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1 La logique LTL

Let AP be a finite set of atomic propositions. LTL formulas are defined as follows :

LTL ∋ φ,ψ ::= p | φ ∨ ψ | ¬φ | Xφ | φUψ

with p ∈ AP.
An LTL formula is interpreted over an infinite word w = w0w1 . . . ∈ (2AP)ω. We use w≥i

with i ≥ 0 to denote the infinite word wiwi+1 . . ..
— w |= p iff p ∈ w0

— w |= φ ∨ ψ iff w |= φ or w |= ψ
— w |= ¬φ iff w ̸|= φ
— w |= Xφ iff w≥1 |= φ
— w |= φUψ iff ∃i ≥ 0 : w≥0 |= ψ and ∀0 ≤ k < i, we have : w≥k |= φ

We also use standard abbreviations : ⊤, ⊥, ∧, ⇔, ⇒. And : F
def
= ⊤U , G

def
= ¬F¬ .

Definition 1. A Kripke structure is a 4-tuple S = ⟨S, s0,→, ℓ⟩ where :
— S is a finite set of states, s0 ∈ S is the initial state,
— →⊆ S × S is the transition relation (we assume that ∀s ∈ S, ∃s′ ∈ S. s→ s′),
— ℓ : S → 2AP is a labelling function of the states with atomic propositions.

An execution of S is an infinite sequence ρ ∈ Sω s.t. ∀i ≥ 0 we have ρ(i) → ρ(i+ 1). It
describes an infinite word over 2AP : ℓ(ρ(0))ℓ(ρ(1))ℓ(ρ(2)) . . . We use W (S) to denote all these
words associated with executions issued from the initial state s0 of S.

Verification problems We will consider the following problems :

Satisfiability : |= φ
input : φ ∈ LTL
output : Yes iff there exists a word w ∈ (2AP)ω such that w |= φ.

Model-checking ∃ : S |=∃ φ
input : S a Kripke structure, φ ∈ LTL
output : Yes iff there exists w ∈W (S) such that w |= φ.
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Model-checking ∀ : S |=∀ φ
input : S a Kripke structure, φ ∈ LTL
output : Yes iff for every w ∈W (S), we have w |= φ.

2 Expressivity

To be done.

3 Generalized Büchi Automata for LTL

GBA. A generalized Büchi automaton (GBA) is a 5-tuple A = (Q,Q0, δ,Σ,F) where :
— Q is a finite set of states, Q0 ⊆ Q is the set of initial state,
— Σ is the alphabet,
— δ : Q× Σ 7→ 2Q is the transition function, and
— F = {F1, . . . , Fk} is a generalized Büchi condition with Fi ⊆ Q for any i.
A word w = w0w1 . . . ∈ Σω is accepted by A iff there exists ρ ∈ Qω such that (1) ρ(0) ∈ Q0,

(2) ρ(i+ 1) ∈ δ(ρ(i), wi) and (3) for every 1 ≤ j ≤ k, Inf(ρ) ∩ Fj ̸= ∅ where Inf(ρ) denotes the
states that appear infinitely many times along ρ.

We use L(A) to denote the language of A.

Automata construction. Given an LTL formula φ, we build a GBA Aφ whose language is
precisely mod(φ) (i.e. the set of models of φ, that is {w ∈ (2AP)ω |w |= φ}). Let Sφ be the set
of all φ-subformulas and their negations (with ¬¬ψ = ψ).

Aφ = (Qφ, Q
φ
0 , δφ, (2

AP),Fφ).

1. Qφ ⊆ 2Sφ . The states of Qφ are maximal and consistent subsets of Sφ :
— A state q ∈ Qφ is consistent w.r.t. Boolean connectives when :

— if φ1 ∧ φ2 ∈ Sφ, we have (φ1 ∧ φ2 ∈ q) ⇔ (φ1 ∈ q and φ2 ∈ q) ;
— if φ1 ∨ φ2 ∈ Sφ, we have (φ1 ∨ φ2 ∈ q) ⇔ (φ1 ∈ q or φ2 ∈ q) ;
— if ψ ∈ q then ¬ψ ̸∈ q.

