
Chapter 1

Model checking timed automata

1.1. Introduction

Today formal verification of reactive, critical, or embedded systems is a crucial
problem, and automatic verification, more specificallymodel checking, has been widely
developed during the last twenty years (see [CLA 99, SCH 01] for surveys). In this
approach one builds a formal modelM (e.g. an automaton, a Petri nets,etc.) de-
scribing the behaviour of the system under verification, thecorrectness propertyΦ is
stated with a formal specification language (e.g.a temporal logic), and then one uses
a model-checker to decide automatically whetherM satisfiesΦ or not.

Very often it is necessary to consider real-time aspects: quantitative information
about time elapsing has to be handled explicitly. This can bethe case to describe
a particular behaviour (for instance, a time-out) or to state a complex property (for
example, “the alarm has to be activatedwithin at most 10 time unitsafter a problem
has occurred”). In 1990, Alur and Dill have proposedtimed automataas a model to
represent the behaviour of real-time systems [ALU 90, ALU 94a]. This formalism
extends classical automata with a set of real-valued variables – called clocks – that
increase synchronously with time and associates guards (specifying when, i.e. for
which values of the clocks, the transition can be performed)and update operations
(to be applied when the transition is performed) with every transition. Thanks to these
clocks, it becomes possible to express constraints over delays between two transitions.

Temporal logics have also been extended to deal with real-time constraints. For ex-
ample, the modalities of the classicalCTL logic (Computation Tree Logic [CLA 81])

Chapter written by Patricia BOUYER and François LAROUSSINIE.

1

2 Titre de l’ouvrage, à définir par\title[titre abrégé℄{titre}
have been adapted to handle quantitative constraints over time elapsing [ALU 94c,
ALU 93a, ACE 02].

Finally model checking algorithms have been developed [ALU93a, HEN 94, LAR 95b],
a lot of research has been done on the timed verification algorithmics: efficient data-
structures, on-the-fly algorithms, compositional methods, etc, have been proposed.
Timed model checkers have also been developed [YOV 97, LAR 97b] and are applied
to industrial case studies [TRI 98, BEN 02]. Timed model checking is clearly an active
research topics.

In this chapter, we present the classical timed automata model. We explain the
main characteristics of this model, describe the famous region graph technique that
is a crucial construction to obtain the decidability of manyverification problems in
this framework. We also mention several possible extensions of timed automata, and
several interesting subclasses. Finally we describe algorithmics aspects and the basic
data-structure that is used to implement verification algorithms, and we present the
tool Uppaal [LAR 97b].

1.2. Timed automata

Timed automata have been proposed by R. Alur and D. Dill in the90s [ALU 90,
ALU 94a] as a model for real-time systems. A timed automaton is a classical finite
automaton which can manipulate clocks, evolving continuously and synchronously
with the absolute time. Each transition of such an automatonis labelled by a guard,
or constraint over clock values, which indicates when the transition can be fired, and
a set of clocks to be reset when the transition is fired. Each location is constrained
by an invariant, which restricts the possible values of the clocks for being in the state,
which can then enforce a transition to be taken. The time domain can beN, the set
of nonnegative integers, orQ≥0, the set of nonnegative rationals, or evenR≥0, the set
of nonnegative real numbers. In this chapter, we chooseR≥0 as the time domain, but
most results are unchanged when consideringQ≥0 or N.

1.2.1. Some notations

Let X be a finite set of variables, called clocks, taking values inR≥0. A (clock)
valuationv overX is a functionv : X → R≥0 which associates to every clockx its
valuev(x) ∈ R≥0. We denote byRX

≥0 the set of clock valuations overX . Given a
reald ∈ R≥0, we writev + d for the clock valuation associating to clockx the value
v(x) + d, If r is a subset ofX , [r ← 0]v is the valuationv′ such thatv′(x) = 0 if
x ∈ r, andv′(x) = v(x) otherwise.

We write C(X) for the set of clock constraints overX , i.e., the set of boolean
combinations of atomic constraints of the formx ⊲⊳ c with x ∈ X , ⊲⊳ ∈ {=, <

Model checking timed automata 3

,≤, >,≥} andc ∈ N. We writeC⋖(X) the restriction ofC(X) to positive boolean
combinations only containing constraints of the formx ≤ c or x < c. We interpret
clock constraints over clock valuations: a valuationv satisfies the atomic constraint
x ⊲⊳ c wheneverv(x) ⊲⊳ c ; the extension to general constraints is then immediate and
natural. When a valuationv satisfies a constraintg, we writev |= g.

1.2.2. Timed automata, syntax and semantics

The formal definition of a timed automaton is as follows:

DEFINITION.– A timed automatonA is a tuple(L, ℓ0, X, Inv, T,Σ) where:

– L is a finite set of control states, also called locations,

– ℓ0 ∈ L is the initial location,

–X is a finite set of clocks,

– T ⊆ L×C(X)×Σ×2X×L is a finite set of transitions:e = 〈ℓ, g, a, r, ℓ′〉 ∈ T
represents a transition fromℓ to ℓ′, g is the guard ofe, r is the set of clocks that is
reset bye, anda is the action ofe. We also writeℓ

g,a,r
−−−−→ ℓ′ for e,

– Inv : L→ C⋖(X) associates to each location an invariant,

– Σ is an alphabet of actions.

An example of timed automaton is given on Figure 1.2.

A state, or configuration, of a timed automaton is a pair(ℓ, v) ∈ L×RX
≥0 whereℓ is

the current location andv is the clock valuation. The semantics of a timed automaton
is given as a timed transition system with action transitions (labelled with elements
of Σ) and delay transitions (labelled with real numbers representing the delay). More
precisely:

DEFINITION.– A timed transition system(TTS in short) is a tupleS = (S, s0,→,Σ)
whereS is a set (possibly infinite) of states,s0 ∈ S is the initial state and→⊆
S × (Σ ∪ R≥0) × S is the transition relation. The relation→ satisfies moreover the

three following conditions: (1) ifs
0
−→ s′, thens = s′, (2) if s

d
−→ s′ ands′

d′

−−→ s′′

with d, d′ ∈ R≥0, thens
d+d′

−−−−→ s′′, and (3) ifs
d
−→ s′ with d ∈ R≥0, then for all

0 ≤ d′ ≤ d, there existss′′ ∈ S such thats
d′

−−→ s′′ ands′′
d−d′

−−−−→ s′.

The three conditions mentioned above are classical in the framework of timed
systems, seee.g.[YI 90], they simply express that the time is continuous and deter-
ministic.

Classically, an execution in a TTS is a sequence of consecutive transitions. A state
s ∈ S is said reachable inS if there exists an execution froms0 to s.

4 Titre de l’ouvrage, à définir par\title[titre abrégé℄{titre}
DEFINITION.– LetA = (L, ℓ0, X, Inv, T,Σ) be a timed automaton. The semantics of
A is defined as the TTSSA = (S, s0,→,Σ) where:

– S = L× RX
≥0,

– s0 = (ℓ0, v0) with v0(x) = 0 for everyx ∈ X ,

– the transition relation→ is composed of:
- action transitions:(ℓ, v)

a
−−→ (ℓ′, v′) iff there existsℓ

g,a,r
−−−−→ ℓ′ ∈ T such

thatv |= g, v′ = [r ← 0]v andv′ |= Inv(ℓ′).

- delay transitions: ifd ∈ R≥0, (ℓ, v)
d
−→ (ℓ, v + d) iff v + d |= Inv(ℓ) 1.

Informally, the system starts from the initial configuration (locationℓ0 and all
clocks set to zero), and then alternatively take: action transitions if the current clock
valuations satisfies the guard (this move is instantaneous and some clocks are then set
to zero), and delay transitions which increase all clock by the same amount of time
(clocks are synchronous) while respecting the invariant associated with the current
location.

A possible execution of the timed automaton of Figure 1.2 is:(ℓ0, (0, 0))
2.67
−−−→

(ℓ0, (2.67, 2.67))
a
−−→ (ℓ1, (2.67, 0))

1
−→ (ℓ1, (3.67, 1))

b
−→ (ℓ2, (3.67, 1)) . . . where

the pair(3.67, 1) represents the valuationv such thatv(x) = 3.67 andv(y) = 1.

An execution in a timed automaton can also be seen as a timed word, i.e., a se-
quence of pairs (action,date). We can then write:(ℓ0, v0, t0)

a1−−→ (ℓ1, v1, t1)
a2−−→

. . .
an−−→ (ℓn, vn, tn) with ti ∈ R≥0, t0 = 0 and ti+1 ≥ ti for every i. The date

ti corresponds to the time point at which actionai has been performed. The step
(ℓi, vi, ti)

ai+1

−−−−→ (ℓi+1, vi+1, ti+1) corresponds to a delayti+1 − ti followed by the
firing of a transition labelled byai+1, the valuationvi+1 is then obtained fromvi +
(ti+1 − ti) by resetting to zero some of the clocks (depending on the transition which
has been fired). The associated timed word is then(a1, t1)(a2, t2) . . . For instance,
the timed word associated to the above-mentioned executionis (a, 2.67)(b, 3.67) . . .

