
Timed temporal logics for abstracting

transient states

Houda Bel Mokadem1, Béatrice Bérard2, Patricia Bouyer1,
François Laroussinie1

1 LSV, CNRS & ENS de Cachan, France
Emails: {mokadem,bouyer,fl}@lsv.ens-cachan.fr

2 LAMSADE, CNRS & Université Paris-Dauphine, France
Email: berard@lamsade.dauphine.fr

Abstract. In previous work, the timed logic TCTL was extended with
an “almost everywhere” Until modality which abstracts negligible sets of
positions (i.e. with a null duration) along a run of a timed automaton. We
propose here an extension of this logic with more powerful modalities, in
order to specify properties abstracting transient states, which are events
that last for less than k time units. Our main result is that model-
checking is still decidable and PSPACE-complete for this extension. On
the other hand, a second semantics is defined, in which we consider the
total duration where the property does not hold along a run. In this case,
we prove that model-checking is undecidable.

1 Introduction

Timed verification. Temporal logic is a convenient formalism for specifying
systems and reasoning about them. Furthermore, model-cheking techniques lead
to the automatic verification that a model of a system satisfies some temporal
logic specification. These methods have been extended to real-time verification:
systems are modeled with timed automata [4] and timed logics like TCTL [1] are
used to express timed specification like “any problem is followed by an alarm
within 3 seconds”. Analysis tools have been developped [22, 15, 20] and success-
fully applied to numerous case studies.

Timed temporal logics and duration properties. Along with the study of
timed automata, various timed logics have been defined to extend the classical
temporal logics with quantitative modalities. For example, this was done with
MTL [19, 5, 21], an extension of LTL, and TCTL [6, 1, 17], where CTL modalities
are augmented with time comparisons of the form ∼ c, where ∼ is a comparison
operator. Another related logic is the Parametrized TCTL [13] where TCTL and
the timed model are in turn extended with parameters.
In another direction, since the introduction of the duration calculus [14] in order
to express duration properties, numerous works have been devoted to the algo-
rithmic computation of such properties for timed systems. Since clocks, which

evolve at the rate of time (as in timed automata), are sometimes not expres-
sive enough, hybrid variables (with multiple slopes) have been considered. The
resulting model of hybrid automata has been largely studied in the subsequent
years [16]. However, while some decidability results could be obtained [3, 18],
using stopwatches (i.e. variables with slopes 0 and 1) already leads to undecid-
ability for the reachability problem [2].

Further research has thus been devoted to weaker models where hybrid variables
are only used as observers, i.e. are not tested in the automaton and thus play no
role during a computation. These variables, sometimes called costs or prices in
this context can be used in an optimization criterium [3, 7, 8, 11] or as constraints
in temporal logic formulas. For instance, the logic WCTL [12, 10], interpreted over
timed automata extended with costs, adds cost contraints on modalities: it is
possible to express that a given state is reachable within a fixed cost bound.

Abstracting transient states. When practical examples are considered, the
need for abstracting transient states often happens. For example, modeling the
instantaneous changes of a variable may introduce artificial (and thus non per-
tinent) transient states in the model. This motivated the work in [9], where
configurations with zero duration could be abstracted by introducing into TCTL

the almost everywhere Ua modality. However, this is not sufficient in some cases.

Contribution. In this paper, we propose an extension of TCTL called TCTL∆,
which brings out a powerful generalization of the results in [9]. We introduce a
new modality Uk, where k ∈ N is a parameter, in order to abstract events that do
not last continuously for at least k time units (t.u). For example, AF

2
≤100alarm

expresses that for any execution, the atomic proposition alarm becomes true
before 100 t.u and will hold for at least 2 time units. One also could express the
fact that an event a precedes an event b along any run, an event being actually
considered iff it lasts for at least k time units: the formula ArequestP3grant states
that along any run where grant has occurred for a duration greater than 3, a
request has been emitted continusously for a duration greater than 3. We prove
that model-checking for TCTL∆ is still PSPACE-complete. While the analogous
result for TCTL or the extended version of [9] relies on the standard notion
of equivalent runs, we have to define a stronger form for this equivalence, in
order to obtain the consistency of TCTL∆-formulae on the regions of the timed
automaton.

Finally, we also consider a global semantics, called TCTL∆

Σ
, for which the global

duration during which a property does not hold, is bounded by a fixed constant k.
Although this semantics is more natural and uses only observer hybrid variables
in the model, we prove that model-checking TCTL∆

Σ
is undecidable.

Outline. Section 2 recalls the main features of timed automata model and gives
definitions for the syntax and semantics of our extended logics. Sections 3 and 4
are devoted to the model-checking of TCTL∆ and, in the last section, we show
that model-checking the extended logic TCTL∆

Σ
is undecidable.

2 Logic TCTL∆

Let N and R denote the sets of natural and non-negative real numbers, respec-
tively. Let X be a set of real valued clocks. We write C(X) for the set of boolean
expressions over atomic formulae of the form x ∼ k with x ∈ X, k ∈ N, and
∼ ∈ {<,≤,=,≥, >}. Constraints of C(X) are interpreted over valuations for
clocks, i.e. mappings from X to R. The set of valuations is denoted by R

X . For
every v ∈ R

X and d ∈ R, we use v+d to denote the time assignment which maps
each clock x ∈ X to the value v(x) + d. For every r ⊆ X, we write v[r ← 0] for
the valuation which maps each clock in r to the value 0 and agrees with v over
X \ r. Let AP be a set of atomic propositions.

2.1 Timed Automata

Definition 1. A timed automaton (TA) is a tuple A = 〈X,QA, qinit,→A, InvA,
lA〉 where X is a finite set of clocks, QA is a finite set of locations or control states
and qinit ∈ QA is the initial location. The set →A ⊆ QA × C(X)× 2X ×QA is a
finite set of action transitions: for (q, g, r, q′) ∈ →A, g is the enabling condition

and r is a set of clocks to be reset with the transition (we write q
g,r
−→A q′).

InvA : QA → C(X) assigns an invariant to each control state. Finally lA : QA →
2AP labels every location with a subset of AP.

