Emergency kit for LTL

Francois Laroussinie

16 octobre 2024

1 La logique LTL

Let AP be a finite set of atomic propositions. LTL formulas are defined as follows :

LTLS g, u=ploVe || Xe|pUy

with p € AP.

An LTL formula is interpreted over an infinite word w = wow; ... € (
with ¢ > 0 to denote the infinite word w;w;y1

—wkEpiff pew

—wkEepVyYifwlEyporwEY

—wEpiffw e

—wEXpiff ws Eo

— wEeUYiff 3i > 0:wso =9 and V0 < k < i, we have : w>i = ¢

2APY@ We use ws;

We also use standard abbreviations : T, L, A, <, =. And : F_ Ty L, G e _p
Definition 1. A Kripke structure is a 4-tuple S = (S, so, —,) where :

— S is a finite set of states, so € S is the initial state,

— —C S x S is the transition relation (we assume that Vs € S,3s' € S. s — &),

— £: 8 — 2P s q labelling function of the states with atomic propositions.

An execution of S is an infinite sequence p € S¥ s.t. Vi > 0 we have p(i) — p(i +1). It
describes an infinite word over 227 : £(p(0))£(p(1))¢(p(2)) ... We use W (S) to denote all these
words associated with executions issued from the initial state sg of S.

Verification problems We will consider the following problems :

Satisfiability : = ¢
input : ¢ € LTL
output : Yes iff there exists a word w € (2A7)% such that w = ¢.

Model-checking 3 : S =3 ¢
input : S a Kripke structure, ¢ € LTL
output : Yes iff there exists w € W(S) such that w = ¢.

Model-checking V : S =y ¢
input : S a Kripke structure, ¢ € LTL
output : Yes iff for every w € W(S), we have w = .

2 Expressivity

To be done.

3 Generalized Biichi Automata for LTL

GBA. A generalized Biichi automaton (GBA) is a 5-tuple A = (Q, Qo, J, X, F) where :

— (@ is a finite set of states, Q¢ C @ is the set of initial state,

— X is the alphabet,

— §:Q x X — 29 is the transition function, and

— F ={F1,...,Fy} is a generalized Biichi condition with F; C @ for any i.

A word w = wow; ... € ¥ is accepted by A iff there exists p € Q* such that (1) p(0) € Qo,
(2) p(i +1) € §(p(i),w;) and (3) for every 1 < j <k, Inf(p) N F; # @ where Inf(p) denotes the
states that appear infinitely many times along p.

We use L(A) to denote the language of A.

Automata construction. Given an LTL formula ¢, we build a GBA 4, whose language is
precisely mod () (i.e. the set of models of ¢, that is {w € (2AF)¥ |w = ¢}). Let S, be the set
of all p-subformulas and their negations (with ==t =).

Ay = (Qw 6075% (2AP>7]:<,0)-

1. Q, C 25 . The states of Q, are maximal and consistent subsets of S, :
— A state g € @), is consistent w.r.t. Boolean connectives when :
— if 1 A g € Sy, we have (p1 A2 € q) < (p1 € gand @9 € q);
— if 1 Vg € Sy, we have (p1 V 2 € q) & (p1 € gor s € q);
— if ¢ € ¢ then ¢ € q.
— A state ¢ € @, is maximal iff for any ¢ € S, we have either ¢ € g or ¢ € g.
— A state ¢ € @), is consistent w.r.t. temporal modalities when :
— if o1 U g € g, then either po € q or Y1 € ¢q;
— if o1 U € S, and p2 € ¢, then 1 Uy € q;

b ={eeQlpecdq};
3. let ¢,¢' € Q and 0 C AP. We have :

oo =gNAP

eVXpeS, Xpeq & ped)

oVp1 Upa e Sy, (01 Upreq & (p2eqV
(preq N g1 Upr eq))

¢ €6(qg,0) &

4. The acceptance condition is F = {F, U, | ¢1 Ugs € Sy} with :

Foug, = {0€Qu 01 Upadq; or oo €q}

Correctness. We have the following theorem :

Theorem 2. For any ¢ € LTL, we have L(A,) = mod(p).

Proof of L(A,) C mod(y) : For this, we prove the following Lemma :

Lemma 3. For any accepting run p = qoqiqs - .. over the word w € (ZAP)W, we have :

Vi >0,V € S, we have : (U)Zi F¢y & ye p(i))

Proof. The proof is done by structural induction over .

— 1 =p € A: Assume w>; = p, then we have p € w; (by the semantics of LTL). As
p(i+ 1) € §(p(i), w;), we have w; = p(i) N AP (by def. of the transitions), and thus
p € p(i). Same argument for the other way.

— = =y if ws; = Py, then ws; & 91 and by i.h. we get ¢ & p(i), and then by def.
of Qy, we get) € p(i). Same argument for the other way.

— ¢ =1 ANpg : If ws; =91 A ho, then (def. of the semantics) we have w>; |= 11 and
w>; = 1P, and then by i.h. we have 11,4 € p(i) and then by the def. of @, we get
11 AN g € p(i). Same argument for the other way.

— ¢ = X. Assume w>; = X1, then we have w>11; = 91 and by i.h. we get
1 € p(i + 1), and by the def. of the transitions we have X 1)1 € p(i). Same argument
for the other way.

