Tilings with S-adic Rauzy fractals

(joint work with Valérie Berthé and Jörg Thuswaldner)

LIAFA (CNRS, Université Paris Diderot – Paris 7)

FAN kickoff workshop, LIAFA, May 2, 2013

Codings of translations on the torus

Sturmian words are codings of rotations on $\ensuremath{\mathbb{T}}^1$

Rauzy'82: Tribonacci word is the coding of a translation on \mathbb{T}^2

Conjecture by Arnoux and Rauzy: each Arnoux-Rauzy word is the coding of a translation on \mathbb{T}^2

Cassaigne–Ferenczi–Zamboni'00: there are Arnoux-Rauzy words that are not codings of translations

We show that almost all Arnoux-Rauzy words are codings of translations on \mathbb{T}^2

S-adic words

Let $(\sigma_n)_{n\in\mathbb{N}}$ be a sequence of substitutions over the alphabet $A = \{1, 2, ..., d\}. \ \omega \in A^{\mathbb{N}}$ is a *limit word* of $(\sigma_n)_{n\in\mathbb{N}}$ if $\omega^{(0)} = \omega, \quad \omega^{(n)} = \sigma_n(\omega^{(n+1)})$ for all $n \in \mathbb{N}$.

for some words $\omega^{(n)}$; ω is an *S*-adic word with $S = \{\sigma_n : n \in \mathbb{N}\}$.

S-adic words

Let $(\sigma_n)_{n\in\mathbb{N}}$ be a sequence of substitutions over the alphabet $A = \{1, 2, \dots, d\}$. $\omega \in A^{\mathbb{N}}$ is a *limit word* of $(\sigma_n)_{n\in\mathbb{N}}$ if $\omega^{(0)} = \omega, \quad \omega^{(n)} = \sigma_n(\omega^{(n+1)})$ for all $n \in \mathbb{N}$. for some words $\omega^{(n)}$; ω is an *S*-adic word with $S = \{\sigma_n : n \in \mathbb{N}\}$.

Example

Arnoux-Rauzy words on $A = \{1, 2, 3\}$: $S = \{\alpha_1, \alpha_2, \alpha_3\}$,

$lpha_{1}$:	1	\mapsto	1	α_2	: 1	\mapsto	21	$lpha_{3}$:	1	\mapsto	31
	2	\mapsto	12		2	\mapsto	2		2	\mapsto	32
	3	\mapsto	13		3	\mapsto	23		3	\mapsto	3

e.g.

 $= \alpha_1(1213121121312112131212131211213121) \cdots)$

 $= \alpha_1 \alpha_1 (2321232123223212321 \cdots)$

 $= \alpha_1 \alpha_1 \alpha_2 (3131323131 \cdots)$

 $= \alpha_1 \alpha_1 \alpha_2 \alpha_3 (11211 \cdots)$

Periodic case (fixed point of a substitution)

If $\omega^{(p)} = \omega$, then $\omega = \sigma_0 \sigma_1 \cdots \sigma_{p-1}(\omega)$

has a periodic directive sequence $(\sigma_n)_{n \in \mathbb{N}}$.

Example

Tribonacci sequence

$$\omega = \alpha_1 \alpha_2 \alpha_3(\omega) = \tau(\omega)$$

$$\alpha_1 \alpha_2 \alpha_3 : 1 \mapsto 1213121 \qquad \tau : 1 \mapsto 12$$

$$2 \mapsto 121312 \qquad 2 \mapsto 13$$

$$3 \mapsto 1213 \qquad 3 \mapsto 1$$

$$\alpha_1 \alpha_2 \alpha_3 = \tau^3$$

Broken line

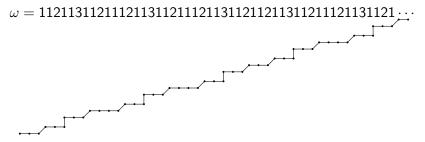
The *abelianisation map* on A^* is

$$\ell: A^* \rightarrow \mathbb{N}^d, w \mapsto {}^t(|w|_1, |w|_2, \dots, |w|_d),$$

where $|w|_j$ denotes the number of occurrences of the letter j in w. The *broken line* associated with $\omega = \omega_0 \omega_1 \cdots \in A^{\mathbb{N}}$ has vertex set

$$\{\ell(\omega_{[0,n)}): n \in \mathbb{N}\}, \text{ where } \omega_{[0,n)} = \omega_0 \omega_1 \cdots \omega_{n-1}.$$