A state (or configuration) of a TA A is a pair (q, v), where q ∈ QA is the current
location and v ∈ R

X is the current clock valuation. The initial state of A is
(qinit, v0) with v0(x) = 0 for any x in X. There are two kinds of transition. From

(q, v), it is possible to perform the action transition q
g,r
−→A q′ if v |= g and

v[r ← 0] |= InvA(q′) and then the new configuration is (q′, v[r ← 0]). It is also
possible to let time elapse, and reach (q, v + d) for some d ∈ R whenever the
invariant is satisfied along the delay. Formally the semantics of a TA A is given
by a Timed Transition System (TTS) TA = (S, sinit,→TA

, l) where:

– S = {(q, v) | q ∈ QA and v ∈ R
X s.t. v |= InvA(q)} and sinit = (qinit, v0).

– →TA
⊆ S × S and we have (q, v)→TA

(q′, v′) iff
• either q′ = q, v′ = v + d and v + d′ |= InvA(q) for any d′ ≤ d. This is a

delay transition — we write (q, v)
d
−→ (q, v + d) —,

• or there exists q
g,r
−→A q′ s.t v |= g, v′ = v[r ← 0] and v′ |= InvA(q′). This

is an action transition — we write (q, v)→a (q′, v′).
– l : S → 2AP labels every state (q, v) with the subset lA(q) of AP .

An execution (or run) of A is an infinite path s0 →TA
s1 →TA

s2 . . . in TA

such that (1) time diverges and (2) there are infinitely many action transitions.
Note that an execution can be described as an alternating infinite sequence

s0
d1−→→a s1

d2−→→a · · · for some di ∈ R. Such an execution ρ goes through
any configuration s′ reachable from some si by a delay transition of duration
d ∈ [0, di]. Let Exec(s) be the set of all executions from s. With a run ρ :

(q0, v0)
d1−→→a (q1, v1)

d2−→→a . . . of A, we associate the sequence of absolute dates

defined by t0 = 0 and ti =
∑

j≤i dj for i ≥ 1, and in the sequel, we often write
ρ as the sequence ((qi, vi, ti))i≥0.

A state (q, v) can occur several times along a run ρ, the notion of position 3

allows us to distinguish them: every occurrence of a state is associated with a
unique position. Given a position p, the corresponding state is denoted by sp.

The standard notions of prefix, suffix and subrun apply to paths in TTS: given
a position p ∈ ρ, ρ≤p is the prefix leading to p, ρ≥p is the suffix issued from p.
Finally a subrun σ from p to p′ is denoted by p

σ
7→ p′.

Note that the set of positions along ρ is totally ordered by <ρ. Given two po-
sitions p and p′, we say that p precedes strictly p′ along ρ (written p <ρ p

′) iff

there exists a finite subrun σ of ρ s.t. p
σ
7→ p′ and σ contains at least one non

null delay transition or one action transition (i.e. σ is not reduced to
0
−→). We

write σ <ρ p when for any position p′ in the subrun σ, we have p′ <ρ p.

Given a position p ∈ ρ, the prefix ρ≤p has a duration, Time(ρ≤p), defined as the
sum of all delays along ρ≤p. Since time diverges along an execution, we have: for
any t ∈ R, there exists p ∈ ρ such that Time(ρ≤p) > t.

For a subset P ⊆ ρ of positions in ρ, we define a natural measure µ̂(P) =
µ{Time(ρ≤p) | p ∈ P}, where µ is Lebesgue measure on the set of real numbers.
In the sequel, we only use this measure when P is a subrun of ρ: in this case, for
a subrun σ such that p

σ
7→ p′, we simply have µ̂(σ) = Time(ρ≤p′

)− Time(ρ≤p).

2.2 Definition of TCTL∆.

TCTL∆ is obtained by adding to TCTL the modalities E Uk
∼c and A Uk

∼c with
k ∈ N:

Definition 2 (Syntax of TCTL∆). TCTL∆ formulae are given by the following
grammar:

ϕ, ψ ::= P1 | P2 | . . . | ¬ϕ | ϕ ∧ ψ | EϕU∼cψ | AϕU∼cψ | EϕU
k
∼cψ | AϕU

k
∼cψ

where Pi ∈ AP, ∼ belongs to the set {<,>,≤,≥,=} and c, k ∈ N.

Standard abbreviations include >,⊥, ϕ ∨ ψ, ϕ⇒ ψ, . . . as well as :

EF
k
∼c ϕ

def

= E(> Uk
∼c ϕ) AF

k
∼c ϕ

def

= A(> Uk
∼c ϕ)

EG
k
∼c ϕ

def

= ¬AF
k
∼c¬ϕ AG

k
∼c ϕ

def

= ¬EF
k
∼c¬ϕ

Moreover Uk stands for Uk
≥0.

Definition 3 (Semantics of TCTL∆). The following clauses define when a
state s of some TTS T = 〈S, sinit,→, l〉 satisfies a TCTL∆ formula ϕ, written

3 Note that as it is possible to perform a sequence of action transitions in 0 t.u., we
cannot replace the notion of positions by a function from fρ from R to S.

s |= ϕ, by induction over the structure of ϕ (the semantics of boolean operators
is omitted).

s |= EϕU∼cψ iff ∃ ρ ∈ Exec(s) s.t. ρ |= ϕU∼cψ
s |= AϕU∼cψ iff ∀ ρ ∈ Exec(s) we have ρ |= ϕU∼cψ
s |= EϕUk

∼cψ iff ∃ ρ ∈ Exec(s) s.t. ρ |= ϕUk
∼cψ

s |= AϕUk
∼cψ iff ∀ ρ ∈ Exec(s) we have ρ |= ϕUk

∼cψ

ρ |= ϕU∼cψ iff ∃p ∈ ρ s.t. Time(ρ≤p)∼c ∧ sp |= ψ ∧ ∀p′ <ρ p, sp′ |= ϕ
ρ |= ϕUk

∼cψ iff there exists a subrun σ along ρ, a position p ∈ σ s.t.
Time(ρ≤p)∼c ∧ µ̂(σ) > k ∧ ∀p′ ∈ σ, sp′ |= ψ
and for all subrun σ′ s.t. σ′ <ρ p ∧ ∀p

′ ∈ σ′, sp′ |= ¬ϕ
we have µ̂(σ′) ≤ k

The modality Uk allows us to abstract intervals with duration less than k t.u.
where ϕ does not hold. Thus AF

2
≤100alarm states that along every run, there is

an event alarm of duration greater than 2 t.u. that occurs before 100 t.u.