1.2.3. Parallel composition

It is possible to define the parallel composition of timed automata (or of TTSs).
For instance, we can define ann-ary synchronization relation with renaming. If this
feature is essential for modelling systems, it does not add expressivity power from
a theoretical point-of-view: indeed, it is always possibleto construct a product au-
tomaton having the same behaviours as the parallel composition (it is even strongly
bisimilar, see Section 1.4).

1. Which, given the form of the invariants, thatv + d′ |= Inv(q) for every0 ≤ d′ ≤ d.

Model checking timed automata 5

1.3. Decision procedure for checking reachability

In this section, we describe a construction initially proposed in [ALU 90, ALU 94a]
to decide the reachability of a control state in a timed automaton. This construction
relies on an abstraction of the behaviours of the timed automaton, so that checking
whether a location is reachable in the initial timed automaton is equivalent to check-
ing whether a state (or set of states) is reachable in a finite automaton.

To that aim, an equivalence relation of finite index is definedover the set of con-
figurations of the timed automaton: from two equivalent configurations, the same
behaviours will be possible.I.e., if from a configuration, it is possible to delay (resp.
to take a transition), then so it is from an equivalent configuration, and the two con-
figurations resulting from the two moves are then also equivalent. Note however that
precise delays are not respected, the equivalent will only correspond to atime-abstract
bisimulation. For timed automata, such an equivalence relation (with finite index) al-
ways exists, and it is defined as follows. Two configurations(ℓ, v) and (ℓ′, v′) are
equivalent ifℓ = ℓ′ and if v ≡M v′ (whereM is the maximal constant appearing in
the automaton). The relationv ≡M v′ holds whenever for each clockx ∈ X ,

1) v(x) > M ⇔ v′(x) > M ,

2) if v(x) ≤M , then⌊v(x)⌋ = ⌊v′(x)⌋, and
(

{v(x)} = 0⇔ {v′(x)} = 0
)

2,

and for each pair of clocks(x, y),

3) if v(x) ≤M andv(y) ≤M , then{v(x)} ≤ {v(y)} ⇔ {v′(x)} ≤ {v′(y)}.

Intuitively, the two first conditions express that two equivalent valuations satisfy
exactly the same clock constraints of the timed automaton. The last condition ensures
that from two equivalent configurations, letting time elapse will lead to the same inte-
gral values for the clocks, in the very same order. The equivalence≡M is called the
region equivalence, and an equivalence class is then called aregion.

We illustrate this construction on Figure 1.1 in the case of two clocksx andy, the
maximal constant is supposed to be2. The partition depicted on Figure 1.1(a) respects
all constraints defined with integral constants smaller than or equal to2, but the two
valuations• and× are not equivalent due to time elapsing (item 3 above): indeed,
if we let some time elapse from the valuation•, we will first satisfy the constraint
x = 1 and theny = 1, while it will be the converse from the valuation×. Hence,
the possible behaviours from• and× are different. Condition 3) refines the partition
of Figure 1.1(a) by adding diagonal lines (that somehow represent time elapsing), and
the resulting partition is given on Figure 1.1(b) and is a time-abstract bisimulation.

2. ⌊α⌋ represents the integral part ofα whereas{α} represents its fractional part.

6 Titre de l’ouvrage, à définir par\title[titre abrégé℄{titre}
0 1 2 x

1

2

y

•
×

(a) Partition respecting 1) and 2)

0 1 2 x

1

2

y

region defined by:






1 < x < 2
1 < y < 2
{x} < {y}

(b) Partition respecting 1), 2) and 3)

Figure 1.1. Region partitioning for two clocks and maximal constant2

From the initial timed automaton and this equivalence relation, we build a finite
automaton as follows: the states of the automaton are pairs(ℓ, R) whereℓ is a location
of the timed automaton andR a region; the transitions are(ℓ, R)

a
−−→ (ℓ′, R′) if there

exist a transitionℓ
g,a,r
−−−→ ℓ′ inA, a valuationv ∈ R, andt ≥ 0 such thatv+t |= Inv(ℓ),

v + t |= g, [r ← 0](v + t) |= Inv(ℓ′) and[r ← 0](v + t) ∈ R′.

The resulting finite automatonRA is called theregion automatonassociated to
the initial timed automaton. The fundamental property of this finite automaton is that
it recognizes exactly the set of wordsa1a2 . . . such that there exists a timed word
(a1, t1)(a2, t2) . . . recognized by the initial timed automaton. Hence, given a timed
automatonA and its region automatonRA, one can reduce the emptiness check for the
timed language accepted byA (or equivalently the reachability checking of a location
of A) to a reachability problem inRA. This gives an algorithm to decide these two
problems:

THEOREM [ALU 94A].– Checking the reachability of a location in a timed automa-
ton is a PSPACE-Complete problem.

ℓ0 ℓ1

ℓ2

ℓ3
a, y := 0

y = 1, b x < 1, c
x > 1, d

x < 1, c

y < 1, a, y := 0

Figure 1.2. Timed automatonA

Model checking timed automata 7

We illustrate the construction of the region automaton on the timed automaton de-
picted on Figure 1.2 and taken from [ALU 94a]. The corresponding region automaton
is depicted on Figure 1.3. In this example, the locationℓ3 of A is reachable iff one of
the states(ℓ3, R) with R a region is reachable in the finite automaton given on Fig-
ure 1.3. In this last automaton, the path(ℓ0, x= y= 0)

a
−−→ (ℓ1, 0 = y < x< 1)

c
−→

(ℓ3, 0<y<x<1) leads to the locationℓ3, which implies that, in the timed automaton

A, there is an execution(ℓ0, v0)
t1−−→ (ℓ0, v0 + t1)

a
−−→ (ℓ1, v1)

t2−−→ (ℓ1, v1 + t2)
c
−→

(ℓ3, v2) leading toℓ3 (for some real numberst1 andt2).

The complexity of the reachability problem, already mentioned in the previous
theorem, has been stated in the original paper [ALU 90, ALU 94a]:

– the PSPACE-Hardness comes from the fact that we can encode the behaviour of
a linearly space bounded Turing machine on a given input. Indeed it is possible to
construct a timed automaton in which clock values encode thecontent of the Turing
machine tape along the execution. Notice that such an encoding can be done using
three clocks only [COU 92];

– the PSPACE membership by applying a non-deterministic algorithm which
stores the current abstract state of the automaton (location+region) and guesses the
next abstract state, until reaching a goal location (or aborting the computation when a
counter becomes greater than the size of the region automaton, which is exponential).

ℓ0
x = y = 0

ℓ1
0 = y < x < 1

ℓ1
y = 0, x = 1

ℓ1
y = 0, x > 1

ℓ2
1 = y < x

ℓ3
0 < y < x < 1

ℓ3
0 < y < 1 < x

ℓ3
1 = y < x

ℓ3
x > 1, y > 1

a
a

a

b

b b

ca
a a

d

d

d

d

d

d

d

da

Figure 1.3. Region automaton associated toA

8 Titre de l’ouvrage, à définir par\title[titre abrégé℄{titre}
1.4. Other verification problems

Reachability is a key problem in verification. Correctness can often be stated as a
reachability question: “is theBAD state reachable from the initial configuration?”, or
“is it true that any reachable state is eitherBLUE orRED?”. Nevertheless it is sometimes
useful to consider more complex properties on the behaviourof the system, and we
hence need formal specification languages to state properties. For example, assume
we want to express the following timed property:

“The alarm is activated within at most 10 time units after a problem occurs.” (1.1)

There exist several ways to express such properties over timed systems, we briefly
mention most classical ones.

1.4.1. Timed languages

As mentioned earlier, we can associate atimed wordwith an execution of a timed
automaton. It is also possible to consider different acceptance conditions in timed au-
tomata (final states, Büchi or Muller condition ,. . .). In this setting the behaviour
of a timed automatonA is seen as atimed languageL(A) containing the timed
words read over all accepting executions. Now given a property Φ described as a
timed languageLΦ (for example, the set of words “(request, t1), (servi
e, t2)”
with t1 ≤ t2 ≤ t1 + 10), the verification problem “doesA satisfy the propertyΦ?”
can be reduced to an inclusion checking over timed languages: Is L(A) included in
LΦ? In the untimed case, this classical problem is solved by considering the comple-
ment ofLΦ (i.e.L¬Φ) and checking the emptiness ofL(A)∩L¬Φ. Unfortunately this
approach cannot be used in the timed case because the languageL¬Φ is not always ex-
pressible with a timed automaton: most of timed languages families (of finite words,
or infinite words with Büchi or Muller conditions) are not closed under complemen-
tation. Indeed the inclusion problem is in general undecidable. Thus this approach is
only possible for restricted classes (e.g.deterministic Muller timed automata).

