Error-sensitive proof-labeling schemes

Laurent Feuilloley
joint work with Pierre Fraigniaud
Université Paris Diderot

October 2017
Locality
Decision problems
Decision problems

Context:
- Communication graph $G$
- Node inputs, $x : v \mapsto x(v)$

A language is a set of configurations $(G, x)$
s.t. $\forall G, \exists x, (G, x) \in \mathcal{L}$
Properly-colored graphs

\[ \mathcal{L} = \{(G, x) \text{ s.t. } x \text{ is a proper coloring of } G\} \]
Spanning forest

\[ \mathcal{L} = \{(G, x) \text{ s.t. } x \text{ describes a spanning forest of } G\} \]
Spanning forest

\[ \mathcal{L} = \{(G, x) \text{ s.t. } x \text{ describes a spanning forest of } G\} \]
Decision mechanism

Every node:

- gathers its 1-neighbourhood
- outputs a local decision accept or reject.
Decision mechanism

Every node:
• gathers its 1-neighbourhood
• outputs a local decision: accept or reject.
Every node:
• gathers its 1-neighbourhood
• outputs a local decision accept or reject.
(G, x) is accepted if all nodes accept.
Decision mechanism

\((G, x)\) is rejected if at least one node rejects.
Properly-colored graphs
Properly-colored graphs
Properly-colored graphs
Spanning forest
Spanning forest
Proof-labeling schemes

Distributed
non-determinism
Proof-labeling schemes
Proof-labeling schemes
Proof-labeling schemes
Proof-labeling schemes

Given a proof-labeling scheme for $\mathcal{L}$:

For all $(G, x)$:

- If $(G, x) \in \mathcal{L}$:
  \[ \exists c \text{ s.t. } (G, x, c) \text{ is accepted}. \]

- If $(G, x) \notin \mathcal{L}$:
  \[ \forall c, (G, x, c) \text{ is rejected}. \]
Proof-labeling schemes
Proof-labeling schemes
Proof-labeling schemes
Proof-labeling schemes
Error-sensitivity of proof-labeling schemes
One node to reject
More nodes to reject
Distance

\[ d((G, x_1), (G, x_2)) = \#\{ v : x_1(v) \neq x_2(v) \} \]
Distance

\[ d((G, x_1), (G, x_2)) = \#\{v : x_1(v) \neq x_2(v)\} \]
Distance

\[ d\left((G, x), \mathcal{L}\right) = \min_{(G', x') \in \mathcal{L}} d\left((G, x), (G', x')\right) \]
Error-sensitivity

in words

A PLS is *error-sensitive* if the number of rejecting nodes grows linearly with the distance.
Error-sensitivity

with a formula

A PLS is error-sensitive if there exists $\alpha > 0$ s.t., for all $(G, x)$, for all certificate:

$$\#\{\text{Rejecting nodes}\} \geq \alpha \cdot d((G, x), L)$$
Examples
# Acyclicity problems

<table>
<thead>
<tr>
<th>Adjacency lists</th>
<th>Pointers</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="image1" alt="Spanning forest" /></td>
<td><img src="image2" alt="Spanning forest with pointers" /></td>
</tr>
<tr>
<td><img src="image3" alt="Spanning tree" /></td>
<td><img src="image4" alt="Spanning tree with pointers" /></td>
</tr>
</tbody>
</table>
Spanning forest with pointers
Spanning forest with pointers has an error-sensitive PLS.
Spanning tree with pointers
Spanning tree with pointers has no error-sensitive PLS (for any certificate size).
Structural characterization
A language $\mathcal{L}$ admits an error-sensitive PLS if and only if $\mathcal{L}$ is locally stable.
Local stability

Hybridization

$\in \mathcal{L}$
Local stability

Boundary nodes
Local stability

\[ \mathcal{L} \text{ is locally stable if:} \]

\[ \exists \beta, \forall G, \forall \text{ hybridization,} \]

\[ d(\text{hybrid, } \mathcal{L}) \leq \beta \cdot \# \{ \text{Boundary nodes} \} \]
Spanning tree with pointers is not locally stable.
But with adjacency lists...

**Thm**: With *adjacency lists*, spanning tree and minimum spanning tree, are locally stable.

⇒ they have error-sensitive PLS.
Compact schemes
Compact PLS

**Theorem** (Korman et al.):
- ST has a $O(\log n)$-PLS;
- MST has a $O(\log^2 n)$-PLS.
Compact PLS

New Theorem:

- ST has a $O(\log n)$-ESPLS;
- MST has a $O(\log^2 n)$-ESPLS.
Open problem

Does error-sensitivity always come for free (when achievable)?