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Referesher on Z,

. N N
Each nonzero x € Q has a unique expression x = 22 where aand b
are coprime to each other and also to p.
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Referesher on Z,

. N N
Each nonzero x € Q has a unique expression x = 22 where aand b
are coprime to each other and also to p.

The p-adic absolute value | - |, is defined on Q by |0, := 0 and

n
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Referesher on Z,

Each nonzero x € Q has a unique expression x = % where aand b
are coprime to each other and also to p.
The p-adic absolute value | - |, is defined on Q by |0, := 0 and

n
a _
xlp = 1Z5 o ="

Define Qp to be the completion of (Q, d), with d(x,y) = |x — y|p on Q,
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Referesher on Z,

. N N
Each nonzero x € Q has a unique expression x = 22 where aand b
are coprime to each other and also to p.

The p-adic absolute value | - |, is defined on Q by |0, := 0 and
p"a -
X|p = |T|p =p "
Define Qp to be the completion of (Q, d), with d(x,y) = |x — y|p on Q,

The p-adic integers Z,, is the closed unit ball in Qp. It is a compact
metric space.
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Referesher on Z,

Each nonzero x € Q has a unique expression x = % where aand b
are coprime to each other and also to p.
The p-adic absolute value | - |, is defined on Q by |0, := 0 and
na
xlp = 1Z5 o ="
Define Qp to be the completion of (Q, d), with d(x,y) = |x — y|p on Q,
The p-adic integers Z,, is the closed unit ball in Qp. It is a compact

metric space. Every point z in Z, has a unique expression
z =372 zkp" with z, € {0,...,p— 1} for all k.
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Referesher on Z,

Each nonzero x € Q has a unique expression x = % where aand b
are coprime to each other and also to p.
The p-adic absolute value | - |, is defined on Q by |0, := 0 and
na

xlo =%l =P 7"
Define Qp to be the completion of (Q, d), with d(x,y) = |x — y|p on Q,
The p-adic integers Z,, is the closed unit ball in Qp. It is a compact
metric space. Every point z in Z, has a unique expression
z =372 zkp" with z, € {0,...,p— 1} for all k.
Examples
7=...+0-324+2.3"+1.30=...021.in Zs.
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Referesher on Z,

Each nonzero x € Q has a unique expression x = % where aand b
are coprime to each other and also to p.
The p-adic absolute value | - |, is defined on Q by |0, := 0 and
na

xlp = 1Z5 o ="
Define Qp to be the completion of (Q, d), with d(x,y) = |x — y|p on Q,
The p-adic integers Z,, is the closed unit ball in Qp. It is a compact
metric space. Every point z in Z, has a unique expression
z =372 zkp" with z, € {0,...,p— 1} for all k.
Examples
7=...40-3242.3"11.30=_..021-in Zs.
—1 =25 =30,2-3k=...222 in Zs.
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Referesher on Z,

Each nonzero x € Q has a unique expression x = % where aand b
are coprime to each other and also to p.
The p-adic absolute value | - |, is defined on Q by |0, := 0 and

na

xlp = 1Z5 o ="

Define Qp to be the completion of (Q, d), with d(x,y) = |x — y|p on Q,
The p-adic integers Z,, is the closed unit ball in Q. It is a compact
metric space. Every point z in Z, has a unique expression
z =372 zkp" with z, € {0,...,p— 1} for all k.
Examples
7=...40-3242.3"+1.30=_...021-in Zs.
—1 =25 =30,2-3k=...222 in Zs.
Zp is the inverse limit of the rings Z/p"Z, and is a discrete valuation
ring with unique maximal ideal pZp.
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Catalan numbers modulo 2

What do combinatorial sequences look like modulo p®?
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Catalan numbers modulo 2

What do combinatorial sequences look like modulo p®?

C(Mpso =1,1,2,5,14,42,132,429, . .. c(n) = 5 (3
Cc(3)=5
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Catalan numbers modulo 2

What do combinatorial sequences look like modulo p®?

C(Mpso =1,1,2,5,14,42,132,429, . .. c(n) = 5 (3
Cc(3)=5

C(n) m0d2)n20:171a0717070707170707070707070717"-
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Catalan numbers modulo 2

What do combinatorial sequences look like modulo p®?

