FORMAL VERIFICATION

Part 1

Francois Laroussinie
IRIF, Univ. Paris Cité

Plan

1. What is the formal verification ?

2. Models
3. Temporal Logics (as specification language)

3.1 Linear Time Logics (LTL)
Syntax, semantics, examples
Expressivity
Decision procedures

3.2 Computation Tree Logic (CTL)
Syntax, semantics, examples
Expressivity
Decision procedures

4. Other logics

What is the formal verification ?

Use@ in order tw

/

check whether the
system is correct

for this lecture:

model-checkin
g a program, an algorithm,

a protocol,...

General framework:

Model-checking

System Properties

Formalizing step

?
Ixoﬂ/o F CP Automata,

Logics,...

Automata, Kripke structures,
Petri nets, process algebra,
games,...

For what types of « system » ?

For critical systems.
— When a mistake can have serious consequences.

» Transport

»Energy

»Medicine
»Embedded systems
» Communication

>...

https://en.wikipedia.org/wiki/List_of_software_bugs

For what types of « system » ?

For reactive systems.

— Systems that maintain an ongoing interaction with their
environment

(very different from classical systems with one input and
one output !)

Their correctness properties deal with the events along
(possibly infinite) executions.
Ex: “If a problem occurs, an alarm will start”.

or: along an execution, if a problem occurs at some point,
then an alarm will be turned on afterwards.

Model-checking

System Properties

U Formalizing step
?
L) =@
4 steps:

» Build the model

» Write the formal specification

» Use a model-checker

» (Deduce something about the original system !)

All the steps are difficult (and connected) !

» Build the model ?
Simplify (abstract) the system, keep the pertinent
informations.
Avoid the complexity blow-up.

» Write the formal specification
Translate properties into some logics (for a model).

» Use a model-checker

» (Deduce something about the original system !)
Adapt the model, start again etc.

Verification problems

Model-checking:
input: a model S and a formula ¢

output: yes iff S = o.

Satisfiability:

input: a formula ¢

output: yes iff there exists a model satisfying o.
(+ a model if the answer is yes...)

Controller synthesis:
input: a model S and a formula ¢

output: a controller C s.t. SXC k= .

Build the model

Which formal model ?

There are many possibilities...

- Labeled transition systems (or Kripke structures)
Parallel compositions of LTS
Automata (with variables, clocks, channels...)
Petri nets
Process algebra
Probabilistic transition systems

Labeled Transition System:

S
fab) * R

L
With variables: With channels:
T oysor @ Y ocal @
—_— _—
v:=4
o Ca'? r
R

Parallel composition
& synchronisation

S1 a; O So
] r as
E— ai ‘;;7
Ta2 1 ap aSI /
(o}
a3 < _. as
r2
a9 a
S1xSo
as

S1 S2 as ai 7
as as Qo,r2

\ag

dz - \aa A& qg,r17 aeéz

Qo,M" go,lo
83& \ag Aas‘ﬁ11 '&3 lag

Qgs,r Qa,r2 Sa

Here: finite labeled transition systems.

Kripke structures

AP: the set of atomic propositions.

Definition:
A Kripke structure S is a 4-tuple (Q,qo,R,?) :
- Qs afinite set of states
- Jo € Q is the initial state
- R < QxQisthe accessibility relation (often required to be

total
- 7 Q)—> 2AP 1 gives the valuation of atomic propositions in
each state.
a1
> Executions/paths from qo:
Q 2 go(q1gs)®,
gog193(d2)¥, ...

gs

Kripke structures

Definition:

A Kripke structure S is a 4-tuple (Q,qo,R.2) :

Q is a finite set of states

Qo € Q is the initial state

- R c QxQisthe accessibility relation (often required to be total)

- £:Q — 2AP: gives the valuation of atomic propositions in each
state.

Executions: p = sps1S2 ... € Qw such that v i >0, (sj,si+1) € R

Notation:
(i) = si P> = Si Si+1... P<i = S0...Si

Exec(q) = set of exec. issued from Q.
Exec(S) = set of all exec. in S.