1.4.2. Branching-time timed logics

Temporal logic is a very convenient formalism to specify properties over reactive
systems [PNU 77]. They allow to express properties over the ordering of events of
a system. One can distinguish branching-time temporal logics and linear-time tem-
poral logics: in the former case, formulae are interpreted over states having several
possible successors (one can quantify existentially or universally over the different
possible futures of a given state). In the latter case, a system is viewed as a set of runs,

Model checking timed automata 9

and formulae express properties over these runs: in such a structure, a state is always
considered asa state along a given runand then it has a unique successor. These
formalisms differ from an expressiveness point of view, andthe model-checking algo-
rithms are also very different.

The most popular (untimed) branching-time temporal logic is CTL (Computa-
tion Tree Logic) [CLA 81]. It contains modalities “always” (AG), “potentially” (EF),
“exists-until” (E_U_), “for-all-until” (A_U_). For example, the formulaEφUψ holds
in a states iff there exists a path froms whereψ is true at some positions′, andφ
is true at any position betweens ands′. See [EME 91] for a precise introduction to
temporal logics for the specification and verification of reactive systems.

There exist several timed extensions of temporal logics. First we can add sub-
scripts with timing constraints to classical Until operator. Such a constraint is of the
form “⊲⊳ c” with ⊲⊳ ∈ {=, <,≤, >,≥} andc ∈ N. For example, the formulaEφU<cψ

holds in a states iff there exists a runρ leading to a states′ such that (1)s′ satisfies
ψ, (2) the duration ofρ is less thanc, and (3) any state lying betweens ands′ along
the runρ satisfiesφ.
The logicTCTL (for TimedCTL) is defined with these extended modalities: it con-
tains the atomic propositions, the boolean operators and the modalitiesE_U⊲⊳c_ and
A_U⊲⊳c_. Thus Property 1.1 can then be expressed as follows:

AG

(problem ⇒ AF≤10 alarm)
whereAF≤10φ is an abbreviation forA trueU≤10φ: along every path, there is position
before10 t.u. in whichφ holds.

There is another way to add timing constraints inCTL. The idea is to consider a
new set of clocks – the formula clocks – and to add atomic constraints “x ⊲⊳ c” in
the logic and a new operator (in) to reset a given clock to zero [ALU 94c]. This
extension is calledTCTLc. The previous property can be expressed as follows with
TCTLc:

AG

(problem ⇒ (

x in AF
(alarm∧ (x ≤ 10)

)

))

wherex is a formula clock which is reset to zero when the propositionproblem is true,
and it is used to ensure that the time elapsed between the problem and the activation
of the alarm is less than 10 t.u.

This extension with explicit formula clocks allows us to express easily every modal-
ity of TCTL. For example, we have the following equivalence whenϕ andψ areTCTL
formulae:

E

(

ϕU⊲⊳c ψ
)

≡ x in E

(

ϕU(ψ ∧ x ⊲⊳ c)
)

10 Titre de l’ouvrage, à définir par\title[titre abrégé℄{titre}
TCTLc allows to express very precise properties over timed systems. It has been

shown recently that it is indeed more powerful thanTCTL in the dense time frame-
work [BOU 05b]. For example, the followingTCTLc formula cannot be stated with
TCTL:

x in EF

(

P1 ∧ x < 1 ∧ EG(x < 1⇒ ¬P2)
)

This formula expresses that it is possible to reach a states′ satisfyingP1 in t time
units with t < 1 and from then it is possible to avoidP2 during (at least)1 − t time
units.

These specification languages are very convenient to express properties over timed
system. Moreover verification problems are still decidable:

THEOREM [ALU 93a].– TheTCTL andTCTLc model checking problems for timed
automata are PSPACE-complete.

The algorithms use the same techniques as for the reachability problem: given a
timed automatonA and aTCTL formulaΦ, it is possible to define a region automaton
A′ (over the automata clocks and the formula clocks) and aCTL formulaΦ′ such that
A |= Φ iff A′ |= Φ′. Verifying TCTL formulae over parallel compositions of timed
automata can be done with the toolKronos [YOV 97].

1.4.3. Linear-time timed logics

Linear-time temporal logics (asLTL [PNU 81]) can also be extended with timing
constraints in the same manner as for branching time case. For example the formula
G(problem ⇒ F≤10alarm) expresses Property 1.1. The only difference is that such
formulae are interpreted over the runs of a timed automaton.By convention we write
A |= Φ to specify thateveryrun of the timed automatonA satisfiesΦ.

In this framework one can mentionMTL [KOY 90, ALU 93b] that contains modal-
itiesUI whereI is an interval of the form(l;u), [l;u], . . . with l, u ∈ N ∪ {∞}. This
interval provides the timing constraint in a natural way: the formulaP1U[3;∞]P2 is
equivalent toP1U≥3P2, etc. We denoteMITL [ALU 96] the fragment ofMTL where
singular intervals[c; c] are not allowed (and then the modalityU=c is forbidden).

Model checkingMTL is undecidable [ALU 96, OUA 06]. Note that it is also pos-
sible to consider a different semantics where atomic propositions are interpreted as
punctual events occurring at some date : in this case, model checkingMTL becomes
decidable over finite runs [OUA 05].

Model checking problem forMITL is easier: it is EXPSPACE-complete (with the
standard semantics) and becomes even PSPACE-complete as soon as we consider only
modalitiesU<c andU>c (i.e. U[0;c) andU(c;∞)) [ALU 96]. Other tractable fragments
of MTL have been recently investigated [BOU 07b].

Model checking timed automata 11

1.4.4. Timed modal logics

It is also possible to consider timed extensions of modal logics (see for example
the Hennessy-Milner logic [HEN 85]). In this case, we use modalities 〈a〉 and [a]
to deal with the label of transitions. For example,〈a〉 φ states that there exists an
a-transition leading to a state verifyingφ and[a] φ expresses thateverystate reach-
able via ana-transition satisfiesφ. These modalities only deal with states reachable
in one step. But it is possible to use fixpoint to express properties over unbounded be-
haviours [LAR 90, STI 01]. This kind of formalism can also be extended with formula
clocks, atomic constraints “x ⊲⊳ c” and reset operatorin as inTCTLc [LAR 95a].
These logics allow to express very precise and subtle properties (e.g.the timed bisimi-
larity). Model checking these timed modal logics is usuallyEXPTIME-complete [ACE 02].

1.4.5. Testing automata

It is sometimes easy to describe a property to be checked witha timed testing
automatonTφ.The idea is then to synchronizeTφ with the system under verification,
and the property checking reduces to some reachability problem of a bad state (when
the system does not satisfy the property) or a good state (when the system meets the
property) [ACE 98]. The relationship between this approachand the timed modal
logics is studied in [ACE 03].

1.4.6. Behavioural equivalences

As for the untimed systems, it is also possible to compare timed systems with
respect to several behavioural equivalences. For example one can consider the timed
bisimulation: two statess ands′ are said to be strongly timed bisimilar when any tran-
sition froms can be simulated froms′ by a transition with the same label (the same
action or the same amount of time) and the successor states have to be also strongly
timed bisimilar. This equivalence is very strong: two systems that are strongly bisim-
ilar cannot be distinguished by any temporal or modal logicsmentioned previously,
they satisfy exactly the same formulae. Deciding whether two timed automata are
strongly timed bisimilar is an EXPTIME-Complete problem [LAR 00].

Other equivalences can be considered, for example the time-abstract bisimulation
(mentioned in Section 1.3 about the region graph technique)only requires that a de-
lay transition is simulated by another delay transition (however possibly with another
amount of time).

1.5. Some extensions of timed automata

To help modelling real systems, it might be useful to manipulate a high-level de-
scription language. Hence, several extensions of timed automata have been considered

12 Titre de l’ouvrage, à définir par\title[titre abrégé℄{titre}
in the literature, we will present some of them in this section. For each of these exten-
sions, we will be interested in: 1) its the decidability, 2) its expressiveness w.r.t. the
original model, 3) its conciseness w.r.t. the original model. The first item is crucial if
we aim at using this extension for modelling real systems. Itis also important to have
models which can express many systems (item 2 ensures that wecan model many
systems, whereas item 3 characterizes how easy it is to modelsystems: the smaller is
a model, the more readable it is).

1.5.1. Diagonal clock constraints

In the timed automata model we have presented, clock constraints that can be used
on transitions are rather simple and can only compare the value of a clock with a
constant. In the original work [ALU 90, ALU 94a], another type of constraints was
mentioned, the so-called diagonal constraints, which allow tests of the formx−y ⊲⊳ c
wherex andy are clocks,⊲⊳ is a comparison operator andc is an integer. The extended
timed automata model using this kind of constraints satisfies the following properties:

– checking reachability properties is also a PSPACE-Complete prob-
lem [ALU 94a];

– diagonal constraints do not add expressiveness to the original model [BÉR 98];

– diagonal constraints give concisess to the model [BOU 05a].