Example

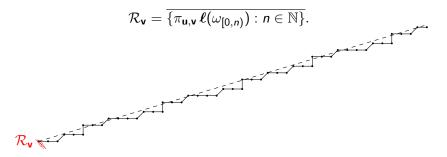


Rauzy fractal

If the letter frequencies $f_i = \lim_{n \to \infty} \frac{|\omega_{[0,n)}|_i}{n}$ exist, let

$$\mathbf{u} = {}^t(f_1, f_2, \ldots, f_d)$$

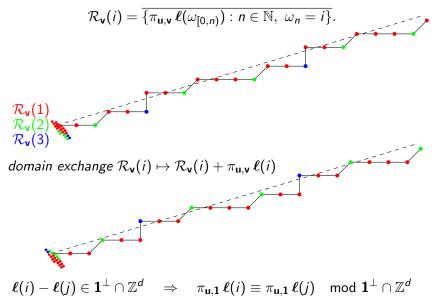
be the *frequency vector* of ω . Let $\pi_{\mathbf{u},\mathbf{v}}$ be the projection along \mathbf{u} onto a hyperplane \mathbf{v}^{\perp} , $\mathbf{v} \in \mathbb{R}^{d}_{\geq 0} \setminus \{\mathbf{0}\}$. The *Rauzy fractal* (in \mathbf{v}^{\perp}) is



A particular role will be played by \mathcal{R}_1 , $\mathbf{1} = {}^t(1, \ldots, 1)$.

Subtiles and domain exchange

The Rauzy fractal has subtiles



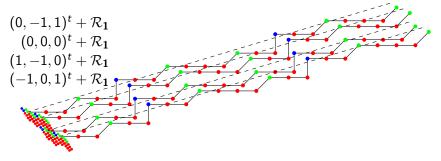
Covering and tiling of $1^{\!\perp}$

Lemma

Assume that \mathcal{R}_1 is compact. Then

$$(\mathbf{1}^{\perp} \cap \mathbb{Z}^d) + \mathcal{R}_{\mathbf{1}} = \mathbf{1}^{\perp}$$

if and only if f_1, f_2, \ldots, f_d are rationally independent.



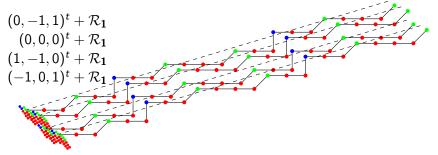
Covering and tiling of $1^{\!\perp}$

Lemma

Assume that \mathcal{R}_1 is compact. Then

$$(\mathbf{1}^{\perp} \cap \mathbb{Z}^d) + \mathcal{R}_{\mathbf{1}} = \mathbf{1}^{\perp}$$

if and only if f_1, f_2, \ldots, f_d are rationally independent.

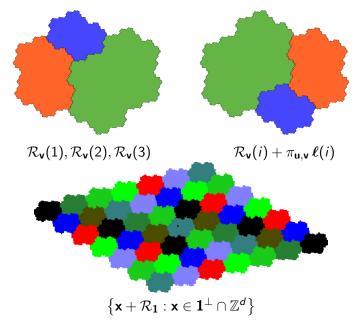


For which $\omega \in A^{\mathbb{N}}$, the collection

$$\mathcal{C}_{\mathbf{1}} = \left\{ \mathbf{x} + \mathcal{R}_{\mathbf{1}}(i) : \mathbf{x} \in \mathbf{1}^{\perp} \cap \mathbb{Z}^{d}, \, i \in A \right\}$$

forms a *tiling* of $\mathbf{1}^{\perp}$?

Domain exchange and tiling for the Tribonacci sequence



Spectrum of the symbolic dynamical system

The symbolic dynamical system generated by $\omega \in A^{\mathbb{N}}$ is (X_{ω}, Σ) , with Σ the shift on $A^{\mathbb{N}}$, i.e., $\Sigma((\omega_n)_{n \in \mathbb{N}}) = (\omega_{n+1})_{n \in \mathbb{N}}$, and

$$X_{\omega} = \overline{\{\Sigma^n(\omega) \mid n \in \mathbb{N}\}}$$

(closure w.r.t. product topology of discrete topology on A). For most S-adic words ω , (X_{ω}, Σ) is uniquely ergodic.

Spectrum of the symbolic dynamical system

The symbolic dynamical system generated by $\omega \in A^{\mathbb{N}}$ is (X_{ω}, Σ) , with Σ the shift on $A^{\mathbb{N}}$, i.e., $\Sigma((\omega_n)_{n \in \mathbb{N}}) = (\omega_{n+1})_{n \in \mathbb{N}}$, and

$$X_{\omega} = \overline{\{\Sigma^n(\omega) \mid n \in \mathbb{N}\}}$$

(closure w.r.t. product topology of discrete topology on A). For most S-adic words ω , (X_{ω}, Σ) is uniquely ergodic.

