Emergency kit for LTL

François Laroussinie

16 octobre 2024

draft!

1 La logique LTL

Let AP be a finite set of atomic propositions. LTL formulas are defined as follows :

 $\mathsf{LTL} \ni \varphi, \psi ::= p \mid \varphi \lor \psi \mid \neg \varphi \mid \mathbf{X} \varphi \mid \varphi \, \mathbf{U} \, \psi$

with $p \in \mathsf{AP}$.

An LTL formula is interpreted over an infinite word $w = w_0 w_1 \dots \in (2^{\mathsf{AP}})^{\omega}$. We use $w_{\geq i}$ with $i \geq 0$ to denote the infinite word $w_i w_{i+1} \dots$

- $-w \models p \text{ iff } p \in w_0$
- $w \models \varphi \lor \psi \text{ iff } w \models \varphi \text{ or } w \models \psi$
- $w \models \neg \varphi \text{ iff } w \not\models \varphi$
- $w \models \mathbf{X} \varphi \text{ iff } w_{\geq 1} \models \varphi$

 $- w \models \varphi \, \mathbf{U} \, \psi \text{ iff } \exists i \geq 0 : w_{\geq 0} \models \psi \text{ and } \forall 0 \leq k < i, \text{ we have } : w_{\geq k} \models \varphi$

We also use standard abbreviations : \top , \bot , \land , \Leftrightarrow , \Rightarrow . And : $\mathbf{F}_{-} \stackrel{\mathrm{def}}{=} \top \mathbf{U}_{-}$, $\mathbf{G}_{-} \stackrel{\mathrm{def}}{=} \neg \mathbf{F}_{-}$.

Definition 1. A Kripke structure is a 4-tuple $S = \langle S, s_0, \rightarrow, \ell \rangle$ where :

- S is a finite set of states, $s_0 \in S$ is the initial state,
- $\rightarrow \subseteq S \times S$ is the transition relation (we assume that $\forall s \in S, \exists s' \in S. s \rightarrow s')$),
- $\ell: S \to 2^{\mathsf{AP}}$ is a labelling function of the states with atomic propositions.

An execution of S is an infinite sequence $\rho \in S^{\omega}$ s.t. $\forall i \geq 0$ we have $\rho(i) \rightarrow \rho(i+1)$. It describes an infinite word over $2^{\mathsf{AP}} : \ell(\rho(0))\ell(\rho(1))\ell(\rho(2))\ldots$ We use W(S) to denote all these words associated with executions issued from the initial state s_0 of S.

Verification problems We will consider the following problems :

Satisfiability : $\models \varphi$ input : $\varphi \in \mathsf{LTL}$ output : Yes iff there exists a word $w \in (2^{\mathsf{AP}})^{\omega}$ such that $w \models \varphi$.

Model-checking $\exists : S \models_{\exists} \varphi$ **input** : S a Kripke structure, $\varphi \in \mathsf{LTL}$ **output** : Yes iff there exists $w \in W(S)$ such that $w \models \varphi$. **Model-checking** $\forall : S \models_{\forall} \varphi$ **input** : S a Kripke structure, $\varphi \in \mathsf{LTL}$ **output** : Yes iff for every $w \in W(S)$, we have $w \models \varphi$.

2 Expressivity

To be done.

3 Generalized Büchi Automata for LTL

GBA. A generalized Büchi automaton (GBA) is a 5-tuple $\mathcal{A} = (Q, Q_0, \delta, \Sigma, \mathcal{F})$ where :

- Q is a finite set of states, $Q_0 \subseteq Q$ is the set of initial state,
- $-\Sigma$ is the alphabet,
- $\delta: Q \times \Sigma \mapsto 2^Q$ is the transition function, and
- $\mathcal{F} = \{F_1, \ldots, F_k\}$ is a generalized Büchi condition with $F_i \subseteq Q$ for any *i*.

A word $w = w_0 w_1 \dots \in \Sigma^{\omega}$ is accepted by \mathcal{A} iff there exists $\rho \in Q^{\omega}$ such that (1) $\rho(0) \in Q_0$, (2) $\rho(i+1) \in \delta(\rho(i), w_i)$ and (3) for every $1 \leq j \leq k$, $\ln f(\rho) \cap F_j \neq \emptyset$ where $\ln f(\rho)$ denotes the states that appear infinitely many times along ρ .

We use $\mathcal{L}(\mathcal{A})$ to denote the language of \mathcal{A} .