— 1 =91 U1y, Assume w>; |= 11 Uy, Then there exists j > ¢ such that w>; = 1y and
for any ¢ < k < j we have w>j, = 1. The induction hypothesis allows us to deduce that
Yo € p(j) and Yy € p(k) for any i < k < j. By def. of Q,, we can deduce 11 U)o € p(j),
and thus Y1 Us € p(j — 1), and thus ¢y Uvs € p(j — 2,),..., Y1 Utbs € p(i)!

If 41 Uty € p(i), by def. of Q,, we know that either ¥ € p(i) (and then by i.h. we
get w>; = Yo and w>; = 1 Us), or 91 € p(i) and ¢ Uy € p(i + 1). And then
either 1y € p(i+ 1) or 91 € p(i + 1) and 1 Uy € p(i + 2) etc. As p is an accepting
execution, it has to satisfy the Biichi condition Fy, 1, and this ensures that for some
position j > i we will have 13 € p(j) and the i.h. will allow us to conclude.

]

Proof of mod(p) C L(A,) : Assume w € (2AP)¥ satisfies ¢. Let p € (25)“ defined as
follows : Vi > 0, p(i) = { € Sy, | w>i = ¥} U {9 |ws; [~ ¢}. For any 4, p(i) is maximal an
consistent. Moreover we have p(i + 1) € 0(p(i), w;). And it is accepting : for every 1 U @9
subformula belonging to some p(), there exists a position j > i s.t. w2 € p(j) (because by def.
p(i) contains only formulas that are satisfied at position 7). Thus the acceptance condition is
satisfied.

4 Decision procedures for LTL

The verification problems for LTL reduce to decision problems over A, :

— = ¢ is equivalent to decide whether L£(A,) # @.

— S |=3 ¢ is equivalent to decide whether W (S) N L(A,) # @.

— S [=v @ is equivalent to decide whether W(S) C L(Ay) or W(S)NL(A-,) = 2.
All these problems are PSPACE-complete.

PSPACE-hardness. Let M = (X,Q,qo, A, {qacc}) be a deterministic polynomially bounded
Turing Machine and w € ¥". We reduce the problem to decide whether w € £(M) to some
model-checking problem Sy =3 @ g, Let p be the polynomial function associated with M :
the computation of M over w uses at most p(n) cells on the tape (Jw| = n).

We assume that the Turing machine stays forever in the accepting state gqc. when it
is reached. A configuration of M over wy is a word over ¥ = X U {#} of length n (the
tape), a control state and a position for the tape head. We use the following set of AP =
Y U {#, begin,end, } U Q.

Consider the Kripke structure Sy is described in Figure 1. The state 0 is followed by a
state describing the contents of the first cell : it is labels by either a letter in 3 U {#} or a
letter and a state (indicating what is the current control state and the current position of the
head). The states that follow the state 1 describe the second cell, etc. Until the p(n)-th cell. A
configuration of the machine can be described as a path in the structure between state 0 and
state p(n), and a computation can be encoded as a sequence of such configurations... The
state 0 is labeled with begin and the state p(n) is labeled by end.

LTL formulas are used to specify that :

— the machine starts with w on the tape, gy as initial state and the head at position 1;

— two successive configurations are consistent w.r.t. the transitions of the machine;

— the machine ends in the accepting state.

For the first property, we can use the following formula :

o X(@nwn (A XFw) x> A X%)
1<i<n—1 0<i<p(n)—n

Reaching the accepting state is ensured with : @ def g Qace-

It remains to verify that two consecutive configurations are consistent. In general, a cell
7 may depend on the cells i — 1, 4 and ¢ + 1 of the previous configuration. We enumerate
all possibilities for three cells and the change they induce for the middle cell. Let g be the
abbreviation for A 4cQ - We first consider the case of three cells without any control state,
the middle cell cannot change :

P, d:ef /\ G ((al A X2a2 A X4a3) = Xp(n)+3a2)

a,02,03€0

The borders of the tape require dedicated formulas :

Py def /\ G ((begin A X2041 A X4a2) = Xp(n)+3041>
al,QQEE
And :
%% A G ((oz1 A X %05 A X dend) = XP<”>+3a2>
al,ageE

FI1GURE 1 — Kripke structure for encoding the Turing machine.

Now for every transition (q, 0, q’, o', R), we have the three following formulas :

def

oy = /\ G((q/\a/\Xzal/\X4a2) = Xp(")+3(q’/\oz1)>

ay,02€X
oY A @ <(a1 AX2(gAo) A X as) = xp<”>+3(o—'))
a,02€X
A @ ((a1 AXZas AX (g A0)) = Xp(”)+3(a2)>
aq,a0€Y)
A G ((begin AX2gAo) AX Y1) = xp<">+3(a’))

areX

def
o, =

def
oy =

And for every transition (¢, 0, q’,0’, L), we have three formulas as follows :

def

o A G((q/\a/\X2a1/\X4a2) = Xp<">+3(a1))

ay,a2€X!
Y A @ ((a1 AX2(gAo) A X as) = xp<n>+3(a’))
a1,a2€X!
/\ G <(a1 AX 2 ANXAgN0o)) = XPOH3(A 042))
a,a0€Y
A G ((a1 AX2(gA0) A X end)) = Xp<n>+3(a'))

areX’

def
Py =

def
Py =

It remains to show that w € L(M) iff Spm a3 Ag<ico @i A Py

	La logique LTL
	Expressivity
	Generalized Büchi Automata for LTL
	Decision procedures for LTL