Modelling a cash dispenser

......

carte
bloquée

éjection
carte

A Kripke structure

S = (Q,Act,—,q0,APL)
AP={att. carte, code?, c. bloquée, code ok, ...}
Jo

g1
g2

.......

carte

bloquée q 3

Qs o ' o

v -
S =7 Qfe. éjection
q7 O[T By e

Example:
Mutual exclusion problem

Mutual exclusion problem Mutual exclusion algo.

2 processes communicate with shared memory. boolean D1:=False
They aim at reaching a critical section (CS) and at boolean D2 := False
any time at most one process can be in CS.
Processus P1: Processus P2:
How to design a correct protocol ? loop forever: loop forever:
pl: non-crit. section pl: non-crit. section
pR: D1 :=True pR: D2 := True
p3: await (not DR) p3: await (not D1)
Correct ? s . oy .
_ p4: critical section p4: critical section
1. Mutual exclusion: Both processes van never be at their p5: D1 := False p5: D2 := False

CS at the same time.

2. No starvation: If a process asks for the CS, it will reach it
sometime in the future (if the execution is fair).

+ every action is atomic.

Mutual exclusion algo. Mutual exclusion algo.

(CS4,CS2,D4,D2)

— a KS with AP={D1,D2,5C+,SC»}

» D1 labels states where the variable D1 equals T,
» Do labels states where the variable D2 equals T,
» CS4 labels states where process 1is in CS,
» CS2 labels states where process 2 is in CS.

— 4 atomic propositions.

Is-it correct ? No !

(CS1,CS2,D1,D2)

Temporal logics for the
specification of reactive systems

Temporal Logics

Temporal logics extend Propositional Logic with

« temporal modalities ».

Formulas re interpreted over models where a notion of
time is defined.

There are a lot of temporal logics !!

- LTL « Linear-time Temporal Logic »
- CTL « Computation Tree Logic »

Temporal logics

TLs are a good formalism for specifying properties of
reactive systems.
[Pnueli 1977]

Allow to state properties about the order of events along
an execution.

» natural semantics,

» good expressive power,

» succinctness,

» efficient decision procedures (and tools !),

» many extensions (for timed systems, probabilistic
systems, games, data,...).

Temporal logics

Models of time

with past
Temporal logics = propositional logic
P d prop N 9 present
. past future
temporal modalities l
O—0— - —-0—-0
+ a model of time !
.—»‘—»‘—».—»‘—». (”near time) future
present
past | /.—>.
o—0 —
2 —e—-0—-8 .o
/‘ (branching time) .—’.\
\ ®
o + many other variants !!
Models of time Models of time
with (discrete) real-time with (dense) real-time
t=3 t=5.1 t=6 t=7.4
0—»0—»0—»0—»0—»0
t=0 t=12 =3 t=5.1 t=6 t=7.4
t=3 t=6
t=1.2 t=4_>.
t=0 ,‘-» t=3 t=6
.\ =12 t.4_'.
._"\ :/'._'6 t=7.4
o = /.
=74 .—»Q\
o
t=7.4

— Quantitative notion of time

Linear Time

LTL « Linear-time Temporal Logic »

The behaviour of a system (ie a Kripke structure) is
viewed as a set of its executions.

LTL (with past)

Syntax: P e AP
dPp =P[OV | oY [X O [OUY [X1 D | dSY
X ¢ : Next (tomorrow) ¢
oUY : ¢ until ¥
X-1 ¢ : Previous (yesterday) ¢
&SP ;P since P
— LTL formulas are interpreted over a position along a
linear model where every position is labeled with atomic
propositions. For example:

- T: N — 2AP

- pekExec(q)+ ¢ :a(labeled)executionin aKS.

LTL (with past) LTL (with past)
Syntax: PeAP Syntax:
PP =P[OV | dap | X O | OUY | X1 D [dSY PP =P =0 |dv | dap [X O | OUY | X1 O | dSTp
Semantics:
— LTL formulas are interpreted over a position along _S:<Q’qO’R’f) P e Exec(s)
an execution (of some Kripke structure S). 120
+¢ for the 0iE®?
0 =S0S1S2S3 ... Si8i+1... atomic prop.
piEP iff P e L(p(i))
e piE-® ff pik®
past oresent uture piEOAY iff (piE® and p,ik)
piEovY iff (piE® or pPiEY)
LTL (with past) LTL (with past)
Syntax:
PP =P [0 |dv | daY | X O | OUP | X1 D | dSY
Semantics:

S=(Q,q0,R,¢), pekxec(S) i=0

piE Xo iff p,i+1E=®
p,iE oUY iff(3j>i. pjEY and
(vi<k<jwe have pk=d))

p,iEX-1iff (iI>0 and p,i-1E®)
piE ®Sy iff (30<j<i. pjEyY and
(Vv j<k<iwe have p,k =))

SE¢ ?