Automata construction. Given an LTL formula φ , we build a GBA \mathcal{A}_{φ} whose language is precisely $\mathsf{mod}(\varphi)$ (*i.e.* the set of models of φ , that is $\{w \in (2^{\mathsf{AP}})^{\omega} \mid w \models \varphi\}$). Let S_{φ} be the set of all φ -subformulas and their negations (with $\neg \neg \psi = \psi$).

 $\mathcal{A}_{\varphi} = (Q_{\varphi}, Q_0^{\varphi}, \delta_{\varphi}, (2^{\mathsf{AP}}), \mathcal{F}_{\varphi}).$

- 1. $Q_{\varphi} \subseteq 2^{S_{\varphi}}$. The states of Q_{φ} are maximal and consistent subsets of S_{φ} :
 - A state $q \in Q_{\varphi}$ is consistent w.r.t. Boolean connectives when :
 - if $\varphi_1 \land \varphi_2 \in S_{\varphi}$, we have $(\varphi_1 \land \varphi_2 \in q) \Leftrightarrow (\varphi_1 \in q \text{ and } \varphi_2 \in q)$;
 - if $\varphi_1 \lor \varphi_2 \in S_{\varphi}$, we have $(\varphi_1 \lor \varphi_2 \in q) \Leftrightarrow (\varphi_1 \in q \text{ or } \varphi_2 \in q)$;
 - if $\psi \in q$ then $\neg \psi \notin q$.
 - A state $q \in Q_{\varphi}$ is maximal iff for any $\psi \in S_{\varphi}$, we have either $\psi \in q$ or $\neg \psi \in q$.
 - A state $q \in Q_{\varphi}$ is consistent w.r.t. temporal modalities when :
 - if $\varphi_1 \mathbf{U} \varphi_2 \in q$, then either $\varphi_2 \in q$ or $\psi_1 \in q$;
 - if $\varphi_1 \mathbf{U} \varphi_2 \in S_{\varphi}$ and $\varphi_2 \in q$, then $\varphi_1 \mathbf{U} \varphi_2 \in q$;
- 2. $Q_0^{\varphi} = \{q \in Q \mid \varphi \in q\};$
- 3. let $q, q' \in Q$ and $\sigma \subseteq \mathsf{AP}$. We have :

$$q' \in \delta(q, \sigma) \quad \Leftrightarrow \quad \begin{cases} \bullet \ \sigma = q \cap \mathsf{AP} \\ \bullet \ \forall \mathbf{X} \ \psi \in S_{\varphi}, \ (\mathbf{X} \ \psi \in q \ \Leftrightarrow \ \psi \in q') \\ \bullet \ \forall \varphi_1 \ \mathbf{U} \ \varphi_2 \in S_{\varphi}, \ (\varphi_1 \ \mathbf{U} \ \varphi_2 \in q \ \Leftrightarrow \ (\varphi_2 \in q \lor (\varphi_1 \in q \land \varphi_1 \ \mathbf{U} \ \varphi_2 \in q')) \end{cases}$$

4. The acceptance condition is $\mathcal{F} = \{F_{\varphi_1 \mathbf{U} \varphi_2} \mid \varphi_1 \mathbf{U} \varphi_2 \in S_{\varphi}\}$ with :

$$F_{\varphi_1 \operatorname{\mathbf{U}} \varphi_2} \;=\; \{ q \in Q_{\varphi} \mid \varphi_1 \operatorname{\mathbf{U}} \varphi_2 \not\in q \,; \text{ or } \varphi_2 \in q \}$$

Correctness. We have the following theorem :

Theorem 2. For any $\varphi \in LTL$, we have $\mathcal{L}(\mathcal{A}_{\varphi}) = mod(\varphi)$.

Proof of $\mathcal{L}(\mathcal{A}_{\varphi}) \subseteq \mathsf{mod}(\varphi)$: For this, we prove the following Lemma :

Lemma 3. For any accepting run $\rho = q_0 q_1 q_2 \dots$ over the word $w \in (2^{\mathsf{AP}})^{\omega}$, we have :

$$\forall i \ge 0, \forall \psi \in S_{\varphi}, we have: \left(w_{\ge i} \models \psi \Leftrightarrow \psi \in \rho(i) \right)$$

Proof. The proof is done by structural induction over ψ .