The precedence operator 4 P can be written as follows: AϕPkψ
def
= ¬E(¬ϕ)Ukψ.

For example, A request P3grant states that a request of duration greater than 3
has to occur before an event grant (which must also last more than 3 t.u.).
Note that the semantics has to be handled carefully: Φ = AG

kϕ expresses that
no event ¬ϕ occurs, i.e. it is not possible to have ¬ϕ continuously for more than
k t.u. An execution where ¬ϕ holds for everywhere except every k t.u. would
satisfy Φ. This choice of semantics is also motivated by negation closure of the
Until modality.
Note that the logic TCTLext defined in [9] is the restriction of TCTL∆ where the
parameter k is always 0. As the modality E U0 cannot be expressed in TCTL[9],
TCTL∆ is clearly more expressive then TCTL.

The size of a timed automaton and the size of a TCTL∆ formula are defined in
the standard way with constants written in binary notation.

3 Equivalence of runs

In this section, we show that the classical notion of region proposed by Alur,
Courcoubetis and Dill [1] for TCTL is also correct for TCTL∆. Nevertheless we
need a stronger notion of equivalence for the runs in order to preserve the truth
value of TCTL∆ formulae.
First let us recall the standard equivalence over valuations:

Definition 4 (Equivalence on valuations [1]). Given a set X of clocks and
M ∈ N, two valuations v, v′ ∈ R

X are M-equivalent (written v ∼=M v′) if:

1. for any x ∈ X bv(x)c = bv′(x)c or (v(x) > M ∧ v′(x) > M),

4 This is a kind of release operator.

2. for any x, y ∈ X s.t. v(x) ≤M and v(y) ≤M , we have:
frac(v(x)) ≤ frac(v(y))⇔ frac(v′(x)) ≤ frac(v′(y)) and
frac(v(x)) = 0⇔ frac(v′(x)) = 0.

An equivalence class of ∼= is called a region; and a region is called a boundary
region if it contains valuations v s.t. the fractional part of v(x) is 0, for some
clock x. Given a TA A, we use MA to denote the maximal constant occurring in
A (in its guards or invariants). We write simply ∼= instead of ∼=M when M is clear
from the context. The equivalence ∼=MA

is consistent w.r.t. TCTL∆ formulae:

Theorem 1 (Consistency of ∼=). Given a TA A, Φ ∈ TCTL∆ and v, v′ ∈ R
X

s.t. v ∼=MA
v′, we have: (q, v) |= Φ ⇔ (q, v′) |= Φ.

Consider the formula Φ = EϕUk
∼cψ and assume (q, v) |= Φ, i.e. there exists a run

ρ = ((qi, vi, ti))i≥0 from (q, v) satisfying ϕUk
∼cψ. In order to prove the theorem,

we need to show that there exists an equivalent run ρ′ from (q, v′) which also
satisfies ϕUk

∼cψ.
For this, we first extend ∼= to pairs (vi, ti) as follows: (vi, ti) ∼= (v′i, t

′
i) iff (1) vi

∼=
v′i, (2) btic = bt′ic and frac(ti) = 0 iff frac(t′i) = 0 and (3) for each clock x ∈ X,
(i) frac(vi(x)) < frac(ti) iff frac(v′i(x)) < frac(t′i) and (ii) frac(vi(x)) = frac(ti) iff
frac(v′i(x)) = frac(t′i).
Now we define the equivalence over runs as follows:

Definition 5 (Equivalence on runs). Given a TA A, two runs ρ = ((qi, vi, ti))i≥0

and ρ′ = ((q′i, v
′
i, t

′
i))i≥0 are equivalent (written ρ ∼=∗ ρ′) if

(ER a.) for all i ≥ 0, qi = q′i ,
(ER b.) for all i ≥ 0, (vi, ti) ∼=MA

(v′i, t
′
i),

(ER c.) for all 0 ≤ j < i, (i) frac(tj) < frac(ti) iff frac(t′j) < frac(t′i)
and (ii) frac(tj) = frac(ti) iff frac(t′j) = frac(t′i).

The equivalence on runs used in [1] to prove that regions are compatible with
TCTL formulae only requires conditions (ER a) and (ER b). This is however
not sufficient for proving Theorem 1. Indeed, let A be the automaton depicted
below, with atomic proposition P and two clocks x and y, and consider the two
following runs, which are equivalent in [1]:

ρ : (q0, (0, 0))
0.1
−→→a (q1, (0.1, 0))

0.8
−→→a (q2, (0.9, 0.8))

0.3
−→→a (q3, (1.2, 0)) . . .

ρ′ : (q0, (0, 0))
0.8
−→→a (q1, (0.8, 0))

0.1
−→→a (q2, (0.9, 0.1))

1.05
−→→a (q3, (1.95, 0)) . . .

A :

q0
P

q1
P

q2
¬P

q2
P

x < 1, y := 0 x < 1 x < 2 ∧ y > 1, y := 0

The runs ρ and ρ′ satisfy conditions (ER a) and (ER b) but the delays spent in
state q2 where P does not hold are respectively 0.3 and 1.05, so that ρ |= G1P
whereas ρ′ 6|= G1P .

This is why we need the stronger equivalence above which also requires condi-
tion (ER c). Note that this condition (ER c) does not correspond to a splitting
of the regions. Moreover, we will not prove that all equivalent paths satisfy the
same until-formulae but rather that given a path ρ leaving from a configuration
(q, v), we can build a path ρ′, equivalent to ρ and which satisfies the formula we
consider. The following proposition 5 then ensures the existence of equivalent
runs:

Proposition 1. Given a TA A, q ∈ QA, and v, v′ ∈ R
X s.t. v ∼=MA

v′, then
∀ρ ∈ Exec((q, v)), there exists a run ρ′ ∈ Exec((q, v′)) s.t. ρ ∼=∗ ρ′.