Define the representation map

$$\varphi: X_{\omega} \to \mathcal{R}_{\mathbf{v}}, \quad (v_n)_{n \in \mathbb{N}} \mapsto \bigcap_{k \in \mathbb{N}} \mathcal{R}_{\mathbf{v}}(v_{[0,k)}),$$

with $\mathcal{R}_{\mathbf{v}}(\upsilon_{[0,k)}) = \overline{\{\pi_{\mathbf{u},\mathbf{v}} \,\ell(\omega_{[0,n)}) : n \in \mathbb{N}, \ \omega_{[n,n+k)} = \upsilon_{[0,k)}\}},\$ if $\bigcap_{k \in \mathbb{N}} \mathcal{R}_{\mathbf{v}}(\upsilon_{[0,k)})$ is a single point for each $(\upsilon_n)_{n \in \mathbb{N}} \in X_{\omega}.$

Spectrum of the symbolic dynamical system

The symbolic dynamical system generated by $\omega \in A^{\mathbb{N}}$ is (X_{ω}, Σ) , with Σ the shift on $A^{\mathbb{N}}$, i.e., $\Sigma((\omega_n)_{n \in \mathbb{N}}) = (\omega_{n+1})_{n \in \mathbb{N}}$, and

$$X_{\omega} = \overline{\{\Sigma^n(\omega) \mid n \in \mathbb{N}\}}$$

(closure w.r.t. product topology of discrete topology on A). For most S-adic words ω , (X_{ω}, Σ) is uniquely ergodic.

Define the representation map

$$\varphi: X_{\omega} \to \mathcal{R}_{\mathbf{v}}, \quad (v_n)_{n \in \mathbb{N}} \mapsto \bigcap_{k \in \mathbb{N}} \mathcal{R}_{\mathbf{v}}(v_{[0,k)}),$$

with $\mathcal{R}_{\mathbf{v}}(v_{[0,k)}) = \overline{\{\pi_{\mathbf{u},\mathbf{v}} \,\ell(\omega_{[0,n)}) : n \in \mathbb{N}, \omega_{[n,n+k)} = v_{[0,k)}\}},\$ if $\bigcap_{k \in \mathbb{N}} \mathcal{R}_{\mathbf{v}}(v_{[0,k)})$ is a single point for each $(v_n)_{n \in \mathbb{N}} \in X_{\omega}.$

Lemma

If C_1 forms a tiling of $\mathbf{1}^{\perp}$ and φ is well defined, then (X_{ω}, Σ) is measurably conjugate to $+ \pi_{\mathbf{u},\mathbf{1}} \ell(i)$ on $\mathbf{1}^{\perp}/(\mathbf{1}^{\perp} \cap \mathbb{Z}^d) \simeq \mathbb{T}^{d-1}$, hence (X_{ω}, Σ) has purely discrete spectrum. (cf. Pisot conjecture)

Balanced words

A pair of words $u, v \in A^*$ with |u| = |v| is *C*-balanced if

 $-C \leq |u|_j - |v|_j \leq C \qquad \forall j \in A.$

 $\omega \in A^{\mathbb{N}}$ is *C*-balanced if each pair of factors u, v of ω with |u| = |v| is *C*-balanced; ω is balanced if ω is *C*-balanced for some *C*.

Lemma

The Rauzy fractal $\mathcal{R}_{\mathbf{v}}$ is compact if and only if ω is balanced.

Balanced words

A pair of words $u, v \in A^*$ with |u| = |v| is *C*-balanced if

 $-C \leq |u|_j - |v|_j \leq C \qquad \forall j \in A.$

 $\omega \in A^{\mathbb{N}}$ is *C*-balanced if each pair of factors u, v of ω with |u| = |v| is *C*-balanced; ω is balanced if ω is *C*-balanced for some *C*.

Lemma

The Rauzy fractal $\mathcal{R}_{\mathbf{v}}$ is compact if and only if ω is balanced.

Examples (Berthé-Cassaigne-St '13)

Let ω be an Arnoux-Rauzy word on $A = \{1, 2, 3\}$, $\sigma_n = \alpha_{t_n}$.

- ▶ If $\exists n \in \mathbb{N}$ with $t_n = t_{n+1} = \cdots = t_{n+k}$ (i.e., weak partial quotients are bounded by h), then ω is (2h+1)-balanced.
- Let X be the set {1121, 1122, 12121, 12122} together with the words obtained by permutations of letters. If t₀t₁t₂ ··· has no factor in X, then ω is 2-balanced.
- Cassaigne–Ferenczi–Zamboni '00 construct unbalanced Arnoux-Rauzy words on 3 letters.