The decidability of the reachability problem was already proved in the original pa-
per [ALU 90, ALU 94a], it also relies on the construction of a region equivalence,
which refines that presented in Section 1.3, and the complexity remains the same. The
second property (which concerns the expressiveness) is well-known, and it has been
proved in [BÉR 98]: it consists in removing one-by-one diagonal constraints, and in
building an equivalent timed automaton without diagonal constraints (the equivalence
is the strong timed bisimulation). The construction which removes one diagonal con-
straint is illustrated on Figure 1.4 (here, we remove the constraintx − y ≤ c wherec
is a nonnegative integer). The key idea of the construction is that the truth value of the
diagonal constraintx − y ≤ c remains unchanged when time elapses, and can only
change when one of the two clocksx or y is reset to zero. Hence, we make two copies
of the original automaton, in one of them the constraintx − y ≤ c will be satisfied,
whereas in the other one, thex − y > c will hold. Whenx or y is reset to zero,
we move from one copy to the other one, depending on the valuesof the clocks. For
instance, if we reset clocky, we move to the copy wherex − y ≤ c holds if x ≤ c,
and we move to the copy wherex − y > c holds ifx > c. This construction doubles
the size of the automaton, inducing an exponential blowup (in the number of diag-
onal constraints) for removing all diagonal constraints. This exponential blowup is
unavoidable in general, as timed automata with diagonal constraints are exponentially
more concise than classical timed automata [BOU 05a], whichmeans that systems

Model checking timed automata 13

c positif

x − y ≤ c

x := 0

y := 0

copy wherex − y ≤ c
x := 0

y := 0

x ≤ c

x > c

y := 0

x := 0

y := 0

copy wherex − y > c

Figure 1.4. Diagonal constraints are removed one-by-one

can be modelled using exponentially more succinct automataif diagonal constraints
are used.

1.5.2. Additive clock constraints

Other types of constraints can be added to the model of timed automata. We
consider here the so-called additive clock constraints,i.e., constraints of the form
x + y ⊲⊳ c wherex andy are clocks,⊲⊳ is a comparison operator, andc is a posi-
tive integer. This extension has been studied in [BÉR 00], and it allows to recognize
timed languages which are not recognized by any classical timed automaton. The au-
tomaton on Figure 1.5 recognizes such a timed language: actionsa are done at time
points 1

2 , 3
4 , 7

8 , 15
16 , etc.

x+ y = 1, a, x := 0

L+ = {(an, t1 . . . tn) | n ≥ 1 andti = 1− 1
2i }

Figure 1.5. A timed language not recognized by any classical timed automaton

This model of timed automata with additive clock constraints satisfies the follow-
ing properties [BÉR 00]:

14 Titre de l’ouvrage, à définir par\title[titre abrégé℄{titre}
– checking reachability properties in this extended model is decidable when re-

stricting to automata with two clocks;

– checking reachability properties in this extended model is undecidable for au-
tomata with four clocks or more.

The decidability of the model with no more than two clocks also relies on the con-
struction of a region equivalence, the set of regions being arefinement of the classical
set of regions, see Figure 1.6. For models with four clocks ormore, the model be-
comes undecidable. The proof is rather involved but also interesting, and uses several
times the small automaton of Figure 1.5.

0 1 2 x

1

2

y

Figure 1.6. Region equivalence for timed automata with additive clock
constraints and two clocks

Note that it is not known whether the reachability problem isdecidable or not for
timed automata with additive clock constraints and three clocks. However, it has been
proved that a simple extension of the classical construction based on an equivalence
of finite index cannot be used [ROB 04].

1.5.3. Internal actions

In finite automata, it is well-known that internal actions (also calledε-transitions
in this context) can be removed and hence do not increase the expressiveness of fi-
nite automata, see for instance [HOP 79]). The timed automata framework is, maybe
surprisingly, much different: though internal actions do not change anything to the
decidability of reachability properties (the construction of the region automaton can
be done similarly), they add expressive power to the model [BÉR 98]. The automaton
depicted on Figure 1.7 recognizes a timed language that cannot be recognized by a
classical timed automaton. This language is the set of timedwords over a single let-
ter a where everya is done at an integral even date: Every two time units, eitherthe
transition labelled bya is taken, or the transition labelled byε is taken.

Model checking timed automata 15

x = 2
a

x := 0

x = 2
ε

x := 0

Figure 1.7. A timed language not recognized by any classical timed automaton

1.5.4. Updates of clocks

In the original model, there is only a single operation that can modify the value
of the clocks (apart from time elapsing), which is the reset to zero. It is hence nat-
ural to consider more complicated operations on clocks. An update is an operation
of the formx :⊲⊳ c or x :⊲⊳ y + c, wherex andy are clocks,⊲⊳ is a comparison
operator, andc is a constant. For instance, the updatex :≤ c means that we assign
non-deterministically a value smaller than (or equal to)c to the clockx; the update
x := y − 1 means that we assign to the clockx the value ofy decremented by1.
Classical reset to zero hence corresponds to updates of the form x := 0. Timed au-
tomata that use these updates, called updatable timed automata, have been studied
in [BOU 04b]. It is rather straightforward to check that the general model is undecid-
able as all these updates are rather powerful (it is possibleto increment, decrement,
test to zero). However, several subclasses have been proveddecidable, we summarize
some of the most noticeable results of [BOU 04b]. The reachability problem is:

– decidable for timed automata with updates of the formx := c;

– decidable for timed automata with self-incrementation3 but without diagonal
constraints;

– undecidable for timed automata with self-incrementationand diagonal con-
straints;

– undecidable for timed automata with self-decrementation4.

Once more, decidability results are consequences of a region automaton construction.
The refinement of the region equivalence is illustrated on Figure 1.8 for timed au-
tomata with clock constraints{x− y < 1, y > 1} and updates{x := 0, y := 0, y :=
1}. The classical set of regions would be the set of regions depicted with dashed
lines, but it is not correct in that wider framework (the image of the gray region by
updatey := 1 overlaps two regions and does not satisfy a time-abstract bisimulation
property), it is thus necessary to refine and add the dotted line to distinguishx = 2.

3. I.e., with updates of the formx := x + 1.
4. I.e., with updates of the formx := x − 1.

16 Titre de l’ouvrage, à définir par\title[titre abrégé℄{titre}
1 2

1

0 x

y

Figure 1.8. A set of regions for automata using constraints
{x − y < 1, y > 1} and updates{x := 0, y := 0, y := 1}

The reachability problem is undecidable for timed automatausing self-decrementation.
Indeed, we can easily encode the behaviour of a two-counter machine with these au-
tomata: the value of counterC is stored in clockxc, incrementing this counter is
encoded by letting one time unit elapse, and then by decrementing the clock associ-
ated with the second counter by1; decrementing this counter is directly encoded using
the updatexc := xc − 1.

Note that classes of updatable timed automata that have beenproved decidable can
be transformed into equivalent classical timed automata with internal actions [BOU 04b]5.
On the other hand, these updatable timed automata are exponentially more concise
than classical timed automata [BOU 05a].

Finally, it is worth noticing that updates of clocks are somekind of macros that
are very useful to model real systems. For instance, we can mention the modelization
scheduling problems which naturally uses updates [FER 02].

1.5.5. Linear hybrid automata

Linear hybrid automata extend timed automata in several directions:

– general linear constraints can be used, for instance constraints of the form3x1 +
4x2 − 2x3 < 56;

– very rich updates can be used, for instance, affine functions on variables;

– derivatives of variables can change from one location to the other one: instead
of having only clocks (whose derivative is always1), we can use dynamical variables.

In fact, even a single of these extensions lead to the undecidability of all verifi-
cation questions! We have already mentioned that for additive clock constraints, and
updates of clocks. It is also the case for variables with several possible slopes in the
model: the reachability problem is undecidable for timed automata in which a sin-
gle variable can have two different slopes. We refer to [HEN 98] or more recently

5. The equivalence relation is then the timed language equivalence.

Model checking timed automata 17

to [RAS 05] for surveys on these questions, where some of the decidable classes of
linear hybrid automata are described.

Note that looking for decidable subclasses of hybrid automata is an important re-
search topic (for instance rectangular initialized hybridautomata are decidable [HEN 98],
and o-minimal hybrid automata are decidable [LAF 00]). It isalso important to find
either semi-algorithms,6 or approximation and optimization algorithms for undecid-
able classes of hybrid automata. Indeed, undecidable classes can have a great interest
in practice, like the class ofp-automata [BÉR 99] for the description of telecommuni-
cation protocols, or stopwatch automata (i.e., timed automata in which clocks can be
stopped for awhile) for scheduling problems with preemption.

Most of these methods rely on the manipulation of linear constraints to represent
set of states of the system [ALU 95], and algorithms use polyhedra libraries (as the
Parma Polyhedra Library7). One of the most prominent tools for linear hybrid systems
is HyTech, which both allows the computation step-by-step successors (or predeces-
sors) of sets of states, and fix-point computations (howeverwithout a guarantee that
the computation will terminate). See [HEN 97] for more details and examples. The
tool HyTech can be downloaded athttp://www-
ad.ee
s.berkeley.edu/~tah/HyTe
h/.