— A state q ∈ Qφ is maximal iff for any ψ ∈ Sφ, we have either ψ ∈ q or ¬ψ ∈ q.
— A state q ∈ Qφ is consistent w.r.t. temporal modalities when :

— if φ1Uφ2 ∈ q, then either φ2 ∈ q or ψ1 ∈ q ;
— if φ1Uφ2 ∈ Sφ and φ2 ∈ q, then φ1Uφ2 ∈ q ;

2. Qφ0 = {q ∈ Q | φ ∈ q} ;
3. let q, q′ ∈ Q and σ ⊆ AP. We have :

q′ ∈ δ(q, σ) ⇔


• σ = q ∩ AP

• ∀Xψ ∈ Sφ, (Xψ ∈ q ⇔ ψ ∈ q′)

• ∀φ1Uφ2 ∈ Sφ, (φ1Uφ2 ∈ q ⇔ (φ2 ∈ q ∨
(φ1 ∈ q ∧ φ1Uφ2 ∈ q′))

4. The acceptance condition is F = {Fφ1 Uφ2 | φ1Uφ2 ∈ Sφ} with :

Fφ1 Uφ2 = {q ∈ Qφ | φ1Uφ2 ̸∈ q ; or φ2 ∈ q}
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Correctness. We have the following theorem :

Theorem 2. For any φ ∈ LTL, we have L(Aφ) = mod(φ).

Proof of L(Aφ) ⊆ mod(φ) : For this, we prove the following Lemma :

Lemma 3. For any accepting run ρ = q0q1q2 . . . over the word w ∈ (2AP)ω, we have :

∀i ≥ 0, ∀ψ ∈ Sφ,we have :
(
w≥i |= ψ ⇔ ψ ∈ ρ(i)

)
Proof. The proof is done by structural induction over ψ.

— ψ = p ∈ A : Assume w≥i |= p, then we have p ∈ wi (by the semantics of LTL). As
ρ(i + 1) ∈ δ(ρ(i), wi), we have wi = ρ(i) ∩ AP (by def. of the transitions), and thus
p ∈ ρ(i). Same argument for the other way.

— ψ = ¬ψ1 : if w≥i |= ¬ψ1, then w≥i ̸|= ψ1 and by i.h. we get ψ1 ̸∈ ρ(i), and then by def.
of Qφ, we get ¬ψ1 ∈ ρ(i). Same argument for the other way.

— ψ = ψ1 ∧ ψ2 : If w≥i |= ψ1 ∧ ψ2, then (def. of the semantics) we have w≥i |= ψ1 and
w≥i |= ψ2, and then by i.h. we have ψ1, ψ2 ∈ ρ(i) and then by the def. of Qφ, we get
ψ1 ∧ ψ2 ∈ ρ(i). Same argument for the other way.

— ψ = Xψ1. Assume w≥i |= Xψ1, then we have w≥+1i |= ψ1 and by i.h. we get
ψ1 ∈ ρ(i+ 1), and by the def. of the transitions we have Xψ1 ∈ ρ(i). Same argument
for the other way.

— ψ = ψ1Uψ2. Assume w≥i |= ψ1Uψ2. Then there exists j ≥ i such that w≥j |= ψ2 and
for any i ≤ k < j we have w≥k |= ψ1. The induction hypothesis allows us to deduce that
ψ2 ∈ ρ(j) and ψ1 ∈ ρ(k) for any i ≤ k < j. By def. of Qφ, we can deduce ψ1Uψ2 ∈ ρ(j),
and thus ψ1Uψ2 ∈ ρ(j − 1), and thus ψ1Uψ2 ∈ ρ(j − 2, ),. . ., ψ1Uψ2 ∈ ρ(i) !
If ψ1Uψ2 ∈ ρ(i), by def. of Qφ, we know that either ψ2 ∈ ρ(i) (and then by i.h. we
get w≥i |= ψ2 and w≥i |= ψ1Uψ2), or ψ1 ∈ ρ(i) and ψ1Uψ2 ∈ ρ(i + 1). And then
either ψ2 ∈ ρ(i+ 1) or ψ1 ∈ ρ(i+ 1) and ψ1Uψ2 ∈ ρ(i+ 2) etc. As ρ is an accepting
execution, it has to satisfy the Büchi condition Fψ1 Uψ2 and this ensures that for some
position j ≥ i we will have ψ2 ∈ ρ(j) and the i.h. will allow us to conclude.

Proof of mod(φ) ⊆ L(Aφ) : Assume w ∈ (2AP)ω satisfies φ. Let ρ ∈ (2Sφ)ω defined as
follows : ∀i ≥ 0, ρ(i) = {ψ ∈ Sφ | w≥i |= ψ} ∪ {¬ψ | w≥i ̸|= ψ}. For any i, ρ(i) is maximal an
consistent. Moreover we have ρ(i + 1) ∈ δ(ρ(i), wi). And it is accepting : for every φ1Uφ2

subformula belonging to some ρ(i), there exists a position j ≥ i s.t. φ2 ∈ ρ(j) (because by def.
ρ(i) contains only formulas that are satisfied at position i). Thus the acceptance condition is
satisfied.