Irrationality and contraction properties

Let $M_n = (|\sigma_n(j)|_i)_{i,j \in A}$ be the incidence matrix of σ_n ,

$$\sigma_{[n,n+k)} = \sigma_n \sigma_{n+1} \cdots \sigma_{n+k-1}, \ M_{[n,n+k)} = M_n M_{n+1} \cdots M_{n+k-1}.$$

We call a sequence of substitutions $(\sigma_n)_{n \in \mathbb{N}}$

- ▶ primitive if $\forall n \in \mathbb{N} \exists k \in \mathbb{N} : M_{[n,n+k)} > 0$,
- irreducible if ∀n ∈ N the characteristic polynomial of M_{[n,n+k)} is irreducible for all sufficiently large k.

Irrationality and contraction properties

Let $M_n = (|\sigma_n(j)|_i)_{i,j \in A}$ be the incidence matrix of σ_n ,

$$\sigma_{[n,n+k)} = \sigma_n \sigma_{n+1} \cdots \sigma_{n+k-1}, \ M_{[n,n+k)} = M_n M_{n+1} \cdots M_{n+k-1}.$$

We call a sequence of substitutions $(\sigma_n)_{n\in\mathbb{N}}$

- ▶ primitive if $\forall n \in \mathbb{N} \exists k \in \mathbb{N} : M_{[n,n+k)} > 0$,
- irreducible if ∀n ∈ N the characteristic polynomial of M_{[n,n+k)} is irreducible for all sufficiently large k.

Lemma

Let $(\sigma_n)_{n \in \mathbb{N}}$ be an irreducible sequence of substitutions with balanced limit word ω . Then the coordinates of the frequency vector $\mathbf{u} = {}^t(f_1, f_2, \dots, f_d)$ of ω are rationally independent.

Irrationality and contraction properties

Let $M_n = (|\sigma_n(j)|_i)_{i,j \in A}$ be the incidence matrix of σ_n ,

$$\sigma_{[n,n+k)} = \sigma_n \sigma_{n+1} \cdots \sigma_{n+k-1}, \ M_{[n,n+k)} = M_n M_{n+1} \cdots M_{n+k-1}.$$

We call a sequence of substitutions $(\sigma_n)_{n\in\mathbb{N}}$

- ▶ primitive if $\forall n \in \mathbb{N} \exists k \in \mathbb{N} : M_{[n,n+k)} > 0$,
- irreducible if ∀n ∈ N the characteristic polynomial of M_{[n,n+k)} is irreducible for all sufficiently large k.

Lemma

Let $(\sigma_n)_{n \in \mathbb{N}}$ be an irreducible sequence of substitutions with balanced limit word ω . Then the coordinates of the frequency vector $\mathbf{u} = {}^t(f_1, f_2, \dots, f_d)$ of ω are rationally independent.

Lemma

Let $(\sigma_n)_{n \in \mathbb{N}}$ be a primitive, irreducible, and recurrent sequence of substitutions with balanced limit word ω . Then

$$\lim_{n\to\infty}\pi_{\mathbf{u},\mathbf{v}}\,M_{[0,n)}\,\mathbf{x}=\mathbf{0}\quad\forall\mathbf{x}\in\mathbb{R}^d.$$

Main theorem

Let $(\sigma_n)_{n \in \mathbb{N}}$ be a primitive and irreducible sequence of unimodular substitutions over the alphabet A with limit word ω such that

 $\exists C \in \mathbb{N} : \forall k \in \mathbb{N} \ \exists n > 0 : \sigma_{[n,n+k)} = \sigma_{[0,k)}, \ \omega^{(n+k)} \text{ is } C\text{-balanced.}$

- (X_{ω}, Σ) is minimal and uniquely ergodic.
- $\mathcal{R}_{\mathbf{v}}$ is compact and closure of its interior; $\partial \mathcal{R}_{\mathbf{v}}$ has measure 0.
- C_1 forms a multiple tiling of $\mathbf{1}^{\perp}$.