1.6. Subclasses of timed automata

As explained above, timed automata are a very expressive formalism and almost
every extension leads to undecidability of verification problems. Instead of extending
the expressiveness of timed automata, it is also possible toconsider restricted versions
in order to obtain new properties, for instance efficient algorithms. In this section,
we present some of the classical restricted classes: the event-recording automata, the
one-clock timed automata, and the timed extensions of classical Kripke structures.

1.6.1. Event-recording automata

In this subclass, the set of automata clocks isXΣ = {xa | a ∈ Σ}: every action
has a corresponding clock and every clock is associated withan action. The definition
of the event-recording automata (see [ALU 94b]) also requires that the clockxa is

6. That is, computation procedures that may not terminate. A semi-algorithm can then answer
either “The property is satisfied”, or “The property is not satisfied”, or “I don’t know”.
7. Seehttp://www.
s.unipr.it/ppl/

18 Titre de l’ouvrage, à définir par\title[titre abrégé℄{titre}
reset to zero when ana-transition is performed. Then, given a configuration(q, v), the
valuev(xa) is the time elapsed since the last occurrence of ana action8.

The event-recording automata (ER-TA) have important properties. First the non-
determinism can be removed: any ER-TA can be transformed into a deterministic ER-
TA. Secondly the timed languages associated with this classare closed under comple-
ment. But note that from the complexity point of view, there is no change: emptiness
checking remains PSPACE-Complete (the same holds forTCTL model checking).

1.6.2. One-clock timed automata

In [COU 92], it is shown that reachability of a control location in timed automata
with three clocks is PSPACE-Hard. This has motivated the study of model checking
for timed automata with one or two clocks.

In [LAR 04], the following results have been proved for the one-clock timed au-
tomata (1C-TA in short):

– Reachability of a control location in 1C-TA is NLOGSPACE-Complete (i.e. the
same complexity class as for reachability in standard graphs).

– There exist polynomial time algorithms for model checkingTCTL≤,≥ over 1C-
TA. (TCTL≤,≥ is the fragment ofTCTL where timing constraints “= c” are forbid-
den.)

– Model checkingTCTL over 1C-TA is PSPACE-Complete.

The main result is that model checking 1C-TA can be done efficiently if the spec-
ification is stated withTCTL≤,≥. Note that the complexity blow-up induced by the
punctuality(the constraint “= c”) occurs in other cases (for instance, in the case of
linear-time timed logics [ALU 96]).

The model checking algorithm forTCTL≤,≥ over 1C-TA works as follows. Given
a 1C-TAA and aTCTL≤,≥ formulaΦ, we compute, for any stateq and any subfor-
mulaψ, the set of valuationsv such that(q, v) |= ψ. AsA has only one clock, such a
valuationv is a unique value, and the sets of valuationsSat[q, ψ] can be represented
as a union of intervals

⋃

i〈αi, βi〉— with 〈∈ {[, (}, 〉 ∈ {],)} andαi, βi ∈ N ∪ {∞}.
One can show that the number of intervals inSat[ℓ, ϕ] is bounded by2 · |ϕ| · |A|.

For example, consider the subformulaEφU≤cψ and assume that the setsSat[q, ϕ]
and Sat[q, ψ] have already been computed for anyq. The aim is to compute the
minimal duration – denotedδmin(q, v) – to reach from(q, v) a ψ state along a path

8. A variant – theevent-predictingautomata – consists in storing inv(xa) the amount of time
beforethe next actiona (in this case, clocks are initialized with a negative value).

Model checking timed automata 19

satisfyingϕ. To compute the functionδmin, we first build a simplified region automaton
(its size is polynomial in|A| and |Φ|) whose states are pairs(q, γ) whereγ is an
interval of valuations such that the truth values ofϕ, ψ and any guard inA do not
change alongγ. This property entails that the functionδmin has a special form over
everyγ: it is either decreasing with slope−1 (the shortest paths to reachψ go through
the rightmost position ofγ), or constant (the shortest paths to reachψ have to perform
an action transition with a reset of the clock before any delay transition) or it combines
the two previous cases, that is, it is first constant over an subinterval ofγ and then
decreasing. Thus every functionδmin

|(q,γ) can be defined by its value on the leftmost
and rightmost positions ofγ, and these value can be computed easily with a shortest
path algorithm. And it remains to use the threshold≤ c to find the intervals where
EφU≤cψ is true [LAR 04].

Note also that one-clock timed automata have other very interesting properties:

– The timed language inclusion is decidable for finite words for 1C-TA [OUA 04]
(but remains undecidable for infinite words [ABD 05]).

– Checking emptiness is decidable for one-clockalternating timed au-
tomata [LAS 05, OUA 05].

– Model checking one-clockprobabilistic timed automata can be done in
polynomial time for PTCTL≤,≥ formulae, and almost sure reachability is P-
Complete [JUR 07].

– Model checkingWCTL is decidable (in PSPACE) for thepricedtimed automata
with one clock [BOU 07a]:WCTL is a specification language (its syntax is the same
asTCTL) to express quantitative properties over the cost of executions in priced timed
automata (where a cost slope is associated with every location).

– Computing optimal costs can be done forpriced timed game with one
clock [BOU 06].

Note that these properties do not hold any more when the timedautomata have
two clocks (reachability is NP-Hard for two-clocks timed automata [LAR 04], al-
most sure reachability is EXPTIME-Complete in two clocks probabilistic timed au-
tomata [JUR 07],etc.).

1.6.3. Discrete time models

Instead of consideringR≥0, it is possible to use a discrete time domain. For ex-
ample, one can consider the semantics of timed automata withintegral clocks. This
change does not modify the main complexity results of model checking: for exam-
ple, reachability and theTCTL model checking remain PSPACE-Complete. To get
polynomial time algorithms, we need to consider simpler models.

20 Titre de l’ouvrage, à définir par\title[titre abrégé℄{titre}
In many works, classical Kripke structures have been used tomodel real-time sys-

tems with the hypothesis that every transition takes exactly one time unit. In this case,
one can useTCTL formulae to specify quantitative properties (over the number of
transitions) along the paths. With this simple approach, there exist polynomial time
model checking algorithms for model checkingTCTL [EME 92], they can also be
extended to models where transition take0 or 1 time unit [LAR 03].

A natural extension consists in associating integral durations with the transitions
of a Kripke structure. Several semantics can be defined for these systems. In that
framework, the main interesting result is that model checkingTCTL≤,≥ can be done
in polynomial time (contrary toTCTL, whose model checking is either∆p

2-Complete
or PSPACE-Complete depending on the semantics which is chosen) [LAR 06]. This
polynomial-time algorithm has been implemented in the toolTSMV [MAR 04].

1.7. Algorithms for timed verification

In this section, we describe algorithms implemented in tools like Uppaal or Kro-
nos for verifying timed automata. Indeed, in practice the region automaton construc-
tion is not used in tools because the region partition is too refined and hence it is not
efficient to manipulate the regions. Tools better use the symbolic representation called
zones, and rely on on-the-fly algorithms.

There are mostly two families of (semi-)algorithms for analyzing reachability prop-
erties of systems. The first one, called forward analysis, consists in computing itera-
tively the successors of the initial states and in checking that the state we want to reach
is eventually computed or not. The second one, called backward analysis and some-
how the dual of the first method, consists in computing iteratively the predecessors of
the states we want to reach and in checking that an initial state is eventually computed
or not. These methods are generic and are used in many contexts, for instance on the
model of linear hybrid automata that we already mentioned inSection 1.5.

Before presenting these analysis methods, we first present the most currently used
symbolic representation for the verification of timed systems.

1.7.1. A symbolic representation for timed automata: the zones

The set of configurations of a timed automaton is infinite. To verify this model,
it is thus mandatory to be able to manipulate large sets of configurations and thus to
have an efficient symbolic representation for these sets of states. The most commonly
used is the zone representation: a zone is a set of valuationsdefined by a conjunction
of atomic constraints of the formx ⊲⊳ c or x − y ⊲⊳ c wherex andy are clocks,⊲⊳
is a comparison operator, andc is a constant. Hence, in the forward and backward

Model checking timed automata 21

analysis algorithms, objects that are manipulated are pairs(ℓ, Z) whereℓ is a location
andZ a zone.

Many operations can be performed using this representation:

– the future of a zoneZ, defined by
−→
Z = {v + t | v ∈ Z andt ∈ T};

– the past of a zoneZ, defined by
←−
Z = {v − t | v ∈ Z andt ∈ T};

– the intersection ofZ andZ ′, defined byZ ∩ Z ′ = {v | v ∈ Z andv ∈ Z ′};

– the reset to zeror ⊆ X of Z, defined by[r ← 0]Z = {[r ← 0]v | v ∈ Z};

– the relaxation with respect tor ⊆ X of Z, defined by[r ← 0]−1Z = {v | [r ←
0]v ∈ Z}.