4 Decision procedures for LTL

The verification problems for LTL reduce to decision problems over Aφ :
— |= φ is equivalent to decide whether L(Aφ) ̸= ∅.
— S |=∃ φ is equivalent to decide whether W (S) ∩ L(Aφ) ̸= ∅.
— S |=∀ φ is equivalent to decide whether W (S) ⊆ L(Aφ) or W (S) ∩ L(A¬φ) = ∅.
All these problems are PSPACE-complete.
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PSPACE-hardness. LetM = (Σ, Q, q0,∆, {qacc}) be a deterministic polynomially bounded
Turing Machine and w ∈ Σn. We reduce the problem to decide whether w ∈ L(M) to some
model-checking problem SM |=∃ ΦM,w0 . Let p be the polynomial function associated with M :
the computation of M over w uses at most p(n) cells on the tape (|w| = n).

We assume that the Turing machine stays forever in the accepting state qacc when it
is reached. A configuration of M over w0 is a word over Σ′ = Σ ∪ {#} of length n (the
tape), a control state and a position for the tape head. We use the following set of AP =
Σ ∪ {#, begin, end, } ∪Q.

Consider the Kripke structure SM is described in Figure 1. The state 0 is followed by a
state describing the contents of the first cell : it is labels by either a letter in Σ ∪ {#} or a
letter and a state (indicating what is the current control state and the current position of the
head). The states that follow the state 1 describe the second cell, etc. Until the p(n)-th cell. A
configuration of the machine can be described as a path in the structure between state 0 and
state p(n), and a computation can be encoded as a sequence of such configurations. . . The
state 0 is labeled with begin and the state p(n) is labeled by end.

LTL formulas are used to specify that :
— the machine starts with w on the tape, q0 as initial state and the head at position 1 ;
— two successive configurations are consistent w.r.t. the transitions of the machine ;
— the machine ends in the accepting state.
For the first property, we can use the following formula :

Φ0
def
= X (q0 ∧ w0 ∧

( ∧
1≤i≤n−1

X 2iwi

)
∧ X 2n

( ∧
0≤i≤p(n)−n

X 2i♯
)

Reaching the accepting state is ensured with : Φf
def
= F qacc.

It remains to verify that two consecutive configurations are consistent. In general, a cell
i may depend on the cells i − 1, i and i + 1 of the previous configuration. We enumerate
all possibilities for three cells and the change they induce for the middle cell. Let q̄ be the
abbreviation for

∧
q∈Q ¬q. We first consider the case of three cells without any control state,

the middle cell cannot change :

Φ1
def
=

∧
α1,α2,α3∈Σ

G
(
(α1 ∧X 2α2 ∧X 4α3) ⇒ X p(n)+3α2

)
The borders of the tape require dedicated formulas :

Φ2
def
=

∧
α1,α2∈Σ

G
(
(begin ∧X 2α1 ∧X 4α2) ⇒ X p(n)+3α1

)
And :

Φ3
def
=

∧
α1,α2∈Σ

G
(
(α1 ∧X 2α2 ∧X 4end) ⇒ X p(n)+3α2

)
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Figure 1 – Kripke structure for encoding the Turing machine.

Now for every transition (q, σ, q′, σ′, R), we have the three following formulas :

Φ4
def
=

∧
α1,α2∈Σ′

G
(
(q ∧ σ ∧X 2α1 ∧X 4α2) ⇒ X p(n)+3(q′ ∧ α1)

)
Φ5

def
=

∧
α1,α2∈Σ′

G
(
(α1 ∧X 2(q ∧ σ) ∧X 4α2) ⇒ X p(n)+3(σ′)

)
Φ4

def
=

∧
α1,α2∈Σ′

G
(
(α1 ∧X 2α2 ∧X 4(q ∧ σ)) ⇒ X p(n)+3(α2)

)
Φ5

def
=

∧
α1∈Σ′

G
(
(begin ∧X 2(q ∧ σ) ∧X 4(α1)) ⇒ X p(n)+3(σ′)

)
And for every transition (q, σ, q′, σ′, L), we have three formulas as follows :

Φ6
def
=

∧
α1,α2∈Σ′

G
(
(q ∧ σ ∧X 2α1 ∧X 4α2) ⇒ X p(n)+3(α1)

)
Φ7

def
=

∧
α1,α2∈Σ′

G
(
(α1 ∧X 2(q ∧ σ) ∧X 4α2) ⇒ X p(n)+3(σ′)

)
Φ8

def
=

∧
α1,α2∈Σ′

G
(
(α1 ∧X 2α2 ∧X 4(q ∧ σ)) ⇒ X p(n)+3(q′ ∧ α2)

)
Φ9

def
=

∧
α1∈Σ′

G
(
(α1 ∧X 2(q ∧ σ) ∧X 4(end)) ⇒ X p(n)+3(σ′)

)
It remains to show that w ∈ L(M) iff SM |=∃

∧
0≤i≤9Φi ∧ Φf .
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