S=¢ ifandonlyif p,0=¢ Vv p e Exec(qo)

Semantics of LTL

p,iEP iff PeL(p(i))

P, = -0 iff p,i

piEOAY iff (piE® and p,ikEY)

pieodvy iff (piEd or piE)

piE Xb iff pi+1 =0

p,iE oUY iff(3j>i. pjEyY and (v ick<jwe have pk=d))
p,iEX1diff (iI>0 and p,i-1ed)

piE OSY iff (30<j<i. pjEY and (v j<k<iwe have pk=d))

With LTL, a Kripke structure is viewed as a set infinite
words over 2AF

P=000:920s4 ... EQUJ+‘£
= #(qo) £(q1) £(q2) £(Q2)... € (2AP)w

New operators

Boolean connectives: =, =, T, 1, ...

Temporal modalities:

Fyp =TUY « sometime in the future »
F1y =TS9 « sometime in the past »
And

Gy =-F-79 « Always in the future »

G1y =-F1) « Always in the past »

New operators

Weak until :

DiEYWO iff(Vkai,pkEy ou 3j>i (pjEdety
i<k<jonapkkEy)

IEYWO = pieGy v pUOD (Vp, Vi)

Release

OiEY RO = iff(Vkai, (pkeEdoudici<kp,jEY))

OEYPRO = piEd W @A P) (Vp, Vi

Examples
Compare FPAFP andF (P A P)
OiEFPAFP FI, FI,

PR | | I R R
e
p,_|_|_F(F’/\F”):.'FF’/\FP’_

012 FPAFP = F(PAP)

o | T

0 1 i

Examples

Examples
p,i|=F(P/\FP’) ? p,il=—|XCD
- | Fl) = piE X—0 (because executions are infinite)
"012 i |
o —H | PEP OiE 2 X10
012 i = PiE (X—09)Vv (- XIT) (because past is finite)
oiEF(PAXP) 7
PP
——1 | I
P 0 ‘i é |I kl k|+1
Examples Examples
G F init
G (problem = F alarm) F G ok

G (alarm = F-1 problem)
G (request = F service)

G (- bug)

GF request = GF service
GF (a A D) entails GFaaA GFD

GFaA GFb doesnotental GF (a A b)

Ga = FGa = GFa = Fa

Mutual exclusion

Mutual exclusion: Both processes can never be at their
CS at the same time.

- F (CS1 A CS2) G (- CSiv = CSy)

No starvation: If a process asks for the CS, it will reach it
sometime in the future (if the execution is fair).

I’

G(D1=F CS1) A G(D2=F CSy)

Specifying reactive systems

Safety properties:
“bad things do not happen”.
Ex: There is at most one process in the Critical Section.

Liveness properties:
“good things do happen (eventually)”.
Ex: Every request for the CS is eventually granted.

Fairness properties:
— Verification of fair executions.
Ex: Every process should be executed infinitely often.

Specification of a lift

H. Barringer (“Up and down,
Up and Down The Temporal Way the temporal way”, 1985)

H. BARRINGER*

Department of Computer Science, University of Manchester, Oxford Road, Manchester M13 9PL

A formal specification of a multiple-lift system is constructed. The example illustrates and justifies one of many possible

system specification styles based on temporal techniques.

Received September 1985

1. INTRODUCTION

Over the last decade there has been widespread research
directed at obtaining techniques for the analysis,
specification and development of concurrent systems.
Several of these lines of research have led to the belief
that temporal logic is a useful tool for reasoning about
such systems.!* The use of temporal logic enables, in
particular, analysis of both safety and liveness properties
in a single uniform logical framework (see Ref. 5 for
extensive examples). More recently, techniques have
been developed for achieving P 1
proof systems.®:? Compositionality is an essential

5 presents the multiple-lift system. Final are
made in Section 6. For convenience, an appendix
contains the semantics of the logic used in this article.