We can now prove Theorem 1.

Proof (Theorem 1 – sketch). The proof is done by structural induction on Φ. We
omit the basic cases and the TCTL operators (similar to [1]). Assume (q, v) |=
EϕUk

∼cψ. Let ρ = ((qi, vi, ti))i≥0 be a run from (q, v) s.t. ρ |= ϕUk
∼cψ. Consider

a run ρ′ from (q, v′) equivalent to ρ (its existence is ensured by Proposition 1).
Along ρ the truth value of ϕ and ψ depends on the current region. We know that
ρ′ goes through the same sequence of regions (as for TCTL) but we have also to
show that the amounts of time spent in every sequence of consecutive regions in
ρ and ρ′ have the same integral part (less than or equal to k for ¬ϕ and greater
than k for ψ). Let σ be a subrun of ρ corresponding to an arrival in some region
at time δ1 until a departure from another region at time δ2. Let δ′1 and δ′2 be
the corresponding dates in ρ′. We want to prove that bδ2 − δ1c = bδ′2 − δ

′
1c.

A sufficient condition for this would be (1) bδic = bδ′ic for i = 1, 2, (2) frac(δ1) <
frac(δ2) iff frac(δ′1) < frac(δ′2) and (3) frac(δ1) = frac(δ2) iff frac(δ′1) = frac(δ′2).
Such a property would be ensured if the dates δi (and δ′i) occurred as some tj in
ρ (and ρ′). But the tjs are the dates of action transitions. Consider the new TA
Ā that extends A with loops on every control states, with no guard and no reset.
In Ā, there are additional runs (compared to A) but they induce no problem for
checking E Uk

∼c formulae.
Consider the run ρ̄ in Ā that mimics ρ except that it performs a loop before
entering/exiting a region 6. Clearly ρ̄ satisfies also ϕUk

∼cψ. Now we consider a
run ρ̄′ from (q, v′) equivalent to ρ̄; then the property above over the δi is ensured
by the definition of ∼=∗. Clearly ρ̄′ |= ϕUk

∼cψ. We can consider in A the run ρ′

similar to ρ̄′ without using the loops: ρ′ satisfies ϕUk
∼cψ. Then (q, v′) |= EϕUk

∼cψ.

Now consider the case of Φ = AϕUk
∼cψ. Assume (q, v) 6|= Φ and let ρ be a run

from (q, v) s.t. ρ |= ¬(ϕUk
∼cψ). Thus we have either (1) there is no subrun σ

of duration greater than k satisfying ψ and containing a position p located at
duration ∼ c, or (2) for any such σ and p, there exists a subrun σ′ <ρ p s.t. σ′

satisfies ¬ϕ and µ̂(σ′) > k. In both case, we can build a corresponding run from
(q, v′) witnessing ¬(ϕUk

∼cψ). ut

5 The omitted proofs are given in the long version of the paper.
6 NB: when going into/out a non-boundary region, we consider the date corresponding

to the previous/next boundary region.

4 Model-Checking algorithm

In this section we show how to reduce the model-checking problem A |= Φ with
a TA A = 〈X,QA, qinit,→A, InvA, lA〉 and Φ ∈ TCTL∆, to a model-checking
problem A′ |= Φ′ where A′ is a region graph (i.e. a finite Kripke structure) and
Φ′ is a CTL-like formula.
Let X∗ be the set of clocks X ∪ {z, zr, zl̄}. The three extra clocks are used to
verify timing constraints in the formula: z is used to handle subscripts ∼ c in
U modalities (as in TCTL model checking) and the clock zl̄ (resp zr) is used to
measure time elapsing when the left (resp. right) part in Uk modalities is false
(resp true). Thus these new clocks are used as observers and do not modify the
behavior of A.
Let MΦ be the maximal constant occurring in the timing constraints in Φ and km

be the maximal k occurring in a modality Uk in Φ. Let M be max(MA,MΦ+km).
The region graph RA,Φ = (V,→, l, F) for A and Φ is defined as usual over X∗

and M [1]: its set of states V is {(q, γ)|q ∈ QAandγ ∈ R
X∗

/∼=M}, the transitions
correspond to action transitions (→a) in A or delay transitions (→t, leading to
the successor region denoted by succ(γ)). The states are labeled with atomic
propositions AP and we also use additional propositions for the extra clocks:
a state (q, γ) is labeled with the proposition Ly ∼ aM with y ∈ {z, zl̄, zr} and
0 ≤ a ≤ M , when γ |= y ∼ a. Moreover we use the proposition Pb to mark
boundary regions. And F is a fairness constraint to enforce time divergence
(see [1, 9] for the detailed construction of RA,Φ).

Labeling algorithm. We label the vertices of RA,Φ with the subformulae of Φ
they satisfy, starting from the subformulae of length 1 and length 2 and so on.
Here we only consider the Uk modalities.
Consider a formula Ψ of the form EϕlU

k
∼cϕr or AϕlU

k
∼cϕr. At this step we know

for every state (q, γ) of RA,Φ whether it satisfies (or not) ϕl and ϕr (i.e. whether
any (q, v) with v ∈ γ satisfies ϕl or/and ϕr). First we define a variant of RA,Φ,
called Rϕl,ϕr

A,Φ , where some transitions are modified according to the truth value
of ϕl and ϕr:

1. we replace the transitions (q, γ) →t (q, succ(γ)) by (q, γ) →a (q, γ[zl̄ ← 0])
when (q, γ) |= ϕl, (q, succ(γ)) |= ¬ϕl and γ 6|= zl̄ = 0.

2. we replace the transitions (q, γ)→a (q′, γ′) by (q, γ)→a (q′, γ′[zl̄ ← 0]) when
(q, γ) |= ϕl, (q′, γ′) |= ¬ϕl.