These operations, defined as first order formulae over zones,preserve zones (see the
Fourier-Motzkin elimination principle [SCH 98]).

We now present the backward analysis algorithm as it is the simplest one. We will
then turn to the forward analysis algorithm, which is indeedthe most commonly used
method, but also the most complicated one.

1.7.2. Backward analysis in timed automata

As already said, the backward analysis consists in computing step-by-step the pre-
decessors of the final configurations, starting with the one step predecessors, then the
two steps predecessors,etcand in checking whether an initial state is eventually com-
puted. If such an initial state is computed, it means that thegoal location is reachable,
and if such an initial state is not computed, it means that thegoal location is not reach-
able. The principle of the backward analysis is illustratedon Figure 1.9.

I

F

①

I

F

②

I

F

③

I

F

④

Figure 1.9. Backward analysis: step-by-step, predecessors of goal states are
computed

One step of the backward analysis can easily be computed using zones. Indeed,
if t = ℓ

g,a,r
−−−→ ℓ′ is a transition of the automaton and ifZ ′ is a zone, the set of one-

step predecessors of(ℓ′, Z ′) when taking transitiont is the set of configurations(ℓ, v)

wherev is in the zoneZ =
←−−−−−−−−−−−−−−−−−−−−
g ∩ [r ← 0]−1(Z ′ ∩ (r = 0)).

22 Titre de l’ouvrage, à définir par\title[titre abrégé℄{titre}
The characteristic of the backward analysis is that the iterative computation always

terminates: indeed it can be proved that ifZ ′ is a zone and if this zone is a union of
regions (see Section 1.3), then the zoneZ ′ we have described before is a zone and also
a union of regions! As there are finitely many regions, there are only finitely many
pairs(ℓ, Z) which can be computed.

Though the backward analysis has some non-negligible qualities, in practice, it is
not much implemented in tools, and the forward analysis is preferred. There are mul-
tiple reasons for this implementation choice: forward analysis only visits reachable
states,i.e., states that are relevant in the system; furthermore, backward analysis is not
appropriate for verifying systems defined with high-level data structures like integral
variables orC-like instructions,etc. For instance, the toolUppaal (see Section 1.8)
only implements the forward analysis paradigm.

1.7.3. Forward analysis of timed automata

As already said, the forward analysis consists in computingstep-by-step the suc-
cessors of the initial configurations, starting with the onestep successors, then the two
steps successors,etcand in checking whether a goal location is eventually computed.
If such a final location is computed, it means that the goal location is reachable, and if
such an initial state is not computed, it means that the goal location is not reachable.
The principle of the forward analysis is illustrated on Figure 1.10.

F

I

①

F

I

②

F

I

③

F

I

④

Figure 1.10.Forward analysis: step-by-step, successors of initial states are
computed

One step of the forward analysis algorithm can be computed using zones. Indeed,
if t = ℓ

g,a,r
−−−→ ℓ′ is a transition of the timed automaton and ifZ is a zone, the set of

successors in one step of(ℓ, Z) by taking transitiont is the set of states(ℓ′, v′) where

v′ belongs to the zoneZ ′ = [r ← 0](g ∩
−→
Z).

Contrary to the backward computation, the iterative forward computation does not
terminate in general. This is illustrated by the timed automaton of Figure 1.11. In
this example, each iteration of the algorithm increases thevalue of the clock by1, the
computation will hence never terminate.

Model checking timed automata 23

y := 0,
x := 0

x ≥ 1 ∧ y = 1
y := 0

0 1 2 3 4 5 x

1

2

y

Figure 1.11.The iterative forward computation may not terminate

To overcome this termination problem, an abstraction operator is usually applied
at each iteration of the computation. In the literature, this abstraction operator is called
normalization, or extrapolation, we use the latter formulation here. We assume thatk
is the largest constant appearing in the constraints of the timed automaton. IfZ is a
zone, the extrapolation ofZ w.r.t. k is the smallest zone which containsZ and which
is defined with constants inbetween−k and+k. The intuition behind this operator
is the following: the automaton cannot distinguish betweenclock values abovek, it
may thus be not relevant to keep in the zone information abovek. It is worth noticing
first that applying this extrapolation at each iteration of the algorithm ensures termi-
nation of the computation as there are only finitely many zones defined with constants
inbetween−k and+k. However, there is another problem: at each iteration, an over-
approximation of the set of states which is really reachableis computed. It may thus
happen that a location is computed whereas it is not reachable.

In [BOU 04a], it is proven that this iterative and abstractedforward computation is
correct for the class of timed automata without diagonal constraints, but incorrect for
the class of timed automata with diagonal constraints.

1.7.4. A data structure for timed systems: the DBMs

The DBM acronym meansDifference Bound Matrice. It is a rather classical data
structure used for representing systems of difference constraints [COR 90], and they
have in particular a great interest for the verification of timed systems because they
can be used to represent zones. DBMs have first been used to analyze time Petri
nets [BER 83], and they are now intensively used to analyze timed automata [DIL 90].

If n is the number of clocks, a DBMM is an(n+ 1)-square matrix with integral
coefficients9. If M = (mi,j)0≤i,j≤n, the coefficientmi,j represents the constraint
xi − xj ≤ mi,j where{xi | 1 ≤ i ≤ n} is the set of clocks andx0 is a fictive

9. In general, coefficients need to be pairs(m,≺) wherem is an integer and≺ is either<, or
≤, but here, to simplify the presentation, we forget about comparison operators in DBMs.

24 Titre de l’ouvrage, à définir par\title[titre abrégé℄{titre}
clock whose value is always0. Hence, to represent a constraintxi ≤ 6, we will write
mi,0 = 6 as this constraint is equivalent toxi − x0 ≤ 6.

3 4 9

5

2

Figure 1.12.Zone defined by the constraint
(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4)

The following DBM represents the set of valuations defined bythe constraint
(x1 ≥ 3) ∧ (x2 ≤ 5) ∧ (x1 − x2 ≤ 4), and is represented on Figure 1.12 :

x0 x1 x2

x0

x1

x2





+∞ −3 +∞
+∞ +∞ 4
5 +∞ +∞





A coefficient+∞ means that there is no constraint on the corresponding clockdif-
ference. The coefficientm0,1 = −3 represents the constraintsx1 ≥ 3 because this
constraint is equivalent tox0 − xi ≤ −3.

Every DBM represents a zone, and every zone can be represented by a DBM.
However, a zone can be represented by several DBMs (for instance, in the previous
DBM, if we replace the coefficientm1,0 = +∞ by m1,0 = 9, it will not change
the zone which is represented). There exists a normal form for DBMs, which can
be computed using the Floyd-Warshall shortest paths algorithm [COR 90]: the DBM
which is obtained stores the strongest constraints which define the corresponding zone.
For the previous example, the normal form DBM is:





0 −3 0
9 0 4
5 2 0





All operations that are needed for both the backward and the forward analysis iter-
ative computations can be done using DBMs (see [CLA 99, BOU 04a] for a detailed
description of operations using DBMs).

DBMs are basic data structures for manipulating sets of configurations of timed
automata, but several improvements can be done, and for instance a minimization
of DBMs [LAR 97a] or the use of CDDs (Clock Difference Diagrams) [LAR 99] or
more recently of federations [DAV 06] which allows to represent and manipulate more
compactly unions of DBMs.

Model checking timed automata 25

1.8. The model-checking toolUppaal

Uppaal is a model-checking tool for verifying timed systems. It hasbeen jointly
developed by Uppsala University (Sweden) and Aalborg University (Denmark) [LAR 97b].
This tool can be downloaded athttp://www.uppaal.
om/. The model that can be
verified byUppaal is a variant of the classical timed automata model. This model is
syntactically very rich as we can explicitely add urgency inthe model (for instance, we
can enforce a transition to be taken immediately, without any delay), we can enforce
atomicity of several transitions (a sequence of transitions must then be taken instanta-
neously), we can addC-like instructions,etc. All these features don’t add expressivity
to the model but they make the modelling phase easier, as we can build rather concise
and readable models.

Properties that can be verified using the toolUppaal are reachability properties,
safety properties, and response properties. A tutorial forthat tool is available on-
line [BEH 04].

Figure 1.13.The toolUppaal

Apart from the modelling GUI and the verification module,Uppaal has a simu-
lation module in which it is possible to “play” with the modeland hence have a first
check that the model does what it is expected to do. A screenshot of the tool is given
on Figure 1.13.

The toolUppaal is developed since more than ten years, and it has been success-
fully used to verify industrial systems. For instance, we can mention audio protocols

26 Titre de l’ouvrage, à définir par\title[titre abrégé℄{titre}
like [BEN 02], or the Bang & Olufsen protocol whose analysis has located a known
bug, and for which a validated correction has been provided [HAV 97].

The current version ofUppaal is 4.0 and the new features are described in [BEH 06].