2. INFORMAL REQUIREMENTS
The following is a description of the lift-control system
problem as set by Neil Davis.

A Lift-Control System

An n-lift system is to be installed in a building with m floors.
The lifts and the control mechanism are supplied by a

q for the of imple- The internal isms of these are assumed
from formal i i Without compo- (given) in this problem.
itionality, the check on i ofadevel step Design the logic to move lifts between floors in the building
would be delayed until all interactions between the according to the following rules.

P p are known, ially, at the
implementation level; clearly, it could be rather costly if
such a consistency check then showed that the system did
not achieve the overall specification. In general,

itionality can be achieved by realising that a

(1) Each lift has a set of buttons, one button for each floor.
These illuminate when pressed and cause the lift to visit the
cor ding floor. The i ination is cancelled when the
corresponding floor is visited (i.e. stopped at) by the lift.

(2) Each floor has two buttons (except ground and top), one
to request an up-lift and one to request a down-lift. These

peci! ofany p must include
about the behaviour of the environment in which the
component will reside. In the temporal framework, this
requires that one can distinguish actions made by a
component from those made by its environment; in Refs
6 and 7 the coarse technique of labelling actions is used
for iust that nurnose. Although it is sometimes possible

buttons il i when pressed. The buttons are cancelled
when a lift visits the floor and is either travelling in the desired
direction, or visiting the floor with no requests outstanding.

In the latter case, if both floor-request buttons are
illuminated, only one should be cancelled. The algorithm used
to decide which to service should minimise the waiting time for
both requests.

woy

U0 101API(SLIEg ASIATUA e /310

Specification of a lift

200
button light 100
., 00 @
O@|floorz .. | 4
O @ | floor 1
O @ | floor O

Specification of a lift

Hypothesis:

v

A floor door is open or closed.

v

A button is pressed or depressed.

v

An indicator light is on or off.

v

The cabin is present at floor i, or it is absent.

Specification of a lift

P1. Safe doors:
A floor door is never opened if the cabin is not present at the given
floor.

P2. Indicator lights:
The indicator lights correctly reflect the current requests.

P3. Services:
All requests are eventually satisfied.

P4. Smart service:
The cabin only services the requested floors and does not move
when there is no request.

Specification of a lift

P5. Diligent service:
The cabin does not pass by a floor for which it has a request
without servicing it.

P6. Direct movements:
The cabin always moves directly from previous to next serviced
floor.

P7. Priorities:
The cabin services in priority requests that do not imply a change of
direction (upward or downward).

Specification of a lift: the atomic prop.

‘‘‘‘‘‘‘‘‘‘‘‘‘‘ SO @ Sl
CO ' floor k. SZO .SL2
Dk © Gl e SO @ SL+
""""""" SoO @ SlLo
B T — __
O @ |floor 2 _ ,
D Cz2 Clo Ci (resp. Si) = T iff the button is pressed
CLi (resp. SLi) = T iff the light is on
C? ng floor 1 Di = T iff the doors at floor i are opened
Ds And:
O ® lflooro ati = T iff the cabin is at floor i
Dy Co Clo

Specification of a lift

P1. Safe doors:
A floor door is never opened if the cabin is not present at the given

floor.
/\ G (D = at)

i=1..k

Specification of a lift

P2. Indicator lights:
The indicator lights correctly reflect the current requests.

/\G (Ci= (LCi v servicing))
with: servicingi = ati A D

: turned on when necessary

NG (LG = (LCi W servicing;)) : stay lit when necessary

/i\ G (servicingi = (= LCi A = SLj)) :turned off when necessary

/i\ G((-LC)=((-LC)WCj)) :onlyturned on when necessary

or NG(LC =(LCiSC))
(and the same for S; and SL)

Specification of a lift

P2. Indicator lights:
The indicator lights correctly reflect the current requests.

An alternative is:

/i\ G (LCi = ((=servicingi) S (Ci A = servicings)))

(and the same for S; and SL)

Specification of a lift

P3. Services:
All requests are eventually satisfied.

