←− (Xaα , σ)

πα,α+1←− (Xaα+1 , σ)
πα+1,α+2←− (Xaα+2 , σ) · · · (Xa, σ)

2

· · ·
π∗
α−1,α←− Xuα

π∗
α,α+1←− Xuα+1

π∗
α+1,α+2←− Xuα+2

π∗
α+2,α+3←− · · · Xu

↓θα ↓θα+1 ↓θα+2 ↓θ

· · ·
π∗
α−1,α←− Xuα

π∗
α,α+1←− Xuα+1

π∗
α+1,α+2←− Xuα+2

π∗
α+2,α+3←− · · · Xu
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Dynamical properties of (Xa, σ)

Theorem (Rowland-Y, 2015)
Suppose that for each α ≥ 0, the substitution θα is primitive. Then

1 (Xa, σ) is minimal.
2 (Xa, σ) is uniquely ergodic.

Part 2 follows from the fact that each (Xuα , σ) is uniquely ergodic, and:

Theorem (Choksi 1958)
Let {(Xα,Bα, µα), πα,α+1, α ≥ 0} be an inverse family of compact
metric spaces. Then the inverse limit (X ,B, µ) exists. If Bα is Borel for
each α, then B is Borel.

Open question
What is the point spectrum of (Xa, σ)? Dekking’s theorem tells us that
at the very least we have (Zp,+1). Is there more?
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Dynamical properties of (Xa, σ)

If a substitution θ on a finite alphabet defines the shift (X , σ), then the
set L =

⋂
n≥0 θ

n(X ) contains only the periodic points of θ, of which
there are finitely many. However, when we consider substitutions on an
uncountable alphabet, L can possibly be larger.

Example
Below we plot the binary expansionC(2n) for 0 ≤ n ≤ 20, where 0 and
1 are represented by a white and black cell respectively:

suggesting that C(2n)n≥0 converges in Z2 to a point in πτL, so

lim
n

C(2n) = lim
n
πσ2n

τU = lim
n
πτθ(σn(U)) ∈ πτθ(XU)

and taking subsequences 22...2
n

we see limn C(2n) ∈ πτL.
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Theorem (Michel,Miller,Rennie, 2014)
Let C(n)n≥0 be the sequence of Catalan numbers. Then for each
k , r ∈ N, limn→∞C(kpn + r) exists in Zp.

Are the limits transcendental?

A constant-recursive sequence s(n)n≥0 is one that satisfies a
recurrence

s(n + `) + a`−1s(n + `− 1) + · · ·+ a1s(n + 1) + a0s(n) = 0

with constant coefficients ai ∈ Zp.
The Catalan numbers satisfy (n + 2)C(n + 1) = (4n + 2)C(n).

Example
The Fibonacci sequence F (n)n≥0 = 0,1,1,2,3,5,8,13, . . . satisfies

F (n) = F (n − 1) + F (n − 2) =
φn − φ̄n
√

5

where φ, φ̄ =
√

5±1
2 are the roots of its characteristic polynomial

g(x) = x2 − x − 1.
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Values of F (3n):

Values of F (32n):

Values of F (32n+1):

These limits are ±
√

2
5 in Z3. They are explained by interpolations.
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If s(n)n≥0 is a constant-recursive sequence with characteristic
polynomial g(x), then we can write

s(n) =
∑
β

cβ(n)βn

for some polynomials cβ(x) ∈ K [x ], where we sum over all roots
β1, . . . , β` of g(x), and K = Zp(β1, . . . , β`). Let OK be the unit ball of K :
there exists f = f (p) such that all pf − 1-st roots of unity lie in OK . Let
π be a uniformizer in OK .
Given x 6≡ 0 mod π in OK , let ω(x) denote the pf − 1-st root of unity
such that x ≡ ω(x) mod π.

Corollary (Rowland-Y, 2016)
Let p be a prime, and let s(n)n≥0 be a constant-recursive sequence of
p-adic integers with monic characteristic polynomial g(x) ∈ Zp[x ].
Let a,b ∈ Z with a ≥ 1. Then limn→∞ s(apfn + b) exists in Zp and is
equal to

lim
n→∞

s(apfn + b) =
∑
|β|p=1

cβ(b)ω(β)aβb .

In particular, the value of this limit is algebraic over Qp.
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lim
n→∞

s(apfn + b) =
∑
|β|p=1

cβ(b)ω(β)aβb .

Example
If p = 3, then f = 2, and

F (32n) =
ω(φ)− ω(φ)√

5
=
√

2/5,

and

F (32n+1) =
ω(φ)3 − ω(φ)3

√
5

= −
√

2/5.

For p = 2 one computes that

lim
n→∞

F (22n) =

√
−3

5
and lim

n→∞
F (p2n+1) = −

√
−3

5
.
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Interpolation?

1 2 3 4 5 6 7

100

200

300

400

Can we interpolate a combinatorial sequence s(n) to a continuous
function c(x) on Zp?

Mostly No. Example:

lim
n→∞

C(2n) 6= 1 = C(0), while lim
n→∞

2n = 0.