1.9. Bibliography

[ABD 05] A BDULLA P. A., DENEUX J., OUAKNINE J., WORRELL J., “Decidability and
Complexity Results for Timed Automata via Channel Machines”, Proc. 32nd International
Colloquium on Automata, Languages and Programming (ICALP’05), vol. 3580 ofLecture
Notes in Computer Science, Springer, p. 1089–1101, 2005.

[ACE 98] ACETO L., BURGUEÑO A., LARSEN K. G., “Model-Checking via Reachability
Testing for Timed Automata”,Proc. 4th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’98), vol. 1384 ofLecture Notes in
Computer Science, Springer, p. 263–280, 1998.

[ACE 02] ACETO L., LAROUSSINIE F., “Is your Model-Checker on Time ? On the Com-
plexity of Model-Checking for Timed Modal Logics”,Journal of Logic and Algebraic
Programming, vol. 52–53, p. 7–51, 2002.

[ACE 03] ACETO L., BOUYER P., BURGUEÑO A., LARSEN K. G., “The Power of Reach-
ability Testing for Timed Automata”,Theoretical Computer Science, vol. 300, num. 1–3,
p. 411–475, 2003.

[ALU 90] A LUR R., DILL D., “Automata for Modeling Real-Time Systems”,Proc. 17th In-
ternational Colloquium on Automata, Languages and Programming (ICALP’90), vol. 443
of Lecture Notes in Computer Science, Springer, p. 322–335, 1990.

[ALU 93a] ALUR R., COURCOUBETISC., DILL D., “Model-Checking in Dense Real-Time”,
Information and Computation, vol. 104, num. 1, p. 2–34, 1993.

[ALU 93b] A LUR R., HENZINGER TH. A., “Real-Time Logics: Complexity and Expressive-
ness”,Information and Computation, vol. 104, num. 1, p. 35–77, 1993.

[ALU 94a] ALUR R., DILL D., “A Theory of Timed Automata”,Theoretical Computer Sci-
ence, vol. 126, num. 2, p. 183–235, 1994.

[ALU 94b] A LUR R., FIX L., HENZINGER TH. A., “A Determinizable Class of Timed Au-
tomata”, Proc. 6th International Conference on Computer Aided Verification (CAV’94),
vol. 818 ofLecture Notes in Computer Science, Springer, p. 1–13, 1994.

[ALU 94c] A LUR R., HENZINGERTH. A., “A Really Temporal Logic”,Journal of the ACM,
vol. 41, num. 1, p. 181–204, 1994.

[ALU 95] A LUR R., COURCOUBETISC., HALBWACHS N., HENZINGER TH. A., HO P.-
H., NICOLLIN X., OLIVERO A., SIFAKIS J., YOVINE S., “The Algorithmic Analysis of
Hybrid Systems”,Theoretical Computer Science, vol. 138, num. 1, p. 3–34, 1995.

[ALU 96] A LUR R., FEDERT., HENZINGERTH. A., “The Benefits of Relaxing Punctuality”,
Journal of the ACM, vol. 43, num. 1, p. 116–146, 1996.

Model checking timed automata 27

[BEH 04] BEHRMANN G., DAVID A., LARSEN K. G., “A Tutorial on Uppaal”, Proc. 4th
International School on Formal Methods for the Design of Computer, Communication and
Software Systems: Real Time (SFM-04:RT), vol. 3185 ofLecture Notes in Computer Sci-
ence, Springer, p. 200–236, 2004.

[BEH 06] BEHRMANN G., DAVID A., LARSEN K. G., HÅKANSSON J., PETTERSSONP., YI

W., HENDRIKS M., “Uppaal 4.0”, Proc. 3rd International Conference on the Quantitative
Evaluation of SysTems (QEST’06), IEEE Computer Society Press, p. 125–126, 2006.

[BEN 02] BENGTSSONJ., GRIFFIOENW. D., KRISTOFFERSENK. J., LARSENK. G., LARS-
SON F., PETTERSSONP., YI W., “Automated Verification of an Audio-Control Protocol
using Uppaal”, Journal of Logic and Algebraic Programming, vol. 52–53, p. 163–181,
2002.

[BER 83] BERTHOMIEUB., MENASCHEM., “An Enumerative Approach for Analyzing Time
Petri Nets”,Proc. IFIP 9th World Computer Congress, vol. 83 of Information Processing,
North-Holland/ IFIP, p. 41–46, 1983.

[BÉR 98] BÉRARD B., DIEKERT V., GASTIN P., PETIT A., “Characterization of the Expres-
sive Power of Silent Transitions in Timed Automata”,Fundamenta Informaticae, vol. 36,
num. 2–3, p. 145–182, 1998.

[BÉR 99] BÉRARD B., FRIBOURG L., “Automated Verification of a Parametric Real-Time
Program: the ABR Conformance Protocol”,Proc. 11th International Conference on
Computer Aided Verification (CAV’99), vol. 1633 ofLecture Notes in Computer Science,
Springer, p. 96–107, 1999.

[BÉR 00] BÉRARD B., DUFOURD C., “Timed Automata and Additive Clock Constraints”,
Information Processing Letters, vol. 75, num. 1–2, p. 1–7, 2000.

[BOU 04a] BOUYER P., “Forward Analysis of Updatable Timed Automata”,Formal Methods
in System Design, vol. 24, num. 3, p. 281–320, 2004.

[BOU 04b] BOUYER P., DUFOURDC., FLEURY E., PETIT A., “Updatable Timed Automata”,
Theoretical Computer Science, vol. 321, num. 2–3, p. 291–345, 2004.

[BOU 05a] BOUYER P., CHEVALIER F., “On Conciseness of Extensions of Timed Automata”,
Journal of Automata, Languages and Combinatorics, vol. 10, num. 4, p. 393–405, 2005.

[BOU 05b] BOUYER P., CHEVALIER F., MARKEY N., “On the Expressiveness of TPTL
and MTL”, Proc. 25th Conference on Foundations of Software Technology and Theoret-
ical Computer Science (FST&TCS’05), vol. 3821 ofLecture Notes in Computer Science,
Springer, p. 432–443, 2005.

[BOU 06] BOUYER P., LARSEN K. G., MARKEY N., RASMUSSENJ. I., “Almost Optimal
Strategies in One-Clock Priced Timed Automata”,Proc. 26th Conference on Foundations
of Software Technology and Theoretical Computer Science (FST&TCS’06), vol. 4337 of
Lecture Notes in Computer Science, Springer, p. 345–356, 2006.

[BOU 07a] BOUYER P., LARSEN K. G., MARKEY N., “Model-Checking One-Clock Priced
Timed Automata”, Proc. 10th International Conference on Foundations of Software Sci-
ence and Computation Structures (FoSSaCS’07), vol. 4423 ofLecture Notes in Computer
Science, Springer, p. 108–122, 2007.

28 Titre de l’ouvrage, à définir par\title[titre abrégé℄{titre}
[BOU 07b] BOUYER P., MARKEY N., OUAKNINE J., WORRELL J., “The Cost of Punctual-

ity”, Proc. 21st Annual Symposium on Logic in Computer Science (LICS’07), IEEE Com-
puter Society Press, 2007, To appear.

[CLA 81] CLARKE E. M., EMERSON E. A., “Design and Synthesis of Synchronous Skele-
tons using Branching-Time Temporal Logic”,Proc. 3rd Workshop on Logics of Programs
(LOP’81), vol. 131 ofLecture Notes in Computer Science, Springer-Verlag, p. 52–71, 1981.

[CLA 99] CLARKE E., GRUMBERG O., PELED D., Model-Checking, The MIT Press, Cam-
bridge, Massachusetts, 1999.

[COR 90] CORMEN TH. H., LEISERSONC. E., RIVEST R. L., Introduction to Algorithms,
The MIT Press, Cambridge, Massachusetts, 1990.

[COU 92] COURCOUBETISC., YANNAKAKIS M., “Minimum and Maximum Delay Problems
in Real-Time Systems”,Formal Methods in System Design, vol. 1, num. 4, p. 385–415,
1992.

[DAV 06] DAVID A., “Merging DBMs Efficiently”, Proc. 17th Nordic Workshop on Program-
ming Theory, DIKU, University of Copenhagen, p. 54–56, 2006.

[DIL 90] D ILL D., “Timing Assumptions and Verification of Finite-State Concurrent Sys-
tems”, Proc. of the Workshop on Automatic Verification Methods for Finite State Systems
(1989), vol. 407 ofLecture Notes in Computer Science, Springer, p. 197–212, 1990.

[EME 91] EMERSONE. A., “Temporal and Modal Logic”, vol. B (Formal Models and Seman-
tics) of Handbook of Theoretical Computer Science, p. 995–1072, MIT Press Cambridge,
1991.

[EME 92] EMERSONE. A., MOK A. K., SISTLA A. P., SRINIVASAN J., “Quantitative Tem-
poral Reasoning”,Real-Time Systems, vol. 4, num. 4, p. 331–352, 1992.