Main theorem

Let $(\sigma_n)_{n \in \mathbb{N}}$ be a primitive and irreducible sequence of unimodular substitutions over the alphabet A with limit word ω such that

 $\exists C \in \mathbb{N} : \forall k \in \mathbb{N} \ \exists n > 0 : \sigma_{[n,n+k)} = \sigma_{[0,k)}, \ \omega^{(n+k)} \text{ is } C\text{-balanced.}$

- (X_{ω}, Σ) is minimal and uniquely ergodic.
- \mathcal{R}_{v} is compact and closure of its interior; $\partial \mathcal{R}_{v}$ has measure 0.
- C_1 forms a multiple tiling of $\mathbf{1}^{\perp}$.
- If $\exists k \in \mathbb{N} : \forall j_1, j_2 \in A \ \exists i \in A, \ p_1, p_2 \in A^*$:

 $\ell(p_1) = \ell(p_2), \ \sigma_{[0,k)}(j_1) \in p_1 i A^*, \ \sigma_{[0,k)}(j_2) \in p_2 i A^*$ (strong coincidence condition), then the $\mathcal{R}_{\mathbf{v}}(i), \ i \in A$, are mutually disjoint in measure, and (X_{ω}, Σ) is measurably conjugate to an exchange of domains on $\mathcal{R}_{\mathbf{v}}$.

 C₁ forms a tiling of 1[⊥] iff the geometric coincidence condition holds. Then (X_ω, Σ) is measurably conjugate to a translation on T^{d-1}; in particular, its spectrum is purely discrete.

(Multiple) tiling of \mathbf{v}^{\perp} by (subtiles of) Rauzy fractals

The discrete hyperplane approximating \mathbf{v}^{\perp} is

$$\mathsf{\Gamma}(\mathsf{v}) = \{ [\mathsf{x}, i] \in \mathbb{Z}^d \times A : 0 \le \langle \mathsf{v}, \mathsf{x} \rangle < \langle \mathsf{v}, \ell(i) \rangle \}.$$

Let

$$\mathcal{C}_{\mathbf{v}} = \{\pi_{\mathbf{u},\mathbf{v}} \, \mathbf{x} + \mathcal{R}_{\mathbf{v}}(i) : [\mathbf{x},i] \in \Gamma(\mathbf{v})\}.$$

Since $\Gamma(\mathbf{1}) = \{ [\mathbf{x}, i] \in \mathbb{Z}^d \times A : \mathbf{x} \in \mathbf{1}^\perp \}$ and $\pi_{\mathbf{u}, \mathbf{v}} \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in \mathbf{v}^\perp$, this definition is consistent with that of C_1 above.

Theorem

Under the conditions of the main theorem, $C_{\mathbf{v}}$ is a multiple tiling of \mathbf{v}^{\perp} for all $\mathbf{v} \in \mathbb{R}^{d}_{\geq 0} \setminus \{\mathbf{0}\}$, and the covering degree of $C_{\mathbf{v}}$ does not depend on \mathbf{v} . (In particular, we have aperiodic and periodic multiple tilings with same covering degree.)

Set equations

Let
$$\pi_n = \pi_{(M_{[0,n)})^{-1}\mathbf{u}, \mathbf{v}^{(n)}}$$
 with $\mathbf{v}^{(n)} = {}^t(M_{[0,n)})\mathbf{v}$, and
 $\mathcal{R}_{\mathbf{v}}^{(n)}(i) = \overline{\left\{\pi_n \ell(\omega_{[0,k)}^{(n)}) : k \in \mathbb{N}, \omega_k^{(n)} = i\right\}}$
be the subtile in $(\mathbf{v}^{(n)})^{\perp} = (M_{[0,n)})^{-1}\mathbf{v}^{\perp}$ corresponding to $\omega^{(n)}$.
(Note that $(M_{[0,n)})^{-1}\mathbf{u}$ is the frequency vector of $\omega^{(n)}$.) Then
 $(M_{[0,n)})^{-1}\mathcal{R}_{\mathbf{v}}(i) = \bigcup_{j \in A, \ p \in A^*: \sigma_{[0,n)}(j) \in piA^*} (\pi_n (M_{[0,n)})^{-1}\ell(p) + \mathcal{R}_{\mathbf{v}}^{(n)}(j))$
 $= \bigcup_{[\mathbf{y}, j] \in E_1^*(\sigma_{[0,n)})(i)} (\pi_n \mathbf{y} + \mathcal{R}_{\mathbf{v}}^{(n)}(j)).$

Set equations

Let
$$\pi_n = \pi_{(M_{[0,n)})^{-1}\mathbf{u}, \mathbf{v}^{(n)}}$$
 with $\mathbf{v}^{(n)} = {}^t(M_{[0,n)})\mathbf{v}$, and
 $\mathcal{R}_{\mathbf{v}}^{(n)}(i) = \overline{\left\{\pi_n \,\ell(\omega_{[0,k)}^{(n)}) : k \in \mathbb{N}, \,\omega_k^{(n)} = i\right\}}$
be the subtile in $(\mathbf{v}^{(n)})^{\perp} = (M_{[0,n)})^{-1}\mathbf{v}^{\perp}$ corresponding to $\omega^{(n)}$.
(Note that $(M_{[0,n)})^{-1}\mathbf{u}$ is the frequency vector of $\omega^{(n)}$.) Then
 $(M_{[0,n)})^{-1}\mathcal{R}_{\mathbf{v}}(i) = \bigcup_{j \in A, \, p \in A^*: \sigma_{[0,n)}(j) \in piA^*} (\pi_n \,(M_{[0,n)})^{-1} \,\ell(p) + \mathcal{R}_{\mathbf{v}}^{(n)}(j))$
 $= \bigcup_{[\mathbf{y}, j] \in E_1^*(\sigma_{[0,n)})(i)} (\pi_n \,\mathbf{y} + \mathcal{R}_{\mathbf{v}}^{(n)}(j)).$

