Chapter 1

Model checking timed automata

1.1. Introduction

Today formal verification of reactive, critical, or embeddgy/stems is a crucial
problem, and automatic verification, more specificallydel checkinghas been widely
developed during the last twenty years (see [CLA 99, SCH 6d.kfirveys). In this
approach one builds a formal mod#t (e.g. an automaton, a Petri netstc) de-
scribing the behaviour of the system under verification ciw@ectness property is
stated with a formal specification languagey(. a temporal logic), and then one uses
a model-checker to decide automatically whethérsatisfiesb or not.

Very often it is necessary to consider real-time aspectantjative information
about time elapsing has to be handled explicitly. This canhieecase to describe
a particular behaviour (for instance, a time-out) or toesticomplex property (for
example, “the alarm has to be activatgithin at most 10 time unitafter a problem
has occurred”). In 1990, Alur and Dill have propogeded automatas a model to
represent the behaviour of real-time systems [ALU 90, ALW@]94This formalism
extends classical automata with a set of real-valued Masab called clocks — that
increase synchronously with time and associates guaresifging when i.e. for
which values of the clocks, the transition can be perfornae) update operations
(to be applied when the transition is performed) with eveamsition. Thanks to these
clocks, it becomes possible to express constraints ovaysleetween two transitions.

Temporal logics have also been extended to deal with need-tonstraints. For ex-
ample, the modalities of the classi€rL logic (Computation Tree Logic [CLA 81])

Chapter written by Patricia®uYER and Frangois RROUSSINIE

2 Titre de 'ouvrage, a définir paititle[titre abrégél{titre}

have been adapted to handle quantitative constraints mwerelapsing [ALU 94c,
ALU 93a, ACE 02].

Finally model checking algorithms have been developed [A13d, HEN 94, LAR 95b],
a lot of research has been done on the timed verificationigtiguics: efficient data-
structures, on-the-fly algorithms, compositional methads have been proposed.
Timed model checkers have also been developed [YOV 97, LAR &7d are applied
to industrial case studies [TRI 98, BEN 02]. Timed model dtegis clearly an active
research topics.

In this chapter, we present the classical timed automateemaddfe explain the
main characteristics of this model, describe the famou®mnegraph technique that
is a crucial construction to obtain the decidability of masyification problems in
this framework. We also mention several possible extessidtimed automata, and
several interesting subclasses. Finally we describe ithgaics aspects and the basic
data-structure that is used to implement verification allgors, and we present the
tool Uppaal [LAR 97b].

1.2. Timed automata

Timed automata have been proposed by R. Alur and D. Dill ird®=[ALU 90,
ALU 94a] as a model for real-time systems. A timed automasoa classical finite
automaton which can manipulate clocks, evolving contirslyoand synchronously
with the absolute time. Each transition of such an automatdebelled by a guard,
or constraint over clock values, which indicates when thadition can be fired, and
a set of clocks to be reset when the transition is fired. Eachtilon is constrained
by an invariant, which restricts the possible values of tbelks for being in the state,
which can then enforce a transition to be taken. The time doeen beN, the set
of nonnegative integers, @, the set of nonnegative rationals, or ex®gy, the set
of nonnegative real numbers. In this chapter, we chdbsgas the time domain, but
most results are unchanged when conside@ing or N.

1.2.1. Some notations

Let X be a finite set of variables, called clocks, taking valueRjn. A (clock)
valuationv over X is a functionv : X — R>, which associates to every cloakits
valuev(z) € R>. We denote byR<, the set of clock valuations ove¥. Given a
reald € R>, we writev + d for the clock valuation associating to clockhe value
v(x) + d, If r is a subset ofX, [r < O]v is the valuations’ such that'(z) = 0 if
x € r, andv’(z) = v(x) otherwise.

