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Part 1

Plan

1. What is the formal verification ?  
2. Models 
3. Temporal Logics (as specification language) 
3.1 Linear Time Logics (LTL) 

Syntax, semantics, examples  
Expressivity  
Decision procedures 

3.2 Computation Tree Logic (CTL) 
Syntax, semantics, examples  
Expressivity  
Decision procedures 

4. Other logics

What is the formal verification ?  
Use formal methods in order to verify a system. 

for this lecture: 
model-checking

check whether the 
system is correct

a program, an algorithm, 
a protocol,… 



Model-checking
Model checking

System

? ϕ

Properties

Formalizing step

Automata, Kripke structures, 
Petri nets, process algebra,  
games,…

Automata, 
Logics,…

General framework:
For what types of « system » ?

For critical systems. 
→ When a mistake can have serious consequences.

‣Transport 
‣Energy 
‣Medicine 
‣Embedded systems 
‣Communication 
‣…

https://en.wikipedia.org/wiki/List_of_software_bugs

For what types of « system » ?

For reactive systems. 
→ Systems that maintain an ongoing interaction with their 
environment

Their correctness properties deal with the events along 
(possibly infinite) executions. 

Ex: “If a problem occurs, an alarm will start”. 
or: along an execution, if a problem occurs at some point, 
then an alarm will be turned on afterwards. 

(very different from classical systems with one input and 
one output ! ) 

Model-checkingModel checking

System

? ϕ

Properties

Formalizing step

4 steps: 
‣ Build the model  
‣ Write the formal specification 
‣ Use a model-checker 
‣ (Deduce something about the original system !)



‣ Build the model ? 
Simplify (abstract) the system, keep the pertinent 
informations. 
Avoid the complexity blow-up. 

‣  Write the formal specification 
Translate properties into some logics (for a model). 

‣ Use a model-checker 

‣ (Deduce something about the original system !) 
Adapt the model, start again etc. 

All the steps are difficult (and connected) ! 
Verification problems

Model-checking:
input: a model 𝐒 and a formula φ  
output: yes iff 𝐒 ⊨ φ. 

Satisfiability:
input: a formula φ  
output: yes iff there exists a model satisfying φ. 
            (+ a model if the answer is yes…) 

Controller synthesis:
input: a model 𝐒 and a formula φ  
output: a controller 𝑪 s.t.  𝐒x𝑪 ⊨ φ.

Build the model 

Which formal model ? 

There are many possibilities… 
- Labeled transition systems (or Kripke structures) 
- Parallel compositions of LTS 
- Automata (with variables, clocks, channels…) 
- Petri nets 
- Process algebra 
- Probabilistic transition systems 
- …
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q0 q1

With variables:
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…
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Here: finite labeled transition systems.

Kripke structures

Definition:
A Kripke structure 𝐒 is a 4-tuple ⟨Q,q0,R,𝓁 ⟩ : 
- Q is a finite set of states 
- q0 ∈ Q is the initial state 
- R ⊆ Q x Q is the accessibility relation (often required to be 

total) 
- 𝓁 : Q → 2AP : gives the valuation of atomic propositions in 

each state.

q0

q1

q2

q3

Executions/paths from q0: 
q0(q1q3)ω, 
q0q1q3(q2)ω, …

AP: the set of atomic propositions. 



Kripke structures
Definition:
A Kripke structure 𝐒 is a 4-tuple ⟨Q,q0,R,𝓁 ⟩ : 
- Q is a finite set of states 
- q0 ∈ Q is the initial state 
- R ⊆ Q x Q is the accessibility relation (often required to be total) 
- 𝓁 : Q → 2AP : gives the valuation of atomic propositions in each 

state.

Executions:  ρ = s0s1s2 … ∈ Qω  such that ∀ i ≥0, (si,si+1) ∈ R  

Exec(q) = set of exec. issued from q.
ρ(i) = si      ρ≥i = si si+1…    ρ≤i = s0…si

Notation:

Exec(S) = set of all exec. in S.

