
Other logics

François Laroussinie

29 octobre 2024

draft !

1 S1S

The Monadic Second-Order Logic of one successor (S1S) is an extension of FOwith quanti-
fications over sets. Formulas are interpreted over a discrete linear structure with a successor
function : (N, succ). Many elements of this description comes from the slides of Luke Ong
(Oxford Univ.) for the TACL summer school, this topics is also addressed in the survey of
Vardi and Wilke (”Automata : From Logic to Algorithms”).

1.1 Syntax and semantics

The syntax of S1S formulas is as follows :

S1S ∋ φ,ψ ::= t ∈ X | φ ∨ ψ | ¬φ | Ex.φ | EX.φ
t ::= x | succ(t)

We use lowercase letters (x, y, z . . .) to denote first-order variables, and capital letter
(X,Y, Z, . . .) for second-order variables. The universal quantifications is ¬∃¬.

We write φ(x1, . . . , xm, X1, . . . , Xn) when x1, . . . , xm are free first-order variables and
X1, . . . , Xn are free second-order variables in φ. A model for φ(x1, . . . , xm, X1, . . . , Xn) is m
values ai ∈ N with 1 ≤ i ≤ m and n values Pj ⊆ N with 1 ≤ j ≤ n : a1, . . . , am, P1, . . . , Pn |=
φ(x1, . . . , xm, X1, . . . , Xn) if the valuation (xi 7→ ai)1≤i≤m and (Xj 7→ Pj)1≤j≤n satisfies φ.

1.2 Examples of formulas

Here are some useful formulas to illustrate the expressive power of S1S :
— ”x = y” : ∀X.(x ∈ X ⇔ y ∈ X)
— ”x = 0” : ¬∃y.(x = succ(y)

— ”x ≤ y” : ∀X.
(
(x ∈ X ∧ ∀z.(z ∈ X ⇒ succ(y) ∈ X)) ⇒ y ∈ X

)
— ”X is finite” : ∃x.∀y (y ∈ X ⇒ y ≤ x)
A language over the alphabet 2AP with AP = {a1, . . . , an} is defined with a S1S formula

φ(X1, . . . , Xn) where Xi describes the set of positions where ai is true. For example, the
models where a is true at every even position can be expressed with :

φ(Xa) = ∃Xe.
(
0 ∈ Xe ∧ ∀y.(y ∈ Xe ⇔ succ(y) ̸∈ Xe) ∧ ∀y.(y ∈ Xe ⇒ y ∈ Xa)

)

1



1.3 Büchi automata and S1S

In the automata (or LTL) point of view, we consider infinite words over 2AP, that is
w ∈ (2AP)ω. With S1S, we consider n predicates Pi, that is a model is in (2ω)n. Both points
of view are equivalent : a w ∈ (2AP)ω describes the predicates Pwi with 1 ≤ i ≤ n s.t.
Pwi = {j ∈ N | ai ∈ wj}. And a set of n predicates P = {P1, . . . , Pn} describes the word w s.t.
wP
i = {aj ∈ AP | i ∈ Pj}.

In the following we write L(φ(X1, . . . , Xn)) to denote the set {w ∈ (2AP)ω | Pw1 , . . . , Pwn |=
φ(X1, . . . , Xn).

We say that a language L ⊆ (2AP)ω is S1S-definable iff there exists an S1S formula
φ(X1, . . . , Xn) s.t. L = L(φ(X1, . . . , Xn)).

S1S and (non-deterministic) Büchi automata have the same expressive power. Indeed we
have the two following theorems due to Büchi :

Theorem 1. For any Büchi automata A = (Q,Q0, δ, F ) over 2AP with |AP| = n, there exists
an S1S formula φA(X1, . . . , Xn) such that L(A) = L(φA(X1, . . . , Xn)).

Proof. Assume Q = {q1, . . . , qk}. We define φA as follows :

φA = ∃Q1 . . . Qk.
[
ΨQ ∧ (

∨
qi∈Q0

0 ∈ Qi) ∧
(
∀x ∃y. (y > x ∧

∨
qi∈F

y ∈ Qi)
)]

with ΨQ ensuring that for there is one and only one state qi ∈ Q associated with every position
and that the labelings of two successive positions satisfy the transition function δ :

ΨQ = ∀x.
∨

1≤i≤k

(
x ∈ Qi ∧ (

∧
j ̸=i

x ̸∈ Qj) ∧
∨

σ∈2AP
(Pσ(x) ∧

∨
qj∈δ(qi,σ)

succ(x) ∈ Qj)
)

where Pσ(x) stands for
∧
aj∈σ

x ∈ Xj ∧
∧
aj ̸∈σ

x ̸∈ Xj

And we can also build an automaton from a formula. In that case, we consider an S1S
formula φ(x1, . . . , xm, X1, . . . , Xn) which defines a language over the alphabet 2APφ where
APφ is a set of m+n propositions we will denote with {p1, . . . , pm, P1, . . . , Pn} in the following.
Formally we have :

Theorem 2. For any S1S formula φ(x1, . . . , xm, X1, . . . , Xn), there exists a Büchi automata
Aφ over 2APφ s.t. L(Aφ) = L(φ(x1, . . . , xm, X1, . . . , Xn)).

Proof. The construction of Aφ is done by induction over φ.
— Consider a formula φ = succk(xi) ∈ Xj . We need to verify that the k-th successor of

the position labeled by xi belongs to Xj . If k = 0, we use the automaton Axi∈Xj and
for k > 0, we use the automaton Asucck(xi)∈Xj as described at Figure ?? (there is no
need of Büchi condition here and then every state is accepting).

— If φ = φ1 ∧ φ2, we can build Aφ1 and Aφ2 , and then apply the intersection operation
over Büchi automata. And if φ = ¬ψ, we use the complement operation (with its
complexity blow-up ! !).

2



Axi∈Xj 0 ok

σ st
pi,Pj∈σ

σ st
pi ̸∈σ

Asucck(xi)∈Xj 0 1 2 . . . k ok

σ st
pi∈σ

σ st
pi ̸∈σ

σ σ
σ st
Pj∈σ

Figure 1 – Automata Axi∈Xj and Asucck(xi)∈Xj .

— If φ = ∃Xj .ψ, we first build Aψ = (Q,Q0, , δ, F ) over 2
APψ . Note that APψ contains

Pj as Xj is a free variable in ψ. More precisely we have APψ = APφ ∪ {Pj}. We then
define A∃Xj .ψ = (Q,Q0, δ

′, F ) over 2APφ . For every σ ∈ 2APφ we have :

δ′(q, σ) = δ(q, σ) ∪ δ(q, σ ∪ {Pj})

Intuitively it means that a word is accepted by φ iff there a way to label it with Pj in
such a way to satisfy ψ.

— If φ = ∃Xj .ψ, we proceed in a similar way as for the second-order case, but we also
have to ensure that the label pi is used exactly once in δ′ (for this we use two copies
of Q). Consider Aψ = (Q,Q0, , δ, F ) over 2

APψ . The automaton for φ is (Q′, Q1
0, δ

′, F ′)
with :
— Q′ = Q1 ∪Q2 where every Qi is the set Q tagged with i.
— And :

δ′(q1, σ) = {q′1 | q′ ∈ δ(q, σ)} ∪ {q′2 | q′ ∈ δ(q, σ ∪ {pi})}
δ′(q2, σ) = {q′2 | q′ ∈ δ(q, σ)}

— F ′ = {q2 | q ∈ F}.

3