C(Mpso =1,1,2,5,14,42,132,429, . .. c(n) = 5 (3
Cc(3)=5

C(n) m0d2)n20:171a0717070707170707070707070717"-

Theorem (follows from Kummer 1852)
Foralln> 0, C(n) is odd if and only if n+ 1 is a power of 2.
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Automatic sequences

C(n) is odd if and only if n+ 1 is a power of 2.
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Automatic sequences

C(n) is odd if and only if n+ 1 is a power of 2.

off (@<—+—@ 0 1)<
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This automaton outputs C(n) mod 2 when fed the base-2 digits of n,
starting with the least significant digit.
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Automatic sequences

C(n) is odd if and only if n+ 1 is a power of 2.
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This automaton outputs C(n) mod 2 when fed the base-2 digits of n,
starting with the least significant digit.
(C(n) mod 2),>¢ is 2-automatic.
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Automatic sequences

C(n) is odd if and only if n+ 1 is a power of 2.

ot (@< O i <
) AN 4N

0 hN -1 ~

This automaton outputs C(n) mod 2 when fed the base-2 digits of n,
starting with the least significant digit.
(C(n) mod 2),>¢ is 2-automatic.

Theorem (Cobham)

r-automatic sequences are precisely the letter-to-letter codings of fixed
points of constant length-r substitutions.
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Which combinatorial sequences?

Let Df denote the diagonal of a multivariate formal power series f:
The diagonal of a formal power series is

n n . n
D Z an17...7nkx11 o ka .= Z an’._.7nX .

n,...,nk>0 n>0
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Which combinatorial sequences?

Let Df denote the diagonal of a multivariate formal power series f:
The diagonal of a formal power series is

n n . n
D Z an17...7nkx11 o ka .= Z an’._.7nX .

n,...,nk>0 n>0

A sequence (an)n>0 Of integers is algebraic if its generating function
> n>0 @nx" is algebraic over Q(x). Equivalently: P(x, . anx") =0
for some P(x,y) € Z[x, y].
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Which combinatorial sequences?

Let Df denote the diagonal of a multivariate formal power series f:
The diagonal of a formal power series is

n n,
D ( Z an17...7nkx11 ce ka) = Z an’._.7an.

n,...,nk>0 n>0

A sequence (an)n>0 Of integers is algebraic if its generating function
> n>0 @nx" is algebraic over Q(x). Equivalently: P(x, . anx") =0
for some P(x,y) € Z[x, y].

Theorem (Furstenberg 1967, CKMFR 1980)

Let (an)n>0 be a sequence of elements inFp. Then (an)n>o is
automatic iff (an)n>0 Is algebraic over Fp[x] iff (an)n>0 is the diagonal

of a rational function gg’fg € Fp(x, y).
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Which combinatorial sequences?

Theorem (Denef—Lipshitz 1987)

Let f(x) = >_%2, anx" be algebraic over Z[x]. Then f = D( ZE’;:};)))
where P(x,y), Q(X,y) € Zp[x, y].
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Which combinatorial sequences?

Theorem (Denef-Lipshitz 1987)

Let f(x) = >_%2, anx" be algebraic over Z[x]. Then f = D( ggf;)))
where P(x,y), Q(X,y) € Zp[x, y].

Theorem (Denef-Lipshitz 1987)

Leta > 1. Let P(x), Q(X) € Zp[x] such that Q(0,...,0) #0 mod p.

Then the coefficient sequence of (D %) mod p® is p-automatic.
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Which combinatorial sequences?

Theorem (Denef-Lipshitz 1987)

Let f(x) = >_%2, anx" be algebraic over Z[x]. Then f = D( ggf;)))
where P(x,y), Q(X,y) € Zp[x, y].

Theorem (Denef-Lipshitz 1987)

Leta > 1. Let P(x), Q(X) € Zp[x] such that Q(0,...,0) #0 mod p.

Then the coefficient sequence of (D %) mod p® is p-automatic.

The combinatorial sequences we consider are those that project
mod p* to (codings of ) fixed points of length p substitutions for all .
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Which combinatorial sequences?

Theorem (Denef-Lipshitz 1987)

Let f(x) = >_%2, anx" be algebraic over Z[x]. Then f = D( ggf;)))
where P(x,y), Q(X,y) € Zp[x, y].

Theorem (Denef-Lipshitz 1987)

Leta > 1. Let P(x), Q(X) € Zp[x] such that Q(0,...,0) #0 mod p.

Then the coefficient sequence of (D %) mod p® is p-automatic.