3. we replace the transitions (q, γ) →t (q, succ(γ)) by (q, γ) →a (q, γ[zr ← 0])
when (q, γ) |= ¬ϕr, (q, succ(γ)) |= ϕr and γ 6|= zr = 0.

4. we replace the transitions (q, γ) →a (q′, γ′) by (q, γ) →a (q′, γ′[zr ← 0])
when (q, γ) |= ¬ϕr, (q, γ′) |= ϕr.

Due to these changes, in Rϕl,ϕr

A,Φ , the clock zl̄ (resp. zr) measures the time elapsed
since ¬ϕl (resp. ϕr) is true : they are reset when the truth value of the corre-
sponding formula changes. Thus given a path ρ in Rϕl,ϕr

A,Φ and a state (q, γ) along
ρ, we have (q, γ) |= ¬ϕl ∧ Lzl̄ ≤ kM iff there was (along ρ) a region satisfying ϕl

“just before” (q, γ) where “just before” means “in less than k time units”.

In the following we will use two abbreviations:

L·· [ϕl
def
= ϕl ∨ Lzl̄ ≤ kM

L−−[ϕr
def
= ϕr ∧ Lzr > kM

The first one states that ϕl holds or did hold less than k t.u. ago. And the second
one states that ϕr lasts for more than k t.u. We will also use the abbreviation
to L−− [¬ϕl to denote ¬ϕl ∧ Lzl̄ > kM : the formula ¬ϕl has held for more than k t.u.

And we use L··· · [¬ϕr for ¬ϕr ∨ Lzr ≤ kM. In this context, we have: L·· [ϕ ≡ ¬
L−−−[
(¬ϕ). Thus

the region graph Rϕl,ϕr

A,Φ allows us to decide L·· [ϕl ,
L−−−−[
(¬ϕl),

L−−[ϕr and
L······ · [
(¬ϕr).

Now we distinguish different cases depending on the modality rooted in Ψ :

– Ψ
def
= EϕlU

k
∼cϕr. We label a state (q, γ) of RA,Φ by Ψ iff (q, γ[z, zl̄, zr ← 0])

satisfies in Rϕl,ϕr

A,Φ the following CTL-formula:

Ψ1
def
= E

L·· [ϕl U

(

Lz∼cM ∧ (after-a ∨ Pb ∨
L·· [ϕl) ∧ E ϕr U

L−− [ϕr

)

where after-a holds for a state s along a path when the last transition per-
formed (before reaching s) is an action transition. This is not, properly speak-
ing, an atomic proposition since it depends on the way used to reach the state
but it can easily be obtained either by using an EX modality or by changing
RA,Φ in order to use an atomic proposition.
Note that for labeling the TCTL formula EϕlU∼cϕr, one use the following

formula: E ϕl U

(

Lz∼cM ∧ ϕr ∧ (after-a ∨ Pb ∨ ϕl)
)

. This formula states that

there exists a path leading to a state s satisfying Lz∼cM (i.e. the amount of
elapsed time since (q, γ[z, zl̄, zr ← 0]) satisfies ∼ c), ϕr and either after-a, Pb

or ϕl: this last requirement is necessary because when s is not a boundary
region and it has been reached via a delay transition, the formula ϕl has to
hold also for this state [1].
The formula Ψ1 used for EϕlU

k
∼cϕr is based on the same structure, except

that ϕl is replaced by ϕl ∨ Lzl̄ ≤ kM (we allow short periods –of duration less
than k – where ¬ϕl holds) and we also specify that ϕr has to hold during
more than k time units (i.e. ϕr ∧ Lzr > kM has to hold).
The notion of fair runs (used to ensure time divergence) is handled in the
same manner as for TCTL.

– Ψ
def
= AϕlU

kϕr. We label a state (q, γ) by Ψ iff (q, γ[z, zl̄, zr ← 0]) satisfies

in Rϕl,ϕr

A,Φ the CTL-formula Ψ2
def
= Ψ ′

2 ∧ Ψ
′′
2 ∧ Ψ

′′′
3 with:

Ψ ′
2

def
= AF(L−−[ϕr)

Ψ ′′
2

def
= ¬E

(
¬ L−−[ϕr

)
U

(
L−−−−[
(¬ϕl) ∧ ¬A(ϕrU

L−−[ϕr)
)

Ψ ′′′
2

def
= ¬E

(
¬ L−−[ϕr

)
U

(

Pb ∧ ¬ϕr ∧ EX(¬Pb ∧ ¬
L··· · [
(ϕl))

)

Ψ ′
2 states that along any path, eventually ϕr holds for at least k t.u. Ψ ′′

2

expresses that it is not possible to have ¬ϕl for more than k t.u. unless

either ϕr has already been verified for k t.u. before, or the current state
belongs to the interval σ witnessing L−− [ϕr. Finally Ψ ′′′

2 is used to specify that,
in the last case, if the first region of σ is a not a boundary region and if it
has been reached via a delay transition, then it also has to satisfy L·· [ϕl (for
the same reason as for the E U modality).

– Ψ
def
= AϕlU

k
<cϕr. For dealing with this case, we first consider the formula

AF
k
<cϕr and more precisely we consider the dual modality EG

k
<c.

The formula EG
k
<cψ expresses that there exists an execution (from the cur-

rent state s) where any subrun σ s.t. (1) µ̂(σ) > k and (2) σ contains states
located before c t.u. from s, contains a state satisfying ψ. Thus states sat-
isfying ψ have to occur “often” (at least every k t.u.) during c + k t.u.
Therefore we label states (q, γ) by EG

k
<cψ iff (q, γ[z, zl̄, zr ← 0]) satisfies the

CTL-formula E(
L·· [
ψ)ULz = c+ kM.

For labeling AF
k
<cϕr, we can then use: Ψ3

def
= ¬E

L······ · [
(¬ϕr) U Lz = c+kM for

(q, γ[z, zl̄, zr ← 0]) in Rϕl,ϕr

A,Φ .
Therefore we label states (q, γ) by Ψ iff (q, γ[z, zl̄, zr ← 0]) satisfies the CTL-
formula Ψ3 ∧ Ψ

′′
2 ∧ Ψ

′′′
2 : compared with Ψ2, we just have to require that ϕr

holds before c t.u. (for more than k t.u.).

