
Emergency kit for CTL

François Laroussinie

18 octobre 2024

draft !

1 La logique CTL

Let AP be a finite set of atomic propositions. CTL formulas are defined as follows :

CTL ∋ φ,ψ ::= p | φ ∨ ψ | ¬φ | EXφ | AXφ | EφUψ | AφUψ

with p ∈ AP.
A CTL formula is interpreted over a state of a Kripke structure S = ⟨S, s0,→, ℓ⟩ :
— S, s |= p iff p ∈ ℓ(s)
— S, s |= φ ∨ ψ iff S, s |= φ or S, s |= ψ
— S, s |= ¬φ iff S, s ̸|= φ
— S, s |= EXφ iff there exists s→ s′ s.t. S, s′ |= φ
— S, s |= EφUψ iff there exists some ρ ∈ Exec(s) s.t. ∃j ≥ 0 : S, ρ(j) |= ψ and ∀0 ≤ k < i,

we have : S, ρ(k) |= φ
where Exec(s) denotes the set of infinite executions from s.

2 Model checking algorithm

Model-checking : S |= φ
input : S = ⟨S, s0,→, ℓ⟩ a Kripke structure, φ ∈ CTL
output : Yes iff there exists w ∈W (S) such that D, s0 |= φ.

The model-checking algorithm for CTL consists in marking every state of the structure by
the subformulas it satisfies. In the following we use s.ψ to denote the variable storing the truth
value of ψ at s ∈ S. We proceed inductively over the formula as described in Algorithms 1
and 2.

Let Φ be a CTL formula and S = ⟨S, s0,→, ℓ⟩ be a Kripke structure. The complexity of
this algorithm is stated as follows : for Boolean cases, we get procedures in O(|S|) and for
temporal operators, we have procedures in O(|S|+ | → |). We use |S| to denote |S|+ | → |.
The overall complexity of the model-checking algorithm is in O(|Φ| · |S|).

The satisfiability of CTL is also decidable but the complexity is higher. Finally we have :

Theorem 1. — CTL Model-checking is P-complete.
— CTL satisfiability is EXPTIME-complete.

1

Procedure Mark(ψ) (part 1.)
case ψ = p : do

foreach s ∈ S do
if p ∈ ℓ(s) then s.ψ := true;
else q.ψ := false;

end

case ψ = ¬ψ1 : do
Mark(ψ1) ;
foreach s ∈ S do

s.ψ := ¬s.ψ1 ;
end

case ψ = ψ1 ∨ ψ2 : do
Mark(ψ1) ; Mark(ψ2) ;
foreach s ∈ S do

s.ψ := ¬s.ψ1 ∨ ¬s.ψ2 ;
end

case ψ = EXψ1 : do
Mark(ψ1) ;
foreach s ∈ S do s.ψ := false;
foreach s→ s′ do

if s′.ψ1 then s.ψ := true;
end

case ψ = AXψ1 : do
Mark(ψ1) ;
foreach s ∈ S do s.ψ := true;
foreach s→ s′ do

if ¬s′.ψ1 then s.ψ := false;
end

Algorithme 1 : Model-checking for CTL (part 1)

2

Procedure Mark(ψ) (part 1.)
case ψ = Eψ1Uψ2 : do

Mark(ψ1) ; Mark(ψ2) ; L := ∅ ;
foreach s ∈ S do

if s.ψ2 then s.ψ := true ; L := L ∪ {s};
else s.ψ := false ;;

end
while L ̸= ∅ do

pick a state s in L ;
foreach s′ → s do

if s′.ψ1 ∧ ¬s′.ψ then L := L ∪ {s′} ; s′.ψ := true;
end

end

case ψ = Aψ1Uψ2 : do
Mark(ψ1) ; Mark(ψ2) ; L := ∅ ;
foreach s ∈ S do

s.nb := deg−(s) ; // deg−(s) is the out-degree of s
if s.ψ2 then s.ψ := true ; L := L ∪ {s};
else s.ψ := false ;;

end
while L ̸= ∅ do

pick a state s in L ;
foreach s′ → s do

s′.nb := s′.nb− 1 ;
if s′.ψ1 ∧ s′.nb = 0 ∧ ¬s′.ψ then L := L ∪ {s′} ; s′.ψ := true;

end

end
Algorithme 2 : Model-checking for CTL (part 2)

3

3 Expressivity

It is easy to see that some CTL properties cannot be expressed with LTL. For example,
the CTL formula AG (EF p) (i.e. ”from any reachable state, one can reach a state satisfying
p”) has no equivalent in LTL. We can consider the two structures S and S ′ at Figure 1 : they
clearly have the same set of ”traces” (i.e. the set labeled executions) with (¬p)+ · pω ∪ (¬p)ω,
and then they satisfy the same LTL formulas, but s0 |= AG (EF p) and s′0 ̸|= AG (EF p)
(there is no way to reach a p state from s′2).

S

s0{} s1{p}

S ′

s′0{} s′1{p}

s′2{}

Figure 1 – Kripke structures S and S ′ for AX (EF p).

In conclusion, LTL is not ”at least as expressive as” CTL. But the converse is also true.
There are LTL properties that cannot be expressed with CTL. Consider the problem S |=∃ GF p
which states the existence of a path along which p is true infinitely many times. This property
cannot be expressed with CTL. But we cannot proceed as before to prove this result because
CTL has a stronger distinguishing power than LTL and it entails that for any Kripke structures
S and S ′, if S |=∃ GF p and S ′ ̸|=∃ GF p, then there exists a CTL formula φ such S |= φ and
S ′ ̸|= φ (see below). We will provide two infinite families of models Sn and S ′

n for n ≥ 1 such
that (1) Sn |=∃ GF p for any n, (2) S ′

n ̸|=∃ GF p for any n, and (3) Sn and S ′
n satisfy the

same CTL formulas whose size is bounded by n. Indeed, in that case, if some CTL formula
φ were equivalent to the LTL property, we would get a contradiction with S|φ| and S ′

|φ|.