- $\psi = p \in \mathsf{A}$: Assume $w_{\geq i} \models p$, then we have $p \in w_i$ (by the semantics of LTL). As $\rho(i+1) \in \delta(\rho(i), w_i)$, we have $w_i = \rho(i) \cap \mathsf{AP}$ (by def. of the transitions), and thus $p \in \rho(i)$. Same argument for the other way.
- $-\psi = \neg \psi_1$: if $w_{\geq i} \models \neg \psi_1$, then $w_{\geq i} \not\models \psi_1$ and by i.h. we get $\psi_1 \notin \rho(i)$, and then by def. of Q_{φ} , we get $\neg \psi_1 \in \rho(i)$. Same argument for the other way.
- $\psi = \psi_1 \wedge \psi_2$: If $w_{\geq i} \models \psi_1 \wedge \psi_2$, then (def. of the semantics) we have $w_{\geq i} \models \psi_1$ and $w_{\geq i} \models \psi_2$, and then by i.h. we have $\psi_1, \psi_2 \in \rho(i)$ and then by the def. of Q_{φ} , we get $\psi_1 \wedge \psi_2 \in \rho(i)$. Same argument for the other way.
- $\psi = \mathbf{X} \psi_1$. Assume $w_{\geq i} \models \mathbf{X} \psi_1$, then we have $w_{\geq +1i} \models \psi_1$ and by i.h. we get $\psi_1 \in \rho(i+1)$, and by the def. of the transitions we have $\mathbf{X} \psi_1 \in \rho(i)$. Same argument for the other way.
- $\psi = \psi_1 \mathbf{U} \psi_2$. Assume $w_{\geq i} \models \psi_1 \mathbf{U} \psi_2$. Then there exists $j \geq i$ such that $w_{\geq j} \models \psi_2$ and for any $i \leq k < j$ we have $w_{\geq k} \models \psi_1$. The induction hypothesis allows us to deduce that $\psi_2 \in \rho(j)$ and $\psi_1 \in \rho(k)$ for any $i \leq k < j$. By def. of Q_{φ} , we can deduce $\psi_1 \mathbf{U} \psi_2 \in \rho(j)$, and thus $\psi_1 \mathbf{U} \psi_2 \in \rho(j-1)$, and thus $\psi_1 \mathbf{U} \psi_2 \in \rho(j-2,), \ldots, \psi_1 \mathbf{U} \psi_2 \in \rho(i)$!

If $\psi_1 \mathbf{U} \psi_2 \in \rho(i)$, by def. of Q_{φ} , we know that either $\psi_2 \in \rho(i)$ (and then by i.h. we get $w_{\geq i} \models \psi_2$ and $w_{\geq i} \models \psi_1 \mathbf{U} \psi_2$), or $\psi_1 \in \rho(i)$ and $\psi_1 \mathbf{U} \psi_2 \in \rho(i+1)$. And then either $\psi_2 \in \rho(i+1)$ or $\psi_1 \in \rho(i+1)$ and $\psi_1 \mathbf{U} \psi_2 \in \rho(i+2)$ etc. As ρ is an accepting execution, it has to satisfy the Büchi condition $F_{\psi_1 \mathbf{U} \psi_2}$ and this ensures that for some position $j \geq i$ we will have $\psi_2 \in \rho(j)$ and the i.h. will allow us to conclude.

Proof of mod(φ) $\subseteq \mathcal{L}(\mathcal{A}_{\varphi})$: Assume $w \in (2^{\mathsf{AP}})^{\omega}$ satisfies φ . Let $\rho \in (2^{S_{\varphi}})^{\omega}$ defined as follows : $\forall i \geq 0$, $\rho(i) = \{\psi \in S_{\varphi} \mid w_{\geq i} \models \psi\} \cup \{\neg \psi \mid w_{\geq i} \not\models \psi\}$. For any $i, \rho(i)$ is maximal an consistent. Moreover we have $\rho(i+1) \in \delta(\rho(i), w_i)$. And it is accepting : for every $\varphi_1 \mathbf{U} \varphi_2$ subformula belonging to some $\rho(i)$, there exists a position $j \geq i$ s.t. $\varphi_2 \in \rho(j)$ (because by def. $\rho(i)$ contains only formulas that are satisfied at position i). Thus the acceptance condition is satisfied.