But maybe we can interpolate subsequences.
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Constant-recursive sequences

Theorem (Rowland–Y, 2016)
Let s(n)n≥0 be a constant-recursive sequence with a monic
characteristic polynomial. Then s(n)n≥0 has an approximate twisted
interpolation to Zp. That is, there exists q a power of p, a finite partition
N =

⋃
j∈J Aj with each Aj dense in r + qZp for some 0 ≤ r ≤ q − 1,

finitely many continuous functions sj : Zp → K , and non-negative
constants C,D with D < 1 such that

|s(n)− sj(n)|p ≤ C · Dn

for all n ∈ Aj and j ∈ J.
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The Fibonacci sequence in Z3

Let φ = 1+
√

5
2 and φ̄ = 1−

√
5

2 in Q3(
√

5).

Let ω(φ), ω(φ̄) ∈ Q3(
√

5) be 8th roots of unity congruent to φ, φ̄ mod 3.

Corollary (Rowland–Y 2016)
For each 0 ≤ i ≤ 7, define the function Fi : Z3 → Z3 by

Fi(x) :=
ω(φ)i exp3

(
x log3

φ
ω(φ)

)
− ω(φ̄)i exp3

(
x log3

φ̄
ω(φ̄)

)
√

5
.

Then F (n) = Fi(n) for all n ≡ i mod 8.

Since 32n ≡ 1 mod 8,

lim
n→∞

F (32n) = lim
n→∞

F1(32n) = F1(0) =
ω(φ)− ω(φ̄)√

5
.
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p-adic logarithm and exponential

The p-adic logarithm

logp x :=
∑
m≥1

(−1)m+1 (x − 1)m

m

converges for x ∈ Zp such that |x − 1|p < 1.

The p-adic exponential function

expp x :=
∑
m≥0

xm

m!

converges for x ∈ Zp such that |x |p < p−1/(p−1).

If |x − 1|p < p−1/(p−1), then

x = expp logp x .
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Proof outline for Z3

Let φ = 1+
√

5
2 and φ̄ = 1−

√
5

2 in Q3(
√

5). Then

F (n) =
φn − φ̄n
√

5
.

Rewrite

φn = ω(φ)n
(

φ
ω(φ)

)n
= ω(φ)n

(
exp3 log3

(
φ

ω(φ)

)n
)

= ω(φ)n exp3

(
n log3

(
φ

ω(φ)

))
;

similarly for φ̄.
For n in a fixed residue class modulo 8, ω(φ)n is constant,
hence 8 functions Fi(x).
What else lies in L?
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Proof outline for Z3

Let φ = 1+
√

5
2 and φ̄ = 1−

√
5

2 in Q3(
√

5). Then

F (n) =
φn − φ̄n
√

5
.
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)n
= ω(φ)n

(
exp3 log3

(
φ

ω(φ)

)n
)

= ω(φ)n exp3

(
n log3

(
φ

ω(φ)

))
;

similarly for φ̄.
For n in a fixed residue class modulo 8, ω(φ)n is constant,
hence 8 functions Fi(x).
What else lies in L?

Reem Yassawi Dynamical systems on Zp generated by constant length substitutions March 10th 2016 20 / 25



Catalan numbers modulo 2α

Theorem
For all n ≥ 0,

C(n) 6≡ 9 mod 16,
C(n) 6≡ 17,21,26 mod 32,
C(n) 6≡ 10,13,33,37 mod 64,
C(n) 6≡ 18,54,61,65,66,69,98,106,109 mod 128.

Only ≈ 35% of the residues modulo 512 are attained by some C(n).

Open question

Is the limiting density lim
α→∞

|{C(n) mod 2α : n ≥ 0}|
2α

nonzero?
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Limiting density of attained residues; support of the
σ-invariant measure.

Theorem (Burr, 1971)
For all α ≥ 1, F (n)n≥0 attains all residues modulo 3α and 5α. In other
words for all α ≥ 1,

|F (n) mod 3α|
3α

=
|F (n) mod 5α|

5α
= 1.

Let µ be the Haar measure on Zp defined by µ(m + pαZp) = p−α.

Theorem (Rowland-Y, 2016)
Let s(n)n≥0 be a sequence of p-adic integers with an approx. twisted
interpolation {(si,r ,Ai,r ) : 0 ≤ i ≤ pf − 2 and 0 ≤ r ≤ q − 1}. Then

lim
α→∞

|{s(n) mod pα : n ≥ 0}|
pα

= µ

Zp ∩
⋃
i,r

si,r (r + qZp)

 .
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Fibonacci residues modulo 11α

Theorem (Rowland–Yassawi 2016)
The limiting density of residues attained by the Fibonacci sequence
modulo 11α is

lim
α→∞

|{F (n) mod 11α : n ≥ 0}|
11α

= µ

(
9⋃

i=0

Fi(Z11)

)
4+

∑∞
α=1

5
112α+1

=
145
264

.

Thus if p = 11, (XF , σ) projects into a subset of Zp of the above
measure.

Open question

The case p = 11 was easier to work out as
√

5 ∈ Z11. Is a computation
possible for all p?
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Fibonacci residues modulo 11α

0 1 2 3 5 8 10

0

0 4 5 6 8 9

6

3 4 5 7 8 10

0

0

0 1 2 3
5

8 10

5

5 489 610 731 973
1094

9080

53003 67644 82285 111567
126208

155490

126208
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Summary

Every sequence that is the diagonal of a rational function is computed
by a finite automaton modulo pα.

Every sequence satisfying a linear recurrence with constant
coefficients is computed by a finite automaton modulo pα, and has an
approximate twisted interpolation to Zp.

This interpolation allows us to begin to glean some information about
the support of invariant measures and also what belongs to the ω-limit
set.

Open question
To what extent can the diagonal of a general rational function be
interpolated to Zp?
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