– Ψ
def
= AϕlU

k
≤cϕr. One just has to consider the following formula: Ψ4

def
=

¬E
L······ · [
(¬ϕr) U Lz>c+kM. And we label states (q, γ) by Ψ iff (q, γ[z, zl̄, zr ← 0])

satisfies the CTL-formula Ψ4 ∧ Ψ
′′
2 ∧ Ψ

′′′
2 in Rϕl,ϕr

A,Φ .

– Ψ
def
= AϕlU

k
≥cϕr. We label a state (q, γ) by Ψ iff (q, γ[z, zl̄, zr ← 0]) satisfies

in Rϕl,ϕr

A,Φ the formula: Ψ5
def
= A

L·· [ϕlU
(
Lz=cM ∧ AF(L−−[ϕr) ∧ Ψ

′′
2 ∧ Ψ

′′′
2

)
. Ψ5 states

that along any run, ϕr will hold for more than k t.u. beyond a position where
z=c, and that ¬ϕl does not hold for more than k t.u. except after or in the
interval witnessing L−−[ϕr etc.

– Ψ
def
= AϕlU

k
>cϕr. We label a state (q, γ) by Ψ iff (q, γ[z, zl̄, zr ← 0]) satisfies

the formula: Ψ6
def
= A(Lz≤cM ∧ L·· [ϕl)U

(
Lz>cM ∧ AF(L−−[ϕr) ∧ Ψ

′′
2 ∧ Ψ

′′′
2

)

– Ψ
def
= AϕlU

k
=cϕr. If c ≥ k, we label a state (q, γ) by Ψ iff (q, γ[z, zl̄, zr ← 0])

satisfies in Rϕl,ϕr

A,Φ the following CTL-formula:

Ψ7
def
= A

L·· [ϕlULz=cM ∧ ¬E Lz<cM U

(

Lz=cM ∧ E ¬L−−[ϕr U Lz>c+kM
)

︸ ︷︷ ︸

Ψ8

The first term ensures that ¬ϕl does not hold for a duration greater than k
before the position z=c. And the formula Ψ8 states that it is not possible to
avoid L−− [ϕr between the position z=c and the position z>c+ k: thus any run
has some interval (of duration greater than k) satisfying ϕr and containing
a position located at duration c from the initial state.
If c < k, then we label (q, γ) by Ψ iff (q, γ[z, zl̄, zr ← 0]) satisfies Ψ8.

This algorithm is correct:

Lemma 1 (Correctness of the labeling algorithm). Given a TA A, a
TCTL∆ formula Φ and Ψ a subformula of Φ, the labeling algorithm labels (q, γ)
with Ψ in RA,Φ iff (q, v) |= Ψ for any v ∈ γ.

Proof (sketch). The proof is done by induction over the formulae. We only deal
with the modalities E Uk

∼c and A Uk .
First consider Ψ = EϕlU

k
∼cϕr.

⇒Assume that the procedure labels (q, γ) with Ψ . Then inRϕl,ϕr

A,Φ , (q, γ[z, zl, zr ←

0]) satisfies Ψ1
def
= E

L·· [ϕl U

(

Lz∼cM ∧ (after-a ∨ Pb ∨
L·· [ϕl) ∧ E ϕr U

L−− [ϕr

)

Thus there

exists a path ρ̄ in Rϕl,ϕr

A,Φ leading to some (q′, γ′) satisfying the right-hand side
of Ψ1. From ρ̄ one can build a run ρ in A from any (q, v) with v ∈ γ (as it
is done in the TCTL case). Before (q′, γ′), the states along ρ̄ verify L·· [ϕl , that is
ϕl ∨ Lzl̄ ≤ kM: given the definition of Rϕl,ϕr

A,Φ this means that the durations of
the corresponding (¬ϕl)-subruns in ρ are less than k. Finally the state (q′, γ′) is
located at duration ∼ c from the initial state (ρ̄ starts from a region where z is
equal to 0) and from this point, it is possible to verify ϕr for some time ensuring
that (q′, γ′) belongs to an ϕr-subrun of duration greater than k. This ensures
that the corresponding run in A satisfies ϕlU

k
∼cϕr.

⇐ Assume (q, v) |= Ψ . From the run ρ witnessing ϕlU
k
∼cϕr , on can build in

Rϕl,ϕr

A,Φ a path ρ̄ from (q, γ[z, zl, zr ← 0]) leading to a position located at dura-
tion ∼ c (then Lz∼ cM holds) and belonging to a ϕr-subrun of duration greater
than k: then EϕrU(ϕr ∧ Lzr > kM) holds. Moreover since the run ρ contains no
(¬ϕl)-subrun of duration greater than k, the path ρ̄ never goes through a region
where ¬ϕl ∧ Lzl̄ > cM is true. This gives the result.

Now consider the case Ψ = AϕlU
kϕr.

⇒ Assume (q, γ) is labeled by Ψ . Thus (q, γ[z, zl, zr ← 0]) satisfies Ψ ′
2∧Ψ

′′
2 ∧Ψ

′′′
2 .

Let v be a valuation in γ. Any run ρ from (q, v) has a corresponding run ρ̄ in
Rϕl,ϕr

A,Φ . From Ψ ′
2, we know that ρ has to contain an interval σ of duration greater

than k satisfying ϕr.
Now Ψ ′′

2 states that before reaching σ, it is not possible to verify ¬ϕl for a
duration greater than k except if we have entered the interval σ witnessing L−− [ϕr.
In this last case, we also have to ensure that if the first region of σ is not a
boundary region and if it has been reached via a delay transition, then it also
has to satisfy L·· [ϕl : this is done by the formula Ψ ′′′

2 .
⇐ Assume (q, v) |= AϕlU

kϕr. We clearly have (q, γ[z, zl, zr ← 0]) |= AF
L−− [ϕr. Now

assume ¬Ψ ′′
2 holds for (q, γ[z, zl, zr ← 0]). Then there exists a path ρ̄ in Rϕl,ϕr