3.1 Distinguishing power

The distinguishing power is the ability of a logic to distinguish two models (Kripke
structures) : S and S ′ are distinguished by a formula φ if S |= φ and S ′ ̸|= φ. In the following
we use S ≡L S ′ to denote that S |= φ⇔ S ′ |= φ for any φ ∈ L.

We say that a logic L distinguishes at least as L′ iff for any models S and S ′, we have
S ≡L S ′ implies S ≡L′ S ′.

Strong bisimulation. We will see that the distinguishing power of CTL coincides with the
(strong) bisimulation. We have the following definition :

Definition 2. Let S1 = ⟨S1, s10,→1, ℓ1⟩ and S2 = ⟨S2, s20,→2, ℓ2⟩ be two Kripke structures. A
relation R ⊆ S1 × S2 is a bisimulation iff for any (s1, s2) ∈ R, we have :

1. ℓ1(s1) = ℓ2(s2),

2. ∀s1 →1 s
′
1, ∃s2 →2 s

′
2 such that (s′1, s

′
2) ∈ R, and

3. ∀s2 →2 s
′
2, ∃s1 →1 s

′
1 such that (s′1, s

′
2) ∈ R.

4

We say that two states s1 and s2 are bisimilar (denoted s1 ∼ s2) iff there exists a
bisimulation relation R such that (s1, s2) ∈ R. And two KS S1 and S2 are bisimilar (denoted
S1 ∼ S2) iff their initial states are bisimilar.

We have the following theorem :

Theorem 3 (Hennessy 1980). Let S1 = ⟨S1, s10,→1, ℓ1⟩ and S2 = ⟨S2, s20,→2, ℓ2⟩ be two
finitely branching 1 Kripke structures. Let s1 ∈ S1 and s2 ∈ S2, we have :

s1 ∼ s2 ⇔ s1 ≡CTL s2

Proof. ⇒ : Consider a bisimulation relation R. We prove that for any (s1, s2) ∈ R, we have
s1 |= φ ⇔ s2 |= φ for any φ ∈ CTL. The proof is done by structural induction over the
formula :

— φ = p ∈ AP : (s1, s2) ∈ R implies that ℓ1(s1) = ℓ2(s2), and then p ∈ ℓ1(s1) ⇔ p ∈ ℓ2(s2).
— φ = ψ1 ∧ ψ2 : Assume s1 |= ψ1 ∧ ψ2. Thus by def., we have s1 |= ψ1 and s1 |= ψ2, and

by i.h. we get s2 |= ψ1 and s2 |= ψ2, and then s2 |= ψ1 ∧ ψ2.
— φ = ¬ψ1 : Assume s1 |= ¬ψ1. Then s1 ̸|= ψ1 and by i.h. we have s2 ̸|= ψ1 and then

s2 |= ¬ψ1.
— φ = EXψ1. Assume s1 |= EXψ1. By def., we know there exists s1 →1 s

′
1 such that

s′1 |= ψ1. As (s1, s2) ∈ R, there exists s2 →2 s
′
2 such that (s′1, s

′
2) ∈ R. By i.h. we

deduce s′2 |= ψ1, and then (by def. of EX) we have s2 |= EXψ1.
— φ = Eψ1Uψ2 : Assume s1 |= Eψ1Uψ2. Then there exists some execution ρ ∈ Exec(s1)

and i ≥ 0 such that (1) ρ(i) |= ψ2 and (2) for any 0 ≤ j < i, we have ρ(j) |= ψ1. We
proceed exactly as in the previous case, and we can deduce (from the definition of the
bisimulation) that there exists an execution ρ′ ∈ Exec(s2) issued from s2 such that (1)
ρ(k) ∼ ρ′(k) for any 0 ≤ k ≤ i, and then the i.h. allows us to deduce that (1) ρ′(i) |= ψ2

and (2) for any 0 ≤ j < i, we have ρ′(j) |= ψ1, and therefore we have s2 |= Eψ1Uψ2.
— φ = EGψ1 : as in the previous case 2.

⇐ : Now we aim at proving that s1 ≡CTL s2 implies s1 ∼ s2. For this, it is sufficient to prove
that there exists a bisimulation relation. We consider the relation R = {(s1, s2) | s1 ≡CTL s2}.
We now prove that it is a bisimulation. Consider (s1, s2) ∈ R.
We clearly have ℓ1(s1) = ℓ2(s2) because s1 ≡CTL s2 and CTL contains atomic propositions.
Now assume s1 →1 s

′
1. Can we find some s2 →2 s

′
2 s.t. (s′1, s

′
2) ∈ R ? Assume there is no such

a state s′2, that is every successor of s2 can be distinguished by a CTL formula from s′1. Let
{r1, . . . , rk} be the set of (immediate) successors of s2 (this set is finite thanks to the finitely
branching hypothesis). Thus we know that for any 1 ≤ i ≤ k, there exists some CTL formula
ψi such that s′1 ̸|= ψi and ri |= ψi. Therefore we have :

s1 |= EX
(∧

1≤i≤k

¬ψi

)
and s′1 |= AX

(∨
1≤i≤k

ψi

)
And then s1 ̸≡CTL s2 and this contradicts the initial hypothesis.

1. every state has a finite number of successors.
2. remember that Aψ1 Uψ2 ≡ ¬EG¬ψ2 ∧ ¬E(ψ2)U (¬ψ1 ∧ ¬ψ2)

5

	La logique ATL
	Model checking algorithm
	Expressivity
	Distinguishing power