4 Decision procedures for LTL

The verification problems for LTL reduce to decision problems over \mathcal{A}_{φ} :

- $-\models \varphi$ is equivalent to decide whether $\mathcal{L}(\mathcal{A}_{\varphi}) \neq \emptyset$.
- $-\mathcal{S}\models_{\exists}\varphi$ is equivalent to decide whether $W(\mathcal{S})\cap\mathcal{L}(\mathcal{A}_{\varphi})\neq \varnothing$.
- $-\mathcal{S}\models_{\forall} \varphi \text{ is equivalent to decide whether } W(\mathcal{S}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi}) \text{ or } W(\mathcal{S}) \cap \mathcal{L}(\mathcal{A}_{\neg \varphi}) = \emptyset.$

All these problems are PSPACE-complete.

PSPACE-hardness. Let $\mathcal{M} = (\Sigma, Q, q_0, \Delta, \{q_{acc}\})$ be a deterministic polynomially bounded Turing Machine and $w \in \Sigma^n$. We reduce the problem to decide whether $w \in \mathcal{L}(\mathcal{M})$ to some model-checking problem $\mathcal{S}_{\mathcal{M}} \models_{\exists} \Phi_{\mathcal{M}, w_0}$. Let p be the polynomial function associated with \mathcal{M} : the computation of \mathcal{M} over w uses at most p(n) cells on the tape (|w| = n).

We assume that the Turing machine stays forever in the accepting state q_{acc} when it is reached. A configuration of \mathcal{M} over w_0 is a word over $\Sigma' = \Sigma \cup \{\#\}$ of length n (the tape), a control state and a position for the tape head. We use the following set of $\mathsf{AP} = \Sigma \cup \{\#, \mathsf{begin}, \mathsf{end}, \} \cup Q$.

Consider the Kripke structure $S_{\mathcal{M}}$ is described in Figure 1. The state 0 is followed by a state describing the contents of the first cell : it is labels by either a letter in $\Sigma \cup \{\#\}$ or a letter and a state (indicating what is the current control state and the current position of the head). The states that follow the state 1 describe the second cell, etc. Until the p(n)-th cell. A configuration of the machine can be described as a path in the structure between state 0 and state p(n), and a computation can be encoded as a sequence of such configurations... The state 0 is labeled with begin and the state p(n) is labeled by end.

LTL formulas are used to specify that :

- the machine starts with w on the tape, q_0 as initial state and the head at position 1;
- two successive configurations are consistent w.r.t. the transitions of the machine;
- the machine ends in the accepting state.

For the first property, we can use the following formula :

$$\Phi_0 \stackrel{\text{def}}{=} \mathbf{X} \left(q_0 \wedge w_0 \wedge \left(\bigwedge_{1 \leq i \leq n-1} \mathbf{X}^{2i} w_i \right) \wedge \mathbf{X}^{2n} \left(\bigwedge_{0 \leq i \leq p(n)-n} \mathbf{X}^{2i} \sharp \right) \right)$$

Reaching the accepting state is ensured with : $\Phi_f \stackrel{\text{def}}{=} \mathbf{F} q_{acc}$.

It remains to verify that two consecutive configurations are consistent. In general, a cell i may depend on the cells i - 1, i and i + 1 of the previous configuration. We enumerate all possibilities for three cells and the change they induce for the middle cell. Let \bar{q} be the abbreviation for $\bigwedge_{q \in Q} \neg q$. We first consider the case of three cells without any control state, the middle cell cannot change :

$$\Phi_1 \stackrel{\text{def}}{=} \bigwedge_{\alpha_1, \alpha_2, \alpha_3 \in \Sigma} \mathbf{G} \left((\alpha_1 \wedge \mathbf{X}^2 \alpha_2 \wedge \mathbf{X}^4 \alpha_3) \Rightarrow \mathbf{X}^{p(n)+3} \alpha_2 \right)$$

The borders of the tape require dedicated formulas :

$$\Phi_2 \stackrel{\text{def}}{=} \bigwedge_{\alpha_1, \alpha_2 \in \Sigma} \mathbf{G} \left((\text{begin} \land \mathbf{X}^2 \alpha_1 \land \mathbf{X}^4 \alpha_2) \ \Rightarrow \ \mathbf{X}^{p(n)+3} \alpha_1 \right)$$

And :

$$\Phi_3 \stackrel{\text{def}}{=} \bigwedge_{\alpha_1, \alpha_2 \in \Sigma} \mathbf{G} \left((\alpha_1 \wedge \mathbf{X}^2 \alpha_2 \wedge \mathbf{X}^4 \text{end}) \Rightarrow \mathbf{X}^{p(n)+3} \alpha_2 \right)$$

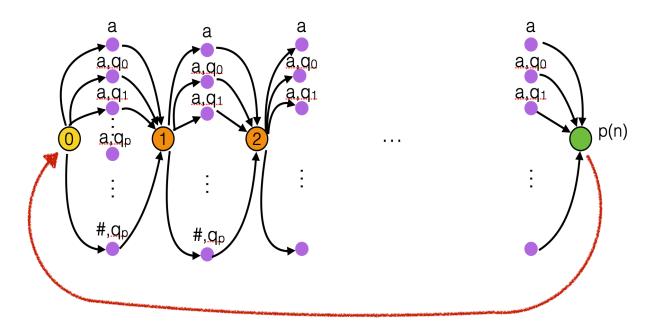


FIGURE 1 – Kripke structure for encoding the Turing machine.