Let

$$\mathcal{C}_{\mathbf{v}}^{(n)} = \{\pi_n \, \mathbf{x} + \mathcal{R}_{\mathbf{v}}^{(n)}(i) : [\mathbf{x}, i] \in \Gamma(\mathbf{v}^{(n)})\}.$$

If $\sigma_{[0,n)}$ is unimodular, i.e., $|\det M_{[0,n)}| = 1$, then

$$\Gamma(\mathbf{v}^{(n)}) = E_1^*(\sigma_{[0,n)})(\Gamma(\mathbf{v})),$$

thus $(M_{[0,n)})^{-1}\mathcal{C}_{\mathbf{v}}$ is a collection of supertiles of $\mathcal{C}_{\mathbf{v}}^{(n)}$.

Convergence of $\mathcal{R}_{\mathbf{v}}^{(n_k)}$

Lemma

Let $(\sigma_n)_{n \in \mathbb{N}}$ be a primitive and irreducible sequence of unimodular substitutions over the alphabet A with limit word ω such that

 $\exists C \in \mathbb{N} : \forall k \in \mathbb{N} \ \exists n > 0 : \sigma_{[n,n+k)} = \sigma_{[0,k)}, \ \omega^{(n+k)} \text{ is } C\text{-balanced.}$

Then $\exists v \in \mathbb{R}^d_{\geq 0} \setminus \{0\}$ and a subsequence $(n_k)_{k \in \mathbb{N}}$ of \mathbb{N} such that

$$\lim_{k\to\infty}\mathcal{R}_{\mathbf{v}}^{(n_k)}(i)=\mathcal{R}_{\mathbf{v}}(i)\qquad\forall i\in A$$

(w.r.t. Hausdorff metric).

Convergence of $\mathcal{R}_{\mathbf{v}}^{(n_k)}$

Lemma

Let $(\sigma_n)_{n \in \mathbb{N}}$ be a primitive and irreducible sequence of unimodular substitutions over the alphabet A with limit word ω such that

 $\exists C \in \mathbb{N} : \forall k \in \mathbb{N} \ \exists n > 0 : \sigma_{[n,n+k)} = \sigma_{[0,k)}, \ \omega^{(n+k)} \text{ is } C\text{-balanced.}$

Then $\exists v \in \mathbb{R}^d_{\geq 0} \setminus \{0\}$ and a subsequence $(n_k)_{k \in \mathbb{N}}$ of \mathbb{N} such that

$$\lim_{k\to\infty}\mathcal{R}_{\mathbf{v}}^{(n_k)}(i)=\mathcal{R}_{\mathbf{v}}(i)\qquad\forall i\in A$$

(w.r.t. Hausdorff metric). Using this equation, we show that

- ∂R_v(i) has zero measure,
- $C_{\mathbf{v}}^{(n)}$ is a multiple tiling with covering degree independent of n,
- unions in the set equations are disjoint in measure,
- strong coincidence condition implies disjointness of the $\mathcal{R}_{v}(i)$.

Geometric coincidence condition

Theorem

Under the conditions of the main theorem, the following are equivalent:

• $C_{\mathbf{v}}$ is a tiling of \mathbf{v}^{\perp} .

►
$$\exists n \in \mathbb{N}, i \in A, [\mathbf{x}, h] \in \Gamma(\mathbf{1}^{(n)}) :$$

 $\{[\mathbf{y}, j] \in \Gamma(\mathbf{1}^{(n)}) : \|\pi_{(M_{[0,n)})^{-1}\mathbf{u},\mathbf{1}}(\mathbf{x}-\mathbf{y})\|_{\infty} \leq 2C+1\} \subset E_{1}^{*}(\sigma_{[0,n)})[\mathbf{0}, i],$
with $C \in \mathbb{N}$ such that $\omega^{(n)}$ is C-balanced.

Geometric coincidence condition

Theorem

Under the conditions of the main theorem, the following are equivalent:

• $\mathcal{C}_{\mathbf{v}}$ is a tiling of \mathbf{v}^{\perp} .