Modelling a cash dispenser

init

code ?

code ?

code ?

erreur

erreur

erreur

carte 
bloquée

code
ok

montant ?

20€ 40€ 60€

distrib 
argent

éjection
carte

annulation

A Kripke structure
Spécifier un système

Un distributeur de billets.
exemple

attente 
carte

code ?

code ?

code ?

erreur

erreur

erreur

carte 
bloquée

code
ok

montant ?

20€ 40€ 60€

distrib 
argent

éjection
carte

annulation

𝐒 = (Q,Act,→,q0,AP,L)

q0

q1

q2

q3

q4

q5q7

q8

q9

q10

q11 q12 q13

q14

q15
q16

AP={att. carte, code?, c. bloquée, code ok, …}

Example: 
Mutual exclusion problem



2 processes communicate with shared memory. 
They aim at reaching a critical section (CS) and at 
any time at most one process can be in CS.  

How to design a correct protocol ?

Mutual exclusion problem

Correct ?  
1. Mutual exclusion: Both processes van never be at their 

CS at the same time.  
2. No starvation: If a process asks for the CS, it will reach it 

sometime in the future (if the execution is fair). 

(…)

Mutual exclusion algo. 

boolean D1:= False 
boolean D2 := False

Processus P1: 
loop forever: 
p1: non-crit. section 
p2: D1 := True 
p3: await (not D2) 
p4: critical section 
p5: D1 := False

Processus P2: 
loop forever: 
p1: non-crit. section 
p2: D2 := True 
p3: await (not D1) 
p4: critical section 
p5: D2 := False

+ every action is atomic. 

→ a KS with AP={D1,D2,SC1,SC2}

‣ D1 labels states where the variable D1 equals T, 
‣ D2 labels states where the variable D2 equals T, 
‣ CS1 labels states where process 1 is in CS, 
‣ CS2 labels states where process 2 is in CS.

Mutual exclusion algo. 

→ 4 atomic propositions.

(CS1,CS2,D1,D2)

(F,F,F,F)

(F,F,T,F)

(T,F,T,T)

(F,F,F,T)

(F,F,T,T)

(F,T,T,T)

(T,F,T,F) (F,T,F,T)

{CS1,D1}

Mutual exclusion algo. 



(CS1,CS2,D1,D2)

(F,F,F,F)

(F,F,T,F)

(T,F,T,T)

(F,F,F,T)

(F,F,T,T)

(F,T,T,T)

(T,F,T,F) (F,T,F,T)

Is-it correct ? No !

Temporal logics for the 
specification of reactive systems

Temporal Logics

Temporal logics extend Propositional Logic with 
« temporal modalities ». 
Formulas re interpreted over models where a notion of 
time is defined.

There are a lot of temporal logics !!

- LTL « Linear-time Temporal Logic » 
- CTL « Computation Tree Logic »

Temporal logics

TLs are a good formalism for specifying properties of 
reactive systems. 

[Pnueli 1977] 

Allow to state properties about the order of events along 
an execution.

‣ natural semantics,  
‣ good expressive power,  
‣ succinctness,  
‣ efficient decision procedures (and tools !),  
‣ many extensions (for timed systems, probabilistic 
systems, games, data,…).



Temporal logics

Temporal logics = propositional logic  
                                         + 

        temporal modalities

+ a model of time ! 

… (linear time)

… (branching time)

+ many other variants !!

…

present
past future

…

past
present

future

Models of time
with past

Models of time

…

…

t=0 t=1.2 t=3 t=5.1 t=6 t=7.4

t=0
t=1.2

t=3

t=3

t=6

t=6

t=7.4
t=7.4

t=7.4

with (discrete) real-time

→ Quantitative notion of time

…

Models of time

t=0 t=1.2 t=3 t=5.1 t=6 t=7.4

…
t=0

t=1.2

t=3

t=3

t=6

t=6

t=7.4
t=7.4

t=7.4

with (dense) real-time

…
t=0

t=1.2

t=3

t=3

t=6

t=6

t=7.4

t=7.4



Linear Time

LTL « Linear-time Temporal Logic »