The combinatorial sequences we consider are those that project
mod p* to (codings of ) fixed points of length p substitutions for all .
If the sequence is algebraic over Q(x), then it projects mod p“ to
(codings of ) fixed points of length p substitutions for all o and all p.
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Catalan numbers modulo 4

> C(n)x"is the diagonal of
n>1
y(2xy2 +2xy — 1)

= 0x0y°+1x°y1+0x0y2+ 0x°y3+ 0x0y4+ Oxoy5+~-~
xy2 +2xy +x — 1

+0x1y°+1x1y1+0x1y27 1x1y3+ 0X1y4+ 0x1y5+-~
+0x2y0-¢—1x2y1 +2x2y2+ 0x2y3— 2x2y4— 1x2y5+~~~
+0x3y0+1x3y1+4x3y2+ 5X3y3+ 0x3y47 5x3y5+-~
Jr0x4y°+1x4y1 +6x4y2+14x4y3+14x4y4+ 0x4y5+~--
+0x5y0 + 1x5y1 +8x5y2 -;—27x5y3 +48x5y4 +42x5y5 4o
+ee
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Catalan numbers modulo 4

> C(n)x"is the diagonal of

n>1
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Catalan numbers modulo 4

> C(n)x"is the diagonal of

n>1
0
y(2xy? +2xy — 1) ( g
xy2 +2xy 4+ x — 1 0
o/ < o /1/ e V\\
O é/ N .
N _
@ @
x
\ y
\ 14
YOS @
( ) A
0/ A

We look at combinatorial sequences of integers (an),>o as inverse
limits of substitution sequences. What shifts do they generate in Z,?
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Given a sequence
a=(a(n))nso € Zp,
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Given a sequence
a=(a(n))nso € Zp,

let
a, = (a(n) mod p*)p>o € Z/p“Z.
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Given a sequence
a=(a(n))nso € Zp,

let
a, = (a(n) mod p*)p>o € Z/p“Z.

If a, is p-automatic, let
My = (8047 zp7 das SO, Z/(paZ)? TOé)

be the minimal finite state machine that generates a,, in direct reading.
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Given a sequence
a=(a(n))nso € Zp,

let
a, = (a(n) mod p*)p>o € Z/p“Z.

If a, is p-automatic, let
My = (8047 zp, das SO, Z/(paZ)? TO&)

be the minimal finite state machine that generates a,, in direct reading.
Let u, be the sequence generated in direct reading by

MZ — (Sou zpv 50&7 30)7

the finite state machine without output: v, is the fixed point of a
constant length substitution 6,,.
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Given a sequence
a=(a(n))nso € Zp,

let
a, = (a(n) mod p*)p>o € Z/p“Z.

If a, is p-automatic, let
My = (8047 zpv das SO, Z/(paZ)? TOé)

be the minimal finite state machine that generates a,, in direct reading.
Let u, be the sequence generated in direct reading by

MZ = (Sou zpv 50&7 30)7

the finite state machine without output: v, is the fixed point of a
constant length substitution 4,,.
Given a sequence u, let (X, o) be the substitution shift generated by u.
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Proposition (Rowland-Y, 2015)
Suppose that a € ZE’ is such that for each a > 0, a, is p-automatic.

There are projection maps r* : Xupy — Xu,, there is a shift (Xy, o)

a,a+1
and a letter-to-letter projection T : X, — Xa, there are length-p

substitutions (6. ).>0 and 6 such that 6, (u,) = u, for each o, 0(u) =

and the following diagrams commute:

7t w* m*
a—1,a o,a+1 a+1,a+2
¥ (Xug > o) “—— (X"a+1 ,0) —= (X”a+2’ o) - (Xu, o)
Ira ~L7a+1 ¢7a+2 ir
Ta—1,a To,a+1 Toat+1,a+2
Kao:0) 2 (M poo) CEER G L0) e (Xao)
* * * *
Ta—1,0 X o, X Tatl,at2 X Ta+2,a+3 X
Ua ¢ Yo 41 Uat2 u
Yoo ‘I'Ba+1 ‘LBod»Z 16
m* m* n* E
azla aak aftatz 42,043 e
U Ua+1 Ua+2 u

u,
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Dynamical properties of (X3, o)

Theorem (Rowland-Y, 2015)

Suppose that for each o > 0, the substitution 6., is primitive. Then
Q@ (Xa,0) is minimal.
Q (Xa,0) is uniquely ergodic.
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Dynamical properties of (X3, o)

Theorem (Rowland-Y, 2015)

Suppose that for each o > 0, the substitution 6., is primitive. Then
Q@ (Xa,0) is minimal.
Q (Xa,0) is uniquely ergodic.