We write C(X) for the set of clock constraints ové¥, i.e., the set of boolean
combinations of atomic constraints of the forme ¢ with € X, < € {=,<

Model checking timed automata 3

,<,>,>}andc € N. We writeC.(X) the restriction ofC(X) to positive boolean
combinations only containing constraints of the farm< ¢ or x < ¢. We interpret
clock constraints over clock valuations: a valuatioratisfies the atomic constraint

x 1 c whenevew(z) < ¢ ; the extension to general constraints is then immediate and
natural. When a valuatiomsatisfies a constraigt we writev = g.

1.2.2. Timed automata, syntax and semantics
The formal definition of a timed automaton is as follows:

DEFINITION.— Atimed automatod is a tuple(L, ¢y, X, Inv, T, X) where:

— L is a finite set of control states, also called locations,

—{o € Lis the initial location,

— X is a finite set of clocks,

—T C LxC(X)xXx2X x Lis afinite set of transitionse = (¢, g,a,r, ') € T
represents a transition fromto ¢/, ¢ is the guard ofe, r is the set of clocks that is
reset bye, anda is the action of. We also write -2%" ¢/ for e,

—Inv: L — C<(X) associates to each location an invariant,
— X is an alphabet of actions.

An example of timed automaton is given on Figure 1.2.

A state, or configuration, of a timed automaton is a p&iv) € L xRZ, wherel is
the current location and s the clock valuation. The semantics of a timed automaton
is given as a timed transition system with action transgi@iabelled with elements
of ¥) and delay transitions (labelled with real numbers repriisg the delay). More
precisely:

DEFINITION.— Atimed transition syster(T TS in short) is a tupl& = (.5, sp, —, %)
where S is a set (possibly infinite) of statesy € S is the initial state and— C
S x (X UR>g) x S'is the transition relation. The relatior- satisfies moreover the
three following conditions: (1) i§ L, ¢ thens = ¢, (2)if s 4. ¢ ands’ 4 g

with d,d’ € Rso, thens <% s and (3) ifs -2 s with d € Rs, then for all

0 < d' < d, there exists” ¢ S such thats 4, s"” ands” d=d s’

The three conditions mentioned above are classical in gn@dwork of timed
systems, see.g.[Y1 90], they simply express that the time is continuous aeted
ministic.

Classically, an executionin a TTS is a sequence of consedudinsitions. A state
s € S is said reachable if if there exists an execution fromg to s.

4 Titre de 'ouvrage, a définir pArtitle[titre abrégél{titre}

DEFINITION.—Let A = (L, ¢y, X, Inv, T, ¥) be a timed automaton. The semantics of
Ais defined as the TTS4 = (5, so, —,) where:

-S=LxRY,
—50 = (éo,vo_) with vg(z) = 0 for everyz € X,
— the transition relation— is composed of:
- action transitions: (¢,v) —— (¢',') iff there exists =~ ¢’ ¢ T such
thatv = g, v' = [r — OJv andv’ = Inv(¢').
- delay transitions: ifd € R>o, (¢, v) 4, (l,v+d)iffv+d = Inv(f) 1.

Informally, the system starts from the initial configuratilocation/, and all
clocks set to zero), and then alternatively take: actionsiteons if the current clock
valuations satisfies the guard (this move is instantanemdis@me clocks are then set
to zero), and delay transitions which increase all clockh®/game amount of time
(clocks are synchronous) while respecting the invariasbeated with the current
location.

A possible execution of the timed automaton of Figure 1.24s; (0,0)) 207,

(€0, (2.67,2.67)) ~ (£, (2.67,0)) - (f1, (3.67,1)) = (£2, (3.67,1)) ... where
the pair(3.67, 1) represents the valuatiansuch that(x) = 3.67 andv(y) = 1.

An execution in a timed automaton can also be seen as a timet] i, a se-
quence of pairs (action,date). We can then wri; vo, tg) —— (f1,v1,t1) ——
2 (U, v, t,) With £ € R>o, to = 0 andt;11 > ¢; for everyi. The date
t; corresponds to the time point at which actienhas been performed. The step
(05,05, 1) —22 (0i41, vig1, tig1) COrresponds to a delay,, — ¢; followed