A,Φ

satisfying (¬L−−[ϕr)U(
L−−−−[
(¬ϕl)∧¬AϕrU

L−−[ϕr). Thus the corresponding path ρ from (q, v)
contains an interval σ′ of duration greater than k where ¬ϕl holds, and from σ′

there is a run ρ′ leading to some state satisfying ¬ϕr before reaching the interval
σ witnessing ϕr: the run ρ · ρ′ does not satisfy ϕlU

kϕr (σ′ precedes strictly σ).
If ¬Ψ ′′′

2 holds for (q, γ[z, zl, zr ← 0]). Let (q′, γ′) be the region satisfying the

right-hand side of the U, and let (q′′, γ′′) be its successor satisfying ¬Pb ∧ ¬
L··· · [
(ϕl)

along a path ρ̄. The transition from (q′, γ′) to (q′′, γ′′) is a delay transition (the
truth value of Pb goes from > to ⊥). Moreover the corresponding run ρ from

(q, v) has to contain an interval σ witnessing L−− [ϕr; in ρ̄ this interval cannot be
before (q′, γ′), it is either after (q′′, γ′′) or it starts from (q′′, γ′′). Thus for any
position p in σ along ρ, there will be states preceding p in the non-boundary
region (q′′, γ′′) and since ¬L·· [ϕl holds for this region, the formula ϕlU

kϕr cannot
hold for ρ. ut

Finally we have:

Theorem 2 (Complexity of model checking). Given a TA A and a TCTL∆

formula Φ, deciding whether Φ holds for A is a PSPACE-complete problem.

PSPACE-hardness comes from TCTL, and the PSPACE-membership can be ob-
tained by using an on-the-fly algorithm over the region graph.

5 Undecidability Result for the Global Semantics

In this section we propose an alternative semantics for the logic, denoted by
TCTL∆

Σ
, which can also be viewed as an extension of TCTLext [9]. Now we require

that the sum of all delays during which the property does not hold is bounded
by some constant. The syntax of TCTL∆

Σ
is the same as for TCTL∆ but ϕUk

∼cψ
is now interpreted as follows:

ρ |= ϕUk
∼cψ iff there exists a subrun σ, a position p ∈ σ s.t

Time(ρ≤p) ∼ c ∧ µ̂(σ) > k ∧ ∀p′ ∈ σ sp′ |= ψ
and µ̂({p′ | p′ <ρ p ∧ sp′ 6|= ϕ}) ≤ k

Consider the “leaking gas burner” example, often used for verification with hy-
brid automata. As depicted by the TA below, the system can be in one of two
modes, either leaking or not leaking, and it is initially leaking. Leakages are de-
tected and stopped within 1 second and, once a leakage has been stopped, the
burner is guaranteed not to leak again until at least 30 seconds later. The usual
requirement for the gas burner states that, if at least 60 seconds have passed,
then the gas burner has been leaking for less than one fifth of the total elapsed
time. Using the atomic proposition L for the leaking mode, we can express this
property in TCTL∆

Σ
by the formula: AG(A(¬L)U12

≥60>): any period of duration
greater than 60s has to include less than 12s of leaking.

q0
x ≤ 1

L

q1
¬L

x ≤ 1, x := 0

x ≤ 30, x := 0

This problem is usually modeled with a stopwatch with respective slopes 1
in state q0 and 0 in state q1, in order to compute the leaking duration. But
recall that model-checking is undecidable for hybrid automata. Moreover con-
sidering costs also makes verification undecidable (see for example the case of

WCTL [10]). However, we need to be careful because of some positive results:
for instance in [3, 18, 7, 8, 11], some duration-bounded reachability problems are
proved to be decidable. Indeed, this kind of results can be obtained when the
cost variables are only used as observers. Our case is even simpler because there
is only one slope which is equal to the rate of time and TCTL∆

Σ
is clearly less

expressive than a logic like WCTL. For example, deciding the formula EP1U
kP2

– with P1, P2 ∈ AP – interpreted with the global semantics can easily be done by
using the procedure to check the duration bounded reachability proposed in [3];
the technique can also be adapted to handle formulas like EP1U

k
≤cP2. Unfortu-

nately, we still have the following result:

Theorem 3. Model-checking TCTL∆

Σ
over timed automata is undecidable.

The proof of this theorem consists in a reduction from the halting problem of a
two-counter machine. The construction we present here is adapted from [10].
LetM be a two-counter machine. We build a timed automaton AM with initial
location qinit and a TCTL∆

Σ
formula ϕ such thatM halts iff (qinit, vinit) |= ϕ. The

two counters c1 and c2 will be alternatively encoded by three clocks x, y and z.
The value of c1 and c2 are encoded respectively by h1 = 1/2c1 and h2 = 1/2c2

with h1, h2 ∈ {x, y, z}. We use an extra clock t as a “tick”.

We first explain how to encode the incrementation of counter c1 with the module
on the next figure (it corresponds to instruction i, going to instruction j after
the counter operation). We assume that x = 1/2c1 and y = 1/2c2 when this
module is entered (which means that counter c1 is encoded by x and counter c2
by y).

Si P

test(x=2z)

Sj
t:=0

y=1,y:=0

x=1,x:=0

y=1,y:=0

x>0,y<1

z:=0

t=1,t:=0

t=0

t=0

In this module, because of the constraints, it is easy to check that the values of
the clocks when arriving in state labeled by P (or similarly Sj) are x = 1/2c1 ,
y = 1/2c2 , and z = γ where γ ∈ [0, 1) depends on the time at which the transition
labeled by “x > 0, y < 1, z := 0” is taken. The test module “test(x = 2z)”
(described later) checks that γ is half the value of x, i.e. γ = 1/2c1+1 which will
ensure that z correctly encodes the value of the first counter at the end of the
incrementation instruction (whereas counter c2 is correctly encoded by clock y).
Before describing the test module test(x = 2z), we present the timed automaton
add(x, z, p) below:

p ¬p
t=0 x=1,x:=0 t=1,t:=0

z=1,z:=0 z=1,z:=0

In this automaton, if α ∈ [0, 1] is the initial value of x when entering the module,
then we stay (1− α) time units in the location labeled by atomic proposition p
and α time units in the location labeled by ¬p.
Finally the test module “test(x = 2z)” is depicted below:

L add(z,x,p) add(z,x,p) add(x,z,¬p) H
t=0 t=0 t=0 t=0

This test module has only one path which reaches the location labeled by H. If
α and γ are the respective values of x and z on entering the module, this path
will stay 2 ·(1−γ)+α time units in locations labeled by p and 2 ·γ+(1−α) time
units in locations labeled by ¬p. Moreover the global time elapsed between L
and H is exactly 3 time units. Thus, if formula L∧ E(pU1H) ∧ E(¬pU2H) holds
in state L, this will ensure that 2 · (1− γ) +α ≤ 2 and 2 · γ + (1−α) ≤ 1, which
implies 2 · (1− γ) + α = 2 and 2 · γ + (1− α) = 1, thus γ = α/2.
The simulation of a decrementation for a counter is very similar to the simulation
of the incrementation, and we assume that we have constructed a module for
every instruction (with the correct test module attached to state P , depending on
what constraint we want to check) and that we have correctly glued the modules
together. Then the formula that we want to check on the global automaton is

E(ψUSHalt) where ψ is equal to P ⇒ E

[

(P ∨ L)U(L ∧ E(pU1H) ∧ E(¬pU2H))
]

,

which ensures that for each instruction we correctly store the value of the counter
in the clocks. The correctness of the global reduction is a consequence of the
previous discussion.

6 Conclusion

We have proposed an extension of TCTL in order to abstract transient events,
where the notion of transient properties is parameterized by an integer k. We
proved that model-checking for the new logic TCTL∆ is still PSPACE-complete.
We also proposed to interpret k-modalities with a global semantics but then we
showed that model checking becomes undecidable. As future work, we plan to
look for decidable fragments of TCTL∆

Σ
, beyond the simple EP1U

k
≤cP2.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Infor-
mation and Computation, 104(1):2–34, 1993.

2. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34, 1995.

3. R. Alur, C. Courcoubetis, and T. A. Henzinger. Computing accumulated delays
in real-time systems. Formal Methods in System Design, 11(2):137–156, 1997.

4. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

5. R. Alur, T. Feder, and Th. A. Henzinger. The benefits of relaxing punctuality.
J. ACM, 43(1):116–146, 1996.

6. R. Alur and Th. A. Henzinger. Logics and models of real-time: a survey. In Real-
Time: Theory in Practice, Proc. REX Workshop, Mook, NL, June 1991, vol. 600
of LNCS, p. 74–106. Springer, 1992.

7. R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata.
In Proc. 4th Int. Workshop Hybrid Systems: Computation and Control (HSCC
2001), Roma, Italy, Mar. 2001, vol. 2034 of LNCS, p. 49–62. Springer, 2001.

8. G. Behrmann, A. Fehnker, Th. Hune, K. G. Larsen, P. Pettersson, J. Romijn, and
F. Vaandrager. Minimum-cost reachability for priced timed automata. In Proc. 4th
Int. Workshop Hybrid Systems: Computation and Control (HSCC 2001), Roma,
Italy, Mar. 2001, vol. 2034 of LNCS, p. 147–161. Springer, 2001.

9. H. Belmokadem, B. Bérard, P. Bouyer, and F. Laroussinie. A new modality for
almost everywhere propeties in timed automata. In Proc. 16th International Con-
ference on Concurrency Theory (CONCUR05), vol. 3653 of LNCS, p. 110–124.
Springer, 2005.

10. P. Bouyer, T. Brihaye, and N. Markey. Improved Undecidability Results on Priced
Timed Automata. Information Processing Letters, 98(5):188–194, 2006.

11. P. Bouyer, E. Brinksma, and K. G. Larsen. Staying alive as cheaply as possible.
In Proc. 7th Int. Workshop on Hybrid Systems: Computation and Control (HSCC
2004), Philadelphia, PA, USA, Mar. 2004, vol. 2993 of LNCS, p. 203–218. Springer,
2004.

12. Th. Brihaye, V. Bruyère, and J.-F. Raskin. Model-checking for weighted timed
automata. In Proc. Joint Conf. Formal Modelling and Analysis of Timed Systems
(FORMATS 2004) and Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems (FTRTFT 2004), Grenoble, France, Sep. 2004, vol. 3253 of LNCS, p. 277–292.
Springer, 2004.

13. V. Bruyère, E. Dall’Olio, and J.-F. Raskin. Durations, parametric model-checking
in timed automata with presburger arithmetic. In Proc. 20th Ann. Symp. Theo-
retical Aspects of Computer Science (STACS 2003), Berlin, Germany, Feb. 2003,
vol. 2607 of LNCS, p. 687–698. Springer, 2003.

14. Z. Chaochen, C. Hoare, and A. Ravn. A calculus of duration. Information Pro-
cessing Letters, 40(5):269–276, 1991.

15. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: A model-checker for hybrid
systems. Journal of Software Tools for Technology Transfer, 1(1–2):110–122, 1997.

16. Th. A. Henzinger. The theory of hybrid automata. In Proc. 11th IEEE Symp.
Logic in Computer Science (LICS ’96), New Brunswick, NJ, USA, July 1996, p.
278–292. IEEE Comp. Soc. Press, 1996.

17. Th. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model-checking
for real-time systems. Information and Computation, 111(2):193–244, 1994.

18. Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Decidable integration graphs.
Information and Computation, 150(2):209–243, 1999.

19. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255–299, 1990.

20. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Journal of Software
Tools for Technology Transfer, 1(1–2):134–152, 1997.

21. J. Ouaknine and J. Worrell. On the decidability of Metric Temporal Logic. In
Proc. 20th IEEE Symp. Logic in Computer Science (LICS 2005), Chicago, IL,
USA, June 2005, p. 188–197. IEEE Comp. Soc. Press, 2005.

22. S. Yovine. Kronos: A verification tool for real-time systems. Journal of Software
Tools for Technology Transfer, 1(1–2):123–133, 1997.