Part 2 follows from the fact that each (X, , o) is uniquely ergodic, and:

Theorem (Choksi 1958)

Let {( X4, Ba, fta); Ta,a+1, @ > 0} be an inverse family of compact
metric spaces. Then the inverse limit (X, B, 1) exists. If B, is Borel for
each o, then B is Borel.
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Dynamical properties of (X3, o)

Theorem (Rowland-Y, 2015)

Suppose that for each o > 0, the substitution 6., is primitive. Then
Q@ (Xa,0) is minimal.
Q (Xa,0) is uniquely ergodic.

Part 2 follows from the fact that each (X, , o) is uniquely ergodic, and:

Theorem (Choksi 1958)

Let {( X4, Ba, fta); Ta,a+1, @ > 0} be an inverse family of compact
metric spaces. Then the inverse limit (X, B, u) exists. If B, is Borel for
each o, then B is Borel.

Open question

What is the point spectrum of (Xa, o) ? Dekking’s theorem tells us that
at the very least we have (Zp, +1). Is there more?
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Dynamical properties of (X3, o)

If a substitution ¢ on a finite alphabet defines the shift (X, o), then the
set L =,~( ¢"(X) contains only the periodic points of ¢, of which
there are finitely many. However, when we consider substitutions on an
uncountable alphabet, £ can possibly be larger.
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Dynamical properties of (X3, o)

If a substitution ¢ on a finite alphabet defines the shift (X, ¢), then the
set L = (),~( ¢"(X) contains only the periodic points of #, of which
there are finitely many. However, when we consider substitutions on an
uncountable alphabet, £ can possibly be larger.

Example

Below we plot the binary expansionC(2") for 0 < n < 20, where 0 and
1 are represented by a white and black cell respectively:

suggesting that C(2"),>o converges in Z, to a point in 77L, so

Reem Yassawi
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Dynamical properties of (X3, o)

If a substitution ¢ on a finite alphabet defines the shift (X, ¢), then the
set L = (),~( ¢"(X) contains only the periodic points of #, of which
there are finitely many. However, when we consider substitutions on an
uncountable alphabet, £ can possibly be larger.

Example

Below we plot the binary expansionC(2") for 0 < n < 20, where 0 and
1 are represented by a white and black cell respectively:

suggesting that C(2"),>o converges in Z, to a point in 77L, so

lim C(2") = lim ro? U = lim 7 76(o"(U)) € n76(Xy)

and taking subsequences 22" e see lim, C(2") € =7 L.

Reem Yassawi
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Theorem (Michel,Miller,Rennie, 2014)

Let C(n),>o be the sequence of Catalan numbers. Then for each
k,r e N, limy_oc C(kp" + r) exists in Zp.
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Theorem (Michel,Miller,Rennie, 2014)

Let C(n),>o be the sequence of Catalan numbers. Then for each
k,r e N, limy_,o C(kp" + r) exists in Zp. Are the limits transcendental?
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Theorem (Michel,Miller,Rennie, 2014)

Let C(n),>o be the sequence of Catalan numbers. Then for each
k,r e N, limy_,o C(kp" + r) exists in Zp. Are the limits transcendental?

A constant-recursive sequence s(n),> is one that satisfies a
recurrence

s(n+0)+a1s(n+¢—-1)+---+as(n+1)+ as(n) =0
with constant coefficients a; € Zp.
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Theorem (Michel,Miller,Rennie, 2014)

Let C(n),>o be the sequence of Catalan numbers. Then for each
k,r e N, limy_,o C(kp" + r) exists in Zp. Are the limits transcendental?

A constant-recursive sequence s(n),> is one that satisfies a
recurrence

s(n+0)+a1s(n+¢—-1)+---+as(n+1)+ as(n) =0

with constant coefficients a; € Zp,.
The Catalan numbers satisfy (n+2)C(n+ 1) = (4n+2)C(n).
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Theorem (Michel,Miller,Rennie, 2014)

Let C(n),>o be the sequence of Catalan numbers. Then for each
k,r e N, limy_,o C(kp" + r) exists in Zp. Are the limits transcendental?