►
$$\exists n \in \mathbb{N}, i \in A, [\mathbf{x}, h] \in \Gamma(\mathbf{1}^{(n)}) :$$

 $\{[\mathbf{y}, j] \in \Gamma(\mathbf{1}^{(n)}) : \|\pi_{(M_{[0,n)})^{-1}\mathbf{u},\mathbf{1}}(\mathbf{x}-\mathbf{y})\|_{\infty} \leq 2C+1\} \subset E_{1}^{*}(\sigma_{[0,n)})[\mathbf{0}, i],$
with $C \in \mathbb{N}$ such that $\omega^{(n)}$ is C-balanced.

► Strong coincidences and $\exists n \in \mathbb{N}, i \in A, [\mathbf{x}, h] \in \Gamma(\mathbf{1}^{(n)}) :$ $\{[\mathbf{y}, j] \in \Gamma(\mathbf{1}^{(n)}) : \|\pi_{(M_{[0,n]})^{-1}\mathbf{u},\mathbf{1}}(\mathbf{x}-\mathbf{y})\|_{\infty} \leq 2C+1\} \subset \bigcup_{i \in A} E_1^*(\sigma_{[0,n]})[\mathbf{0}, i],$

with $C \in \mathbb{N}$ such that $\omega^{(n)}$ is C-balanced.

Arnoux-Rauzy words

Arnoux-Rauzy substitutions on $A = \{1, 2, \dots, d\}$

$$\alpha_i: i \mapsto i, j \mapsto ij \text{ for } j \in A \setminus \{i\}.$$

Theorem (Avila–Delecroix, Delecroix–Hejda–St)

There is a constant C(h) such that, for each directive sequence $(\alpha_{i_n})_{n \in \mathbb{N}}$ satisfying $\{i_n, \ldots, i_{n+h}\} = A$ for all $n \in \mathbb{N}$ (i.e., strong partial quotients bounded by h), the limit word ω is C(h)-balanced.

Let μ be an ergodic invariant probability measure for the Arnoux-Rauzy algorithm such that $\mu([w]) > 0$ for the cylinder corresponding to a word $w = w_{[0,n)} \in A^*$ with $\{w_0, \ldots, w_{n-1}\} = A$. Then, for μ -almost every **u** in the Rauzy gasket, the Arnoux-Rauzy word with frequency vector **u** is balanced.

Arnoux-Rauzy words

Theorem (Avila–Delecroix, Delecroix–Hejda–St)

There is a constant C(h) such that, for each directive sequence $(\alpha_{i_n})_{n \in \mathbb{N}}$ satisfying $\{i_n, \ldots, i_{n+h}\} = A$ for all $n \in \mathbb{N}$ (i.e., strong partial quotients bounded by h), the limit word ω is C(h)-balanced.

Let μ be an ergodic invariant probability measure for the Arnoux-Rauzy algorithm such that $\mu([w]) > 0$ for the cylinder corresponding to a word $w = w_{[0,n)} \in A^*$ with $\{w_0, \ldots, w_{n-1}\} = A$. Then, for μ -almost every **u** in the Rauzy gasket, the Arnoux-Rauzy word with frequency vector **u** is balanced.

Theorem

 (X_{ω}, Σ) is conjugate to an exchange of domains on $\mathcal{R}_{\mathbf{v}}$

- for μ -almost every sequence $(\alpha_{i_n})_{n \in \mathbb{N}}$,
- For each recurrent sequence (α_{in})_{n∈ℕ} with bounded strong partial quotients (∃h ∈ ℕ : {i_n,..., i_{n+h}} = A ∀n ∈ ℕ),
- For each recurrent sequence (α_{in})_{n∈ℕ} on A = {1,2,3} with bounded weak p.q. (∃h ∈ ℕ : #{i_n,..., i_{n+h}} > 1 ∀n ∈ ℕ).

Arnoux-Rauzy words

Theorem

 (X_{ω}, Σ) is conjugate to an exchange of domains on $\mathcal{R}_{oldsymbol{v}}$

- for μ -almost every sequence $(\alpha_{i_n})_{n \in \mathbb{N}}$,
- for each recurrent sequence (α_{i_n})_{n∈ℕ} with bounded strong partial quotients (∃h ∈ ℕ : {i_n,..., i_{n+h}} = A ∀n ∈ ℕ),
- For each recurrent sequence (α_{in})_{n∈ℕ} on A = {1,2,3} with bounded weak p.q. (∃h ∈ ℕ : #{i_n,..., i_{n+h}} > 1 ∀n ∈ ℕ).