The behaviour of a system (ie a Kripke structure) is 
viewed as a set of its executions. 

important 

LTL (with past)

 X φ : Next (tomorrow) φ  
 φU𝜓 : φ until 𝜓    
 X-1 φ : Previous (yesterday) φ  
 φ S-1𝜓  : φ since 𝜓 

→ LTL formulas are interpreted over a position along a 
linear model where every position is labeled with atomic 
propositions. For example:

Syntax:
φ,𝜓 ::= P | ¬φ | φ∨𝜓 | φ∧𝜓 | X φ | φU𝜓 | X-1 φ | φS𝜓  

P ∈ AP

- π : 𝐍 → 2AP 
- π ∈ (2AP)ω  

- ρ ∈ Exec(q) + 𝓁   : a (labeled) execution in a KS. 
- …    



LTL (with past)

→ LTL formulas are interpreted over a position along 
an execution (of some Kripke structure S). 

ρ = s0 s1 s2 s3 … si si+1… 

past future
present

+𝓁 for the 
atomic prop.

Syntax:
φ,𝜓 ::= P | ¬φ | φ∨𝜓 | φ∧𝜓 | X φ | φU𝜓 | X-1 φ | φS𝜓  

P ∈ AP

Semantics:
S=⟨Q,q0,R,𝓁 ⟩,   ρ ∈ Exec(S) 
i ≥ 0 
ρ,i ⊨ φ ? 

P ∈ AP

ρ,i ⊨ P          iff  P ∈ L(ρ(i))  
ρ,i ⊨ ¬φ       iff  ρ,i ⊭ φ  
ρ,i ⊨ φ∧𝜓     iff  (  ρ,i ⊨ φ  and  ρ,i ⊨ 𝜓) 
ρ,i ⊨ φ∨𝜓     iff  (  ρ,i ⊨ φ  or   ρ,i ⊨ 𝜓) 

Syntax:
φ,𝜓 ::= P | ¬φ | φ∨𝜓 | φ∧𝜓 | X φ | φU𝜓 | X-1 φ | φS𝜓  

LTL (with past)

Semantics:
S=⟨Q,q0,R,𝓁 ⟩,   ρ ∈ Exec(S)      i ≥ 0

P ∈ AP

ρ,i ⊨  X φ         iff  ρ,i+1 ⊨ φ    
ρ,i ⊨  φU𝜓        iff ( ∃ j ≥ i.  ρ,j ⊨ 𝜓  and  

(∀ i≤k<j we have ρ,k ⊨ φ  )  ) 

ρ,i ⊨ X-1 φ iff (i>0   and  ρ,i-1⊨ φ ) 
ρ,i ⊨  φS𝜓  iff ( ∃ 0≤ j ≤ i.  ρ,j ⊨ 𝜓   and  

(∀ j<k≤i we have ρ,k ⊨ φ  ))

Syntax:
φ,𝜓 ::= P | ¬φ | φ∨𝜓 | φ∧𝜓 | X φ | φU𝜓 | X-1 φ | φS𝜓  

LTL (with past)

𝐒 ⊨ φ  ? 

𝐒 ⊨ φ  if and only if    ρ,0 ⊨ φ    ∀ ρ ∈ Exec(q0) 

LTL (with past)



With LTL, a Kripke  structure is viewed as a set infinite 
words over 2AP : 

ρ,i ⊨ P          iff  P ∈ L(ρ(i))  
ρ,i ⊨ ¬φ       iff  ρ,i ⊭ φ  
ρ,i ⊨ φ∧𝜓     iff  (  ρ,i ⊨ φ  and  ρ,i ⊨ 𝜓) 
ρ,i ⊨ φ∨𝜓     iff  (  ρ,i ⊨ φ  or   ρ,i ⊨ 𝜓)