A constant-recursive sequence s(n),> is one that satisfies a
recurrence

s(n+0)+a1s(n+¢—-1)+---+as(n+1)+ as(n) =0

with constant coefficients a; € Zp,.
The Catalan numbers satisfy (n+2)C(n+ 1) = (4n+ 2)C(n).

The Fibonacci sequence F(n),>0 =0,1,1,2,3,5,8,13,... satisfies
¢" — "

F(n)=F(n—-1)+F(n-2) = 7

where ¢, ¢ = @ are the roots of its characteristic polynomial
g(x) =x%—x—1.
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Values of F(3"):
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Values of F(3"):

Values of F(32"):

Values of F(32™1):
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Values of F(3"):

Values of F(32"):

Values of F(32™1):

These limits are i\@ in Zgz. They are explained by interpolations.
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If s(n)n>0 is @ constant-recursive sequence with characteristic
polynomial g(x), then we can write

s(n) = _ cs(n)s"
8

for some polynomials c¢g(x) € K[x], where we sum over all roots
B1,...,Be0of g(x), and K = Zp(54, ..., ). Let Ok be the unit ball of K:
there exists f = f(p) such that all p’ — 1-st roots of unity lie in Ok. Let
7 be a uniformizer in Ok.

Given x # 0 mod = in O, let w(x) denote the p’ — 1-st root of unity
such that x = w(x) mod 7.
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If s(n)n>0 is @ constant-recursive sequence with characteristic
polynomial g(x), then we can write

n) = Z cs(n)B"
3

for some polynomials c¢g(x) € K[x], where we sum over all roots
B1,...,Be0of g(x), and K = Zp(54, ..., ). Let Ok be the unit ball of K:
there exists f = f(p) such that all p’ — 1-st roots of unity lie in Ok. Let
7 be a uniformizer in Ok.

Given x # 0 mod = in O, let w(x) denote the p’ — 1-st root of unity
such that x = w(x) mod 7.

Corollary (Rowland-Y, 2016)

Let p be a prime, and let s(n),>o be a constant-recursive sequence of
p-adic integers with monic characteristic polynomial g(x) € Zp|x].
Leta, b € Z with a> 1. Then lim,_,, s(ap™ + b) exists in Z, and is
equal to

Jim s(@” +b)= 3 cx(b)e(d) .
18lp=1
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nILmoos(apf”+b)= > cs(b)w(B)?B°.
1Blp=1

Example
If p=3,then f =2, and

F(32n) _ W(Qﬁ)\;gw(é_b) _ 2/57

and

F(32n+1) = w(¢)3\;§w(5)3 _ _\/25.
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nILmoos(apf”+b)= > cs(b)w(B)?B°.
1Blp=1

Example
If p=3,then f =2, and

F(32n) _ W(Qﬁ)\;gw(é_b) _ 2/57

and

F(32n+1) = w(¢)3\;§w(5)3 _ _\/25.

For p = 2 one computes that

/| 3 3
; 2my _ [ _ ¥ ; 2n+1y _ [ _ ¥
nllm F(2") = 5 and nllm F(p="™") = 5
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Interpolation?

300
200

100 |-

Can we interpolate a combinatorial sequence s(n) to a continuous
function ¢(x) on Zp?
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Interpolation?

300
200

100 |-

Can we interpolate a combinatorial sequence s(n) to a continuous
function ¢(x) on Zp? Mostly No. Example:

: n B Gk on
nILmOO C(2") #1 = C(0), while nILmMQ =0.

But maybe we can interpolate subsequences.
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Constant-recursive sequences

Theorem (Rowland-Y, 2016)

Let s(n),>o be a constant-recursive sequence with a monic
characteristic polynomial. Then s(n),>o has an approximate twisted
interpolation to Zp. That is, there exists q a power of p, a finite partition
N = Ujey Aj with each Aj dense inr + qZp forsome0 <r < q -1,
finitely many continuous functions s; : Zp — K, and non-negative
constants C, D with D < 1 such that

|s(n) — sj(n)|p < C- D"

forallnc A;andj € J.
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The Fibonacci sequence in Z3

Let ¢ = 145 and ¢ = 155 in Q3(V/5).
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The Fibonacci sequence in Z3

Let ¢ = 145 and ¢ = 155 in Q3(V/5).
Let w(¢),w(¢) € Q3(v/5) be 8th roots of unity congruent to ¢, ¢ mod 3.
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The Fibonacci sequence in Z3
Let ¢ = 145 and ¢ = 155 in Q3(V/5).
Let w(¢),w(¢) € Q3(v/5) be 8th roots of unity congruent to ¢, ¢ mod 3.