[FER 02] FERSMAN E., PETTERSONP., YI W., “Timed Automata with Asynchrounous Pro-
cesses: Schedulability and Decidability”,Proc. 8th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’02), vol. 2280 ofLecture
Notes in Computer Science, Springer, p. 67–82, 2002.

[HAV 97] H AVELUND K., SKOU A., LARSENK. G., LUND K., “Formal Modeling and Anal-
ysis of an Audio/Video Protocol: An Industrial Case Study Using Uppaal”, Proc. 18th
IEEE Real-Time Systems Symposium (RTSS’97), IEEE Computer Society Press, p. 2–13,
1997.

[HEN 85] HENNESSY M., M ILNER R., “Algebraic Laws for Nondeterminism and Concur-
rency”, Journal of the ACM, vol. 32, num. 1, p. 137–161, 1985.

[HEN 94] HENZINGER TH. A., NICOLLIN X., SIFAKIS J., YOVINE S., “Symbolic Model-
Checking for Real-Time Systems”,Information and Computation, vol. 111, num. 2, p. 193–
244, 1994.

[HEN 97] HENZINGER TH. A., HO P.-H., WONG-TOI H., “HyTech: A Model-Checker for
Hybrid Systems”, Journal on Software Tools for Technology Transfer, vol. 1, num. 1–2,
p. 110–122, 1997.

[HEN 98] HENZINGER TH. A., KOPKE P. W., PURI A., VARAIYA P., “What’s Decidable
about Hybrid Automata?”,Journal of Computer and System Sciences, vol. 57, num. 1,

Model checking timed automata 29

p. 94–124, 1998.

[HOP 79] HOPCROFTJ. E., ULLMAN J. D.,Introduction to Automata Theory, Languages and
Computation, Addison-Wesley, 1979.

[JUR 07] JURDZIŃSKI M., LAROUSSINIE F., SPROSTONJ., “Model Checking Probabilistic
Timed Automata with One or Two Clocks”,Proc. of the 13th International Conference on
Tools and Algorithms for Construction and Analysis of Systems (TACAS’07), vol. 4424 of
Lecture Notes in Computer Science, Springer, p. 170-184, 2007.

[KOY 90] K OYMANS R., “Specifying Real-Time Properties with Metric TemporalLogic”,
Real-Time Systems, vol. 2, num. 4, p. 255–299, 1990.

[LAF 00] L AFFERRIEREG., PAPPASG. J., SASTRY S., “O-Minimal Hybrid Systems”,Math-
ematics of Control, Signals, and Systems, vol. 13, num. 1, p. 1–21, 2000.

[LAR 90] L ARSEN K. G., “Proof Systems for Satisfiability in Hennessy-MilnerLogic with
Recursion”,Theoretical Computer Science, vol. 72, num. 2–3, p. 265–288, 1990.

[LAR 95a] LAROUSSINIEF., LARSEN K. G., WEISE C., “From Timed Automata to Logic –
and Back”,Proc. 20th International Symposium on Mathematical Foundations of Computer
Science (MFCS’95), vol. 969 ofLecture Notes in Computer Science, Springer, p. 529–539,
1995.

[LAR 95b] LARSEN K. G., PETTERSSONP., YI W., “Model-Checking for Real-Time Sys-
tems”, Proc. 10th International Conference on Fundamentals of Computation Theory
(FCT’95), vol. 965 ofLecture Notes in Computer Science, Springer, p. 62–88, 1995.

[LAR 97a] LARSEN K. G., LARSSONF., PETTERSSONP., YI W., “Efficient Verification of
Real-Time Systems: Compact Data Structure and State-SpaceReduction”,Proc. 18th IEEE
Real-Time Systems Symposium (RTSS’97), IEEE Computer Society Press, p. 14–24, 1997.

[LAR 97b] LARSEN K. G., PETTERSSONP., YI W., “UPPAAL in a Nutshell”, Journal of
Software Tools for Technology Transfer, vol. 1, num. 1–2, p. 134-152, 1997.

[LAR 99] L ARSEN K. G., PEARSON J., WEISE C., YI W., “Clock Difference Diagrams”,
Nordic Journal of Computing, vol. 6, num. 3, p. 271–298, 1999.

[LAR 00] L AROUSSINIEF., SCHNOEBELENPH., “The State-Explosion Problem from Trace
to Bisimulation Equivalence”,Proc. 3rd International Conference on Foundations of Soft-
ware Science and Computation Structures (FoSSaCS’00), vol. 1784 ofLecture Notes in
Computer Science, Springer, p. 192–207, 2000.

[LAR 03] L AROUSSINIE F., SCHNOEBELEN PH., TURUANI M., “On the Expressivity and
Complexity of Quantitative Branching-Time Temporal Logics”, Theoretical Computer Sci-
ence, vol. 297, num. 1, p. 297–315, 2003.

[LAR 04] L AROUSSINIEF., MARKEY N., SCHNOEBELENPH., “Model Checking Timed Au-
tomata with One or Two Clocks”,Proc. 15th International Conference on Concurrency
Theory (CONCUR’04), vol. 3170 ofLecture Notes in Computer Science, Springer, p. 387–
401, 2004.

[LAR 06] L AROUSSINIE F., MARKEY N., SCHNOEBELEN PH., “Efficient Timed Model
Checking for Discrete-Time Systems”,Theoretical Computer Science, vol. 353, num. 1–3,
p. 249–271, 2006.

30 Titre de l’ouvrage, à définir par\title[titre abrégé℄{titre}
[LAS 05] LASOTA S., WALUKIEWICZ I., “Alternating Timed Automata”,Proc. 8th Interna-

tional Conference on Foundations of Software Science and Computation Structures (FoS-
SaCS’05), vol. 3441 ofLecture Notes in Computer Science, Springer, p. 250–265, 2005.

[MAR 04] M ARKEY N., SCHNOEBELENPH., “Symbolic Model Checking of Simply-Timed
Systems”, Proc. Joint Conference on Formal Modelling and Analysis of Timed Systems
and Formal Techniques in Real-Time and Fault Tolerant System (FORMATS+FTRTFT’04),
vol. 3253 ofLecture Notes in Computer Science, Springer, p. 102–117, 2004.

[OUA 04] OUAKNINE J., WORRELL J., “On the Language Inclusion Problem for Timed Au-
tomata: Closing a Decidability Gap”,Proc. 19th Annual Symposium on Logic in Computer
Science (LICS’04), IEEE Computer Society Press, p. 54–63, 2004.

[OUA 05] OUAKNINE J., WORRELL J., “On the Decidability of Metric Temporal Logic”,
Proc. 19th Annual Symposium on Logic in Computer Science (LICS’05), IEEE Computer
Society Press, p. 188–197, 2005.

[OUA 06] OUAKNINE J., WORRELL J., “On Metric Temporal Logic and Faulty Turing Ma-
chines”, Proc. 9th International Conference on Foundations of Software Science and
Computation Structures (FoSSaCS’06), vol. 3921 ofLecture Notes in Computer Science,
Springer, p. 217–230, 2006.

[PNU 77] PNUELI A., “The Temporal Logic of Programs”,Proc. 18th Annual Symposium
on Foundations of Computer Science (FOCS’77), IEEE Computer Society Press, p. 46–57,
1977.

[PNU 81] PNUELI A., “The Temporal Semantics of Concurrent Programs”,Theoretical Com-
puter Science, vol. 13, num. 1, p. 45–60, 1981.

[RAS 05] RASKIN J.-F., “An Introduction to Hybrid Automata”, Chapter Handbook of Net-
worked and Embedded Control Systems, p. 491–518, Springer,2005.

[ROB 04] ROBIN A., Aux frontières de la décidabilité..., Master’s thesis,DEA Algorithmique,
Paris, 2004.

[SCH 98] SCHRIJVERA., Theory of Linear and Integer Programming, Interscience Series in
Discrete Mathematics and Optimization, Wiley, 1998.

[SCH 01] SCHNOEBELENP., BÉRARD B., BIDOIT M., LAROUSSINIEF., PETIT A., Systems
and Software Verification - Model-Checking Techniques and Tools, Springer, 2001.

[STI 01] STIRLING C., Modal and Temporal Properties of Processes, Texts in Computer
Science, Springer, 2001.

[TRI 98] TRIPAKIS S., YOVINE S., “Verification of the Fast Reservation Protocol with De-
layed Transmission using the ToolKronos”, Proc. 4th IEEE Real-Time Technology and
Applications Symposium (RTAS’98), IEEE Computer Society Press, p. 165–170, 1998.

[YI 90] Y I W., “Real-Time Behaviour of Asynchronous Agents”,Proc. 1st International Con-
ference on Theory of Concurrency (CONCUR’90), vol. 458 ofLecture Notes in Computer
Science, Springer, p. 502–520, 1990.

[YOV 97] Y OVINE S., “Kronos: A Verification Tool for Real-Time Systems”,Journal of
Software Tools for Technology Transfer, vol. 1, num. 1–2, p. 123–133, 1997.