/\G (request = F servicing;))
with: requesti = Ci v S

P4. Smart service:
The cabin only services the requested floors and does not move

when there is no request.

/A G (servicingi = [servicingi 8 (CLi v SLi) 1)

NG (ati=(atW(V(CLvsL))))

i j#i

Specification of a lift

P5. Diligent service:
The cabin does not pass by a floor for which it has a request

without servicing it.

/\ G ([(LCi v LS) A ati]= (ati U servicing;))

Specification of a lift

P6. Direct movements:
The cabin always moves directly from previous to next serviced

floor.

/A\ G (From_i_to_j = (ati v betw_floors) U (ati+1 A (atiz1v

i<j o®

"betw_floors) U (atis2 ...(at1 A (ati1v betw_floors) U atj))))
C =atoa ... A-aty
7

service = servicingo Vv servicingi v ... v servicingk

Specification of a lift

P7. Priorities:
The cabin services in priority requests that do not imply a change of

direction (upward or downward).

Up = \1/ [(ati v betw_floors) S atii A (ati v betw_floors) U at; |
I=1.

K
Down = V [(ati v betw_floors) S atiu1 A (ati v betw_floors) U at;]
0. k-

i=0..k-1

G /\[(servicing‘ ADown A V (CLVSL)) = V. From_i_to_n]

i=0..k-1 I<i n<i
G /\[(servicingi A Up A J\/I (CLjvSL)) = rYi From_i_to_n]
i=1.k > >

Peterson’s algorithm

Peterson’s algorithm

boolean D1:= False
boolean D2 := False
integer turn:= _

Processus P1: Processus P2:

loop forever: loop forever:

pl: Non-crit. section ql: Non-crit. section

pR: D1 :=True gl: D2 :=True

p3: turn:=2 q3: turn:=1

p4: await (-D&2 v turn=1) q4: await (-D1v turn=2)
p5: critical section q95: critical section

p6: D1 := False q6: D2 := False

Peterson’s algorithm
state : (p,q,D1,D2,turn)

(1,1,L4,1,1)
/ \
(2,1,L,1,1) (1,2,1,1,1)
/ \
(3,1,7,1,1) (2,2,L,1,1)

(2,3,L,7,1)
\
(2,4,1.,7,2)

BX6x2x2x2 = 288 states (OK, simplifications are possible...)

Mutual exclusion

1. Mutual exclusion: Both processes can never be at their
CS at the same time.

~F(CS1ACS2) G(~CSiv ~CS)

2. No starvation: If a proce e CS, it will reach it
sometime in the future if the execution is fair).

G(Di=F CS) A G(D:=F CSy) X

Mutual exclusion Peterson’s algorithm V2

2. No starvation: If a process asks for the CS, it will reach it
sometime in the future (if the execution is fair).

Is it okay to modify the model in order to express a

' ?
How can we express the fairness “ property ?

How can we characterise the fair executions ?

/ 288x2 states !!

Add a boolean « pa » in states to specify which process
has performed the last action (L for P4, T for P2).

G (Di= ((GF =pa) = F CSy)

Peterson’s algorithm with Prism

global turn : [1 .. 2]; https://www.prismmodelchecker.org/
module P1
D1 : bool init false;
p : [0..3] init O;
[1 (p=0) -> trus; We use a

[1 (=0) -> (p'=1) & (D1'=true); -
[1 (0-1) > (p'=2) & (turn'=-2); « high-level »
[] (p=R) & ((turn=1) | (D2=false)) -> (D'=3); language !
[1 (0=2) & ((turn=R) & (D2=true)) -> (p'=2);
[1 (0=3) -> (p'=0) & (D1'=false);

endmodule

module P2
DR : bool init false;
q: [0..3] init O;
[1(a=0) -> true;
[1 (a=0) -> (q'=1) & (D2'=true);
[1(@=1) -> (@'=R) & (turn'=1);
[1 (@=R) & ((turn=R) | (D1=false)) -> (q'=3);
[] (@=R) & ((turn=1) & (D1=true)) -> (q'=R);
[1 (@=3) -> (9'=0) & (DR'=false);
endmodule