Corollary (Rowland-Y 2016)
Foreach 0 < i <7, define the function F; : Z3 — 73 by

. w(¢)' exps (xlog3 )\/5 w(o) exps (xlog3 —%)

Then F(n) = Fi(n) foralln=i mod 8.
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The Fibonacci sequence in Z3
Let ¢ = 145 and ¢ = 155 in Q3(V/5).
Let w(¢),w(¢) € Q3(v/5) be 8th roots of unity congruent to ¢, ¢ mod 3.

Corollary (Rowland-Y 2016)
Foreach 0 < i <7, define the function F; : Z3 — 73 by

w(¢)' exps (xlog3 ) w(o) exps (xlog3 —%)
V5
Then F(n) = Fi(n) foralln=i mod 8.

Filx) =

Since 32" =1 mod 8,

lim F(32") = lim_ F1(3%") = F;(0)

n—oo
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The Fibonacci sequence in Z3
Let ¢ = 145 and ¢ = 155 in Q3(V/5).
Let w(¢),w(¢) € Q3(v/5) be 8th roots of unity congruent to ¢, ¢ mod 3.

Corollary (Rowland-Y 2016)
Foreach 0 < i <7, define the function F; : Z3 — 73 by

w(¢)' exps (xlog3 ) w(o) exps (xlog3 —%)
7 :
Then F(n) = Fi(n) foralln=i mod 8.

Filx) =

Since 32" =1 mod 8,

lim F(382") = lim F;(3%") = F;(0) = “’(‘é)\;g“’(‘g).
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p-adic logarithm and exponential

The p-adic logarithm
_4\m
log, x := > _(~1)™"" =17
m>1 m

converges for x € Z, such that [x — 1|, < 1.

The p-adic exponential function

m

eXpp X 1= Z %

m>0

converges for x € Z, such that |x|, < p~1/(P=1).
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p-adic logarithm and exponential

The p-adic logarithm
—1)ym
log, x := > _(~1)™"" =17
m>1 m
converges for x € Z, such that [x — 1|, < 1.

The p-adic exponential function

Xm

m>0

converges for x € Z, such that |x|, < p~1/(P=1).

If |x —1|p < p~"/®P=1), then

X = expplog, x.
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Proof outline for Zs
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Proof outline for Zs

Let ¢ = 1Y% and ¢ = 155 in Q3(+/5). Then

Rewrite

similarly for ¢.
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Proof outline for Zs

Rewrite
R

w¢¢))> ;

~—~ &

= w(¢)" exp; (nlog3

similarly for ¢.
For nin a fixed residue class modulo 8, w(¢)" is constant,
hence 8 functions Fj(x).

Reem Yassawi Dynamical systems on Zp generated by constant length substitution: March 10th 2016



Proof outline for Zs

Rewrite

- )

¢ ) -
)
similarly for ¢.

For nin a fixed residue class modulo 8, w(¢)" is constant,
hence 8 functions Fj(x).

What else lies in £?

~—~ &

= w(¢)" exp; (nlog3
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Catalan numbers modulo 2¢

For alln> 0,
@ C(n)#9 mod 16,
@ C(n) #17,21,26 mod 32,
@ C(n)#£10,13,33,37 mod 64,
@ C(n) #18,54,61,65,66,69,98,106,109 mod 128.
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Catalan numbers modulo 2¢

For alln> 0,
@ C(n)#9 mod 16,
@ C(n) #17,21,26 mod 32,
@ C(n)#£10,13,33,37 mod 64,
@ C(n) #18,54,61,65,66,69,98,106,109 mod 128.

Only ~ 35% of the residues modulo 512 are attained by some C(n).
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Catalan numbers modulo 2¢

Theorem
Foralln> 0,
@ C(n)#9 mod 16,
@ C(n) #17,21,26 mod 32,
@ C(n)#£10,13,33,37 mod 64,
@ C(n) #18,54,61,65,66,69,98,106,109 mod 128.

Only ~ 35% of the residues modulo 512 are attained by some C(n).