ρ,i ⊨  X φ         iff  ρ,i+1 ⊨ φ    
ρ,i ⊨  φU𝜓        iff ( ∃ j ≥ i.  ρ,j ⊨ 𝜓  and (∀ i≤k<j we have ρ,k ⊨ φ  )) 
ρ,i ⊨ X-1 φ iff (i>0   and  ρ,i-1⊨ φ ) 
ρ,i ⊨  φS𝜓  iff ( ∃ 0≤ j ≤ i.  ρ,j ⊨ 𝜓   and (∀ j<k≤i we have ρ,k ⊨ φ  ))

Semantics of LTL

 ρ = q0 q1 q2 q3 q4 …    ∈ Qω  + 𝓁  
 =  𝓁(q0) 𝓁(q1) 𝓁(q2) 𝓁(q2)… ∈ (2AP)ω  

New operators

Boolean connectives: ⇒, ⟺, ⊤, ⊥, …  

Temporal modalities:

F 𝜓  = ⊤ U 𝜓         « sometime in the future » 
F-1 𝜓 = ⊤ S 𝜓        « sometime in the past »

And

G 𝜓  = ¬ F ¬ 𝜓         « Always in the future » 
G-1 𝜓 = ¬F-1 ¬𝜓        « Always in the past »

ρ,i ⊨ 𝜓 W φ    iff ( ∀ k≥i, ρ,k ⊨ 𝜓   ou   ∃ j ≥ i.  (ρ,j ⊨ φ et ∀ 
i≤k<j on a ρ,k ⊨ 𝜓 ) 

ρ,i ⊨ 𝜓 W φ     ⟺     ρ,i ⊨  G 𝜓   ∨   𝜓 U φ  (∀ ρ, ∀ i)

Weak until :

New operators

ρ,i ⊨ 𝜓 R φ     ⟺     ρ,i ⊨ φ  W  (𝜓 ∧  φ)  (∀ ρ, ∀ i)

ρ,i ⊨ 𝜓 R φ    =  iff ( ∀ k≥i,  (ρ,k ⊨ φ ou ∃ i≤j<k ρ,j ⊨ 𝜓 ))

Release

Examples

ρ,i ⊨ F P ∧ F P’   

0 1 2 i
ρ

P’ P

0 1 2 i
ρ

P,P’

ρ,i ⊨ F ( P ∧ P’ )   ?

0 1 2 i
ρ

P,P’

Compare F P ∧ F P’  and F (P ∧ P’)

 F (P ∧ P’)  ⇒ F P ∧ F P’ 
  F P ∧ F P’  ⇏  F (P ∧ P’)

P P’

0 1 2 i
ρ



ρ,i ⊨ F (P ∧ F P’)   ?

0 1 2 i
ρ

P P’

0 1 2 i
ρ

P,P’

ρ,i ⊨ F (P ∧ X P’)   ?

0 1 2 i
ρ

P

k

P’

k+1

Examples Examples

ρ,i ⊨  ¬ X φ   
⟺  ρ,i ⊨  X ¬ φ                 (because executions are infinite)

ρ,i ⊨  ¬ X-1 φ   
⟺  ρ,i ⊨  (X ¬ φ) ∨ (¬ X-1 ⊤)       (because past is finite)

Examples

G (problem ⇒ F alarm)

G (alarm ⇒ F-1 problem)

G (request ⇒ F service)

G (¬ bug)

Examples
G F init

F G ok

GF request ⇒ GF service

GF (a ∧ b)                                   GF a ∧  GF bentails

GF a ∧  GF b                               GF (a ∧ b)does not entail

G a  ⇒  FG a  ⇒  GF a  ⇒  F a 



1. Mutual exclusion: Both processes can never be at their 
CS at the same time.  

2. No starvation: If a process asks for the CS, it will reach it 
sometime in the future (if the execution is fair). 

Mutual exclusion

¬ F (CS1 ∧ CS2) G (¬ CS1 ∨  ¬ CS2) 

G (D1 ⇒ F  CS1)  ∧   G (D2 ⇒ F  CS2) 
?

Specifying reactive systems

Safety properties: 
“bad things do not happen”. 
Ex: There is at most one process in the Critical Section.  

