Graph classes defined via vertex ordering avoiding patterns

Laurent Feuilloley
joint work with Yacine Boufkhad, Pierre Charbit, and Michel Habib
Université Paris Diderot

GROW · Toronto · October 2017
Disclaimer

This is mostly a survey
Warm-up : Interval graphs
Interval graphs
Interval graphs

From intervals to graphs
Interval graphs

From intervals to graphs
Interval graphs
From graphs to intervals
Interval graphs

with an ordering
Interval graphs
with an ordering
Interval graphs

Characterization

An ordered graph represents an interval graph if and only if it avoids the pattern:

\[\begin{array}{ccc}
\bullet & - & \bullet \\
\bullet & - & \bullet \\
\end{array} \]
Interval graphs

Characterization

A graph is an interval graph

⇔

there exists a vertex ordering that avoids:

\[
\begin{array}{c}
\circ \\
\circ \\
\circ
\end{array}
\]

\[
\begin{array}{c}
\circ \\
- \\
\circ
\end{array}
\]
Definitions
Pattern

For an ordered subgraph to match the pattern:

- plain edges must be present,
- dashed edges must be absent,
- non-edges have no constraint.
Vertex ordering characterizations

A graph is a \(\Leftrightarrow \) there exists a vertex ordering that avoids:

- Pattern 1
- Pattern 2
- Pattern 3
- ...

[Damaschke 90]
Examples

A zoo of classes
A graph is a 3-colourable

\[\iff \]

there exists a vertex ordering

that avoids:

\[\begin{array}{c}
\text{ } \\
\text{ } \\
\text{ } \\
\text{ } \\
\end{array} \]
On three nodes

Comparability

Triangle-free

Chordal

Interval

Split

Tree

Bipartite

Path

Star
Structure
Complement

Interval \iff Co-interval

Inversion of dashed/plain edges \iff Complement class
Inclusion

Interval \subseteq \text{Chordal} \subseteq \text{Inclusion of classes} \\
\text{Inclusion of patterns} \Rightarrow \text{Inclusion of classes}
Pattern splitting

Co-comparability & Chordal \(\subseteq\) Interval
Pattern splitting

Co-comparability & Chordal = Interval
Pattern Splitting

<table>
<thead>
<tr>
<th>Chordal \cap Co-comparability</th>
<th>$=$</th>
<th>Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chordal $&$ Co-chordal</td>
<td>$=$</td>
<td>Split</td>
</tr>
<tr>
<td>Chordal \cap Triangle-free</td>
<td>$=$</td>
<td>Tree</td>
</tr>
<tr>
<td>Comparability \cap Triangle-free</td>
<td>$=$</td>
<td>Bipartite</td>
</tr>
</tbody>
</table>
Recognition
Recognition of classes defined by forbidden patterns is in NP.

The ordering can be checked in polytime.
On three nodes

Theorem: Classes defined by patterns on three nodes can be recognized in polynomial-time.

Proof history:
- Class by class;
- class by class with orderings;
- a general algorithm [Hell, Mohar, Rafiey, 2014];
- a general algorithm with a simpler analysis?
General case

- Some classes can be recognized in polytime, e.g. outerplanar graphs;
- Some are NP-complete, e.g. \(k \)-colourability;
- Almost all the classes defined by 2-connected patterns are NP-complete to recognize [Duffus, Ginn, Rödl, 95].
- It seems that there is no dichotomy [Nešetřil 17].
Geometry

Grounded intersection graphs
Grounded intersection graphs
Grounded rectangles graphs
Grounded rectangles graphs
Applications to algorithms
Applications to algorithms Tomorrow!
Applications to distributed decision
A distributed NP

1. A prover gives to each node a small certificate
2. Every node gathers some t-neighbourhood (structure and certificates) and chooses to accept or reject.
3. The graph is accept iff all nodes accept.
A distributed NP

1. A prover gives to each node a small certificate
2. Every node gathers some t-neighbourhood (structure and certificates) and chooses to accept or reject.
3. The graph is accept iff all nodes accept.
A distributed NP

1. A prover gives to each node a small certificate

2. Every node gathers some t-neighbourhood (structure and certificates) and chooses to accept or reject.

3. The graph is accept iff all nodes accept.
A distributed NP

1. A prover gives to each node a small certificate.
2. Every node gathers some t-neighbourhood (structure and certificates) and chooses to accept or reject.
3. The graph is accept iff all nodes accept.
A distributed NP

1. A prover gives to each node a small certificate
2. Every node gathers some t-neighbourhood (structure and certificates) and chooses to accept or reject.
3. The graph is accept iff all nodes accept.
A distributed NP

1. A prover gives to each node a small certificate
2. Every node gathers some t-neighbourhood (structure and certificates) and chooses to accept or reject.
3. The graph is accept iff all nodes accept.
A distributed NP

1. A prover gives to each node a small certificate
2. Every node gathers some t-neighbourhood (structure and certificates) and chooses to accept or reject.
3. The graph is accept iff all nodes accept.
Distributed NP recognition

The ordering is a useful certificate that can be checked locally for many classes.
Take-home message

Vertex ordering characterizations are all around us.

There are a lot of open questions worth investigating!