Open question

o . >
Is the limiting density Iin 1C(n) modzf N =0} nonzero?
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Theorem
Foralln> 0,
@ C(n)#9 mod 16,
@ C(n) #17,21,26 mod 32,
@ C(n)#£10,13,33,37 mod 64,
@ C(n) #18,54,61,65,66,69,98,106,109 mod 128.

Only ~ 35% of the residues modulo 512 are attained by some C(n).

Open question

o . >
Is the limiting density Iin 1C(n) modzf N =0} nonzero?
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Limiting density of attained residues; support of the
o-invariant measure.

Theorem (Burr, 1971)

For all« > 1, F(n)y>o attains all residues modulo 3“ and 5. In other
words for all o > 1,

|F(n) mod 3¢| |F(n) mod 5|
3a - 5a =1
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Limiting density of attained residues; support of the
o-invariant measure.

Theorem (Burr, 1971)

For all« > 1, F(n)y>o attains all residues modulo 3“ and 5. In other
words for all o > 1,

|F(n) mod 3¢| |F(n) mod 5|
3a - 5a =1

Let 1 be the Haar measure on Z, defined by pu(m+ p*Zp) = p~«.
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Limiting density of attained residues; support of the
o-invariant measure.

Theorem (Burr, 1971)

For all« > 1, F(n)y>o attains all residues modulo 3“ and 5. In other
words for all o > 1,

|F(n) mod 3% |F(n) mod 5%
3« N 5

=1.

Let 1 be the Haar measure on Z, defined by pu(m+ p*Zp) = p~«.
Theorem (Rowland-Y, 2016)

Let s(n),>0 be a sequence of p-adic integers with an approx. twisted
interpolation {(s; r, Ai;) :0<i<p'—2and0<r<gq-1}. Then

a—o0 pa

jm St mod P02 O} _ (Zp AU sielr+ qu)) |

ir
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Fibonacci residues modulo 11¢

Theorem (Rowland—Yassawi 2016)

The limiting density of residues attained by the Fibonacci sequence
modulo 11¢ is

9 [e°] 5
. |[{F(n) mod 11¢:n >0} 3ot rarr 145
alm, 110 s iL_JOF"(Z”) =

264"
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Fibonacci residues modulo 11¢

Theorem (Rowland—Yassawi 2016)

The limiting density of residues attained by the Fibonacci sequence
modulo 11¢ is

a—00 11 264

264"

@7 - 9 4+ [e ) 5
im {F(n)mod 11%:n > 0}| _ “(U Fi(ZH)) Yot st 145
i=0

Thus if p = 11, (XF, o) projects into a subset of Z,, of the above
measure.
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Fibonacci residues modulo 11¢

Theorem (Rowland—Yassawi 2016)

The limiting density of residues attained by the Fibonacci sequence
modulo 11¢ is

9 (&) 5
e > 4+Za7 a+t
i [{F(n) mod 11°: n > 0} :M(| IF,-(Z11)> L\ it 145
i=0

264"

a—00 11 264

Thus if p = 11, (XF, o) projects into a subset of Z,, of the above
measure.

Open question

The case p = 11 was easier to work out as /5 € Z44. Is a computation
possible for all p?
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Fibonacci residues modulo 11¢

7 8
Y o 126208
@ €] [©] @

0

Y 126208
©]
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Every sequence that is the diagonal of a rational function is computed
by a finite automaton modulo p®.
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Every sequence that is the diagonal of a rational function is computed
by a finite automaton modulo p®.

Every sequence satisfying a linear recurrence with constant
coefficients is computed by a finite automaton modulo p®, and has an
approximate twisted interpolation to Zp.
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Every sequence that is the diagonal of a rational function is computed
by a finite automaton modulo p®.

Every sequence satisfying a linear recurrence with constant
coefficients is computed by a finite automaton modulo p®, and has an
approximate twisted interpolation to Zp.

This interpolation allows us to begin to glean some information about
the support of invariant measures and also what belongs to the w-limit
set.
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Every sequence that is the diagonal of a rational function is computed
by a finite automaton modulo p®.

Every sequence satisfying a linear recurrence with constant
coefficients is computed by a finite automaton modulo p®, and has an
approximate twisted interpolation to Zp.

This interpolation allows us to begin to glean some information about
the support of invariant measures and also what belongs to the w-limit
set.

Open question
To what extent can the diagonal of a general rational function be
interpolated to Zp ?
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