Liveness properties: 
“good things do happen (eventually)”. 
Ex: Every request for the CS is eventually granted. 

Fairness properties: 
→ Verification of fair executions. 
Ex: Every process should be executed infinitely often.

Specification of a lift
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H. Barringer (“Up and down,  
the temporal way”, 1985)



Specification of a lift

floor 0

floor 1

floor 2
0
1
2

button light

……

Specification of a lift

Hypothesis: 

‣ A floor door is open or closed. 
‣ A button is pressed or depressed. 
‣ An indicator light is on or off. 
‣ The cabin is present at floor i, or it is absent.

Specification of a lift

P1. Safe doors:  
A floor door is never opened if the cabin is not present at the given 
floor.

P2. Indicator lights: 
The indicator lights correctly reflect the current requests.

P3. Services: 
All requests are eventually satisfied.

P4. Smart service: 
The cabin only services the requested floors and does not move 
when there is no request. 

Specification of a lift

P5. Diligent service: 
The cabin does not pass by a floor for which it has a request 
without servicing it. 

P6. Direct movements: 
The cabin always moves directly from previous to next serviced 
floor.

P7. Priorities: 
The cabin services in priority requests that do not imply a change of 
direction (upward or downward).



Specification of a lift: the atomic prop.

floor 0

floor 1

floor 2
C2 CL2

…

…

floor k

C1

C0

CL1

CL0

Ck CLk
S2

Sk

S1
S0

SLk

SL2
SL1
SL0

Di = ⊤ iff the doors at floor i are opened 
And: 
ati = ⊤ iff the cabin is at floor i

Ci (resp. Si) = ⊤ iff the button is pressed
CLi (resp. SLi) = ⊤ iff the light is on

Dk

D2

D1

D0

cabin

Specification of a lift

P1. Safe doors:  
A floor door is never opened if the cabin is not present at the given 
floor.

G ( Di ⇒ ati)⋀
i=1..k

Specification of a lift
P2. Indicator lights: 
The indicator lights correctly reflect the current requests.

(and the same for Si and SLi)

G ( Ci ⇒ (LCi ∨ servicingi ))
with: servicingi  = ati ∧ Di 

: turned on when necessary∧i

G ( LCi  ⇒ (  LCi  W servicingi ) ) : stay lit when necessary∧i

G ( servicingi ⇒ (¬ LCi ∧ ¬ SLi)) : turned off when necessary∧i

G ( (¬ LCi ) ⇒ ( (¬LCi) W Ci) ) :only turned on when necessary∧i

G (  LCi  ⇒ ( LCi S Ci) )∧ior

Specification of a lift
P2. Indicator lights: 
The indicator lights correctly reflect the current requests.

(and the same for Si and SLi)

G ( LCi ⟺  (  (¬servicingi ) S (Ci ∧ ¬ servicingi))  )∧i

An alternative is:



Specification of a lift
P3. Services: 
All requests are eventually satisfied.

G ( requesti ⇒ F servicingi ))

with: requesti  = Ci ∨ Si 

∧i

P4. Smart service: 
The cabin only services the requested floors and does not move 
when there is no request. 

G (  servicingi ⇒ [ servicingi S (CLi ∨ SLi) ] )∧
i

G (  ati ⇒ ( ati W ( ∨ (CLj ∨ SLj )  )  ) ) ∧
i j≠i

Specification of a lift

G ([( LCi ∨ LSi) ∧ ati ]⇒ (ati U servicingi ))∧i

P5. Diligent service: 
The cabin does not pass by a floor for which it has a request 
without servicing it. 

Specification of a lift

G ( From_i_to_j  ⇒ (ati ∨ betw_floors) U (ati+1 ∧  (ati+1∨ 
betw_floors) U (ati+2 …(atj-1 ∧ (atj-1∨ betw_floors) U atj))))

∧i<j

P6. Direct movements: 
The cabin always moves directly from previous to next serviced 
floor.

servicingi ∧ [ (servicingi ∨ ¬ service)  U servicingj ]

¬at0∧ … ∧¬atn

service = servicing0 ∨ servicing1 ∨ … ∨ servicingk

Specification of a lift

P7. Priorities: 
The cabin services in priority requests that do not imply a change of 
direction (upward or downward).