Now for every transition $(q, \sigma, q', \sigma', R)$, we have the three following formulas :

$$\begin{split} \Phi_{4} \stackrel{\text{def}}{=} & \bigwedge_{\alpha_{1},\alpha_{2} \in \Sigma'} \mathbf{G} \left((q \wedge \sigma \wedge \mathbf{X}^{2} \alpha_{1} \wedge \mathbf{X}^{4} \alpha_{2}) \Rightarrow \mathbf{X}^{p(n)+3}(q' \wedge \alpha_{1}) \right) \\ \Phi_{5} \stackrel{\text{def}}{=} & \bigwedge_{\alpha_{1},\alpha_{2} \in \Sigma'} \mathbf{G} \left((\alpha_{1} \wedge \mathbf{X}^{2}(q \wedge \sigma) \wedge \mathbf{X}^{4} \alpha_{2}) \Rightarrow \mathbf{X}^{p(n)+3}(\sigma') \right) \\ \Phi_{4} \stackrel{\text{def}}{=} & \bigwedge_{\alpha_{1},\alpha_{2} \in \Sigma'} \mathbf{G} \left((\alpha_{1} \wedge \mathbf{X}^{2} \alpha_{2} \wedge \mathbf{X}^{4}(q \wedge \sigma)) \Rightarrow \mathbf{X}^{p(n)+3}(\alpha_{2}) \right) \\ \Phi_{5} \stackrel{\text{def}}{=} & \bigwedge_{\alpha_{1} \in \Sigma'} \mathbf{G} \left((\text{begin} \wedge \mathbf{X}^{2}(q \wedge \sigma) \wedge \mathbf{X}^{4}(\alpha_{1})) \Rightarrow \mathbf{X}^{p(n)+3}(\sigma') \right) \end{split}$$

And for every transition $(q,\sigma,q',\sigma',L),$ we have three formulas as follows :

$$\begin{split} \Phi_{6} \stackrel{\text{def}}{=} & \bigwedge_{\alpha_{1},\alpha_{2} \in \Sigma'} \mathbf{G} \left((q \wedge \sigma \wedge \mathbf{X}^{2} \alpha_{1} \wedge \mathbf{X}^{4} \alpha_{2}) \Rightarrow \mathbf{X}^{p(n)+3}(\alpha_{1}) \right) \\ \Phi_{7} \stackrel{\text{def}}{=} & \bigwedge_{\alpha_{1},\alpha_{2} \in \Sigma'} \mathbf{G} \left((\alpha_{1} \wedge \mathbf{X}^{2}(q \wedge \sigma) \wedge \mathbf{X}^{4} \alpha_{2}) \Rightarrow \mathbf{X}^{p(n)+3}(\sigma') \right) \\ \Phi_{8} \stackrel{\text{def}}{=} & \bigwedge_{\alpha_{1},\alpha_{2} \in \Sigma'} \mathbf{G} \left((\alpha_{1} \wedge \mathbf{X}^{2} \alpha_{2} \wedge \mathbf{X}^{4}(q \wedge \sigma)) \Rightarrow \mathbf{X}^{p(n)+3}(q' \wedge \alpha_{2}) \right) \\ \Phi_{9} \stackrel{\text{def}}{=} & \bigwedge_{\alpha_{1} \in \Sigma'} \mathbf{G} \left((\alpha_{1} \wedge \mathbf{X}^{2}(q \wedge \sigma) \wedge \mathbf{X}^{4}(\mathsf{end})) \Rightarrow \mathbf{X}^{p(n)+3}(\sigma') \right) \end{split}$$

It remains to show that $w \in \mathcal{L}(\mathcal{M})$ iff $\mathcal{S}_{\mathcal{M}} \models_{\exists} \bigwedge_{0 \leq i \leq 9} \Phi_i \land \Phi_f$.