Theorem (Berthé-Jolivet-Siegel'12)

Each directive sequence $(\alpha_{i_n})_{n \in \mathbb{N}}$ of an Arnoux-Rauzy word on 3 letters satisfies the geometric coincidence condition.

Theorem

 (X_ω, Σ) is conjugate to a rotation on \mathbb{T}^2

- for μ -almost every sequence $(\alpha_{i_n})_{n\in\mathbb{N}}$ on $A = \{1, 2, 3\}$,
- For each recurrent sequence (α_{in})_{n∈ℕ} on A = {1,2,3} with bounded weak p.q. (∃h ∈ ℕ : #{i_n,..., i_{n+h}} > 1 ∀n ∈ ℕ).

Brun words

Brun substitutions on $A = \{1, 2, 3\}$ $\beta_{ij}: j \mapsto ij, k \mapsto k \text{ for } k \in A \setminus \{j\},$

Theorem (Avila–Delecroix, Delecroix–Hejda–St)

There is a constant C(h) such that, for each directive sequence $(\beta_{i_n,j_n})_{n\in\mathbb{N}}$ satisfying $\{i_n,\ldots,i_{n+h}\} = A$ for all $n \in \mathbb{N}$ (i.e., strong partial quotients bounded by h), the limit word ω is C(h)-balanced.

For Lebesgue almost every frequency vector $\mathbf{u} \in \mathbb{R}^3_+$, the Brun word with frequency vector \mathbf{u} is balanced.

Brun words

Brun substitutions on $A = \{1, 2, 3\}$ $\beta_{ij}: j \mapsto ij, k \mapsto k \text{ for } k \in A \setminus \{j\},$

Theorem (Avila–Delecroix, Delecroix–Hejda–St)

There is a constant C(h) such that, for each directive sequence $(\beta_{i_n,j_n})_{n\in\mathbb{N}}$ satisfying $\{i_n,\ldots,i_{n+h}\} = A$ for all $n\in\mathbb{N}$ (i.e., strong partial quotients bounded by h), the limit word ω is C(h)-balanced.

For Lebesgue almost every frequency vector $\mathbf{u} \in \mathbb{R}^3_+$, the Brun word with frequency vector \mathbf{u} is balanced.

Theorem (Berthé-Bourdon-Jolivet-Siegel)

Each directive sequence $(\beta_{i_n,j_n})_{n \in \mathbb{N}}$ of a Brun word on 3 letters satisfies the geometric coincidence condition.

Brun words

Brun substitutions on $A = \{1, 2, 3\}$ $\beta_{ij}: j \mapsto ij, k \mapsto k \text{ for } k \in A \setminus \{j\},$

Theorem (Avila–Delecroix, Delecroix–Hejda–St)

There is a constant C(h) such that, for each directive sequence $(\beta_{i_n,j_n})_{n\in\mathbb{N}}$ satisfying $\{i_n,\ldots,i_{n+h}\} = A$ for all $n\in\mathbb{N}$ (i.e., strong partial quotients bounded by h), the limit word ω is C(h)-balanced.

For Lebesgue almost every frequency vector $\mathbf{u} \in \mathbb{R}^3_+$, the Brun word with frequency vector \mathbf{u} is balanced.

Theorem (Berthé-Bourdon-Jolivet-Siegel)

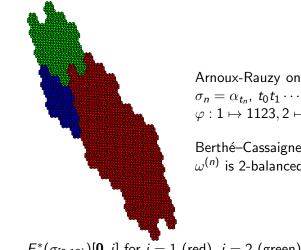
Each directive sequence $(\beta_{i_n,j_n})_{n \in \mathbb{N}}$ of a Brun word on 3 letters satisfies the geometric coincidence condition.

Theorem

 (X_{ω}, Σ) is conjugate to a rotation on \mathbb{T}^2

- ▶ for the Brun word corresponding to Lebesgue a.e. direction,
- For each recurrent sequence (β_{in,jn})_{n∈ℕ} with bounded strong partial quotients (∃h ∈ ℕ : {i_n,..., i_{n+h}} = A ∀n ∈ ℕ).

An example



Arnoux-Rauzy on $A = \{1, 2, 3\}$ with $\sigma_n = \alpha_{t_n}, t_0 t_1 \cdots = \lim_{k \to \infty} \varphi^k(1)$ $\varphi: 1 \mapsto 1123, 2 \mapsto 23, 3 \mapsto 123$ (Chacon)

Berthé-Cassaigne-St '13: $\omega^{(n)}$ is 2-balanced $\forall n \in \mathbb{N}$

 $E_1^*(\sigma_{[0,13)})[\mathbf{0}, i]$ for i = 1 (red), i = 2 (green), i = 3 (blue)