Up = ∨ [ (ati ∨ betw_floors ) S ati-1   ∧  (ati ∨ betw_floors) U ati ]
i=1..k

Down = ∨ [ (ati ∨ betw_floors ) S ati+1   ∧  (ati ∨ betw_floors) U ati ]
i=0..k-1

G ∧[(servicingi ∧ Down ∧ ∨ (CLj∨SLj) ) ⇒ ∨  From_i_to_n] 
i=0..k-1 j<i n<i

G ∧[(servicingi ∧ Up ∧ ∨ (CLj∨SLj) ) ⇒ ∨  From_i_to_n] 
i=1..k j>i n>i



Peterson’s algorithm

Peterson’s algorithm
boolean D1:= False 
boolean D2 := False 
integer  turn:=  _

Processus P1: 
loop forever: 
p1: Non-crit. section 
p2: D1 := True 
p3: turn:=2 
p4: await (¬D2 v turn=1) 
p5: critical section 
p6: D1 := False

Processus P2: 
loop forever: 
q1: Non-crit. section 
q2: D2 := True 
q3: turn:=1 
q4: await (¬D1v turn=2) 
q5: critical section 
q6: D2 := False

Peterson’s algorithm
(p,q,D1,D2,turn)

(1,1,⊥,⊥,1)

(2,1,⊥,⊥,1)

state :

(1,2,⊥,⊥,1)

(3,1,⊤,⊥,1) (2,2,⊥,⊥,1)

(2,3,⊥,⊤,1)

(2,4,⊥,⊤,2)…

6x6x2x2x2 = 288 states        (OK, simplifications are possible…)

1. Mutual exclusion: Both processes can never be at their 
CS at the same time.  

2. No starvation: If a process asks for the CS, it will reach it 
sometime in the future (if the execution is fair). 

Mutual exclusion

¬ F (CS1 ∧ CS2) G (¬ CS1 ∨  ¬ CS2) 

G (D1 ⇒ F  CS1)  ∧   G (D2 ⇒ F  CS2) 

✓

✘



2. No starvation: If a process asks for the CS, it will reach it 
sometime in the future (if the execution is fair).  

How can we express the fairness ? 
How can we characterise the fair executions ?

Mutual exclusion

G ( D1 ⇒ ( (GF ¬pa) ⇒ F  CS1)  

Add a boolean « pa » in states to specify which process 
has performed the last action (⊥ for P1, ⊤ for P2).

✓

288x2 states !!

Peterson’s algorithm V2

Is it okay to modify the model in order to express a 
property ? 

71

Peterson’s algorithm with Prism

module P1 
	 	 D1 : bool init false; 
	 	 p : [0..3] init 0; 
	 [] (p=0) -> true; 
	 [] (p=0) -> (p'=1) & (D1'=true); 
	 [] (p=1) -> (p'=2) & (turn'=2);  
	 [] (p=2) & ((turn=1) | (D2=false)) -> (p'=3); 
	 [] (p=2) & ((turn=2) & (D2=true)) -> (p'=2); 
	 [] (p=3) -> (p'=0) & (D1'=false); 
endmodule

global turn : [1 .. 2];

module P2 
	 	 D2 : bool init false; 
	 	 q : [0..3] init 0; 
	 [] (q=0) -> true; 
	 [] (q=0) -> (q'=1) & (D2'=true); 
	 [] (q=1) -> (q'=2) & (turn'=1);  
	 [] (q=2) & ((turn=2) | (D1=false)) -> (q'=3); 
	 [] (q=2) & ((turn=1) & (D1=true)) -> (q'=2); 
	 [] (q=3) -> (q'=0) & (D2’=false); 
endmodule

https://www.prismmodelchecker.org/

We use a 
« high-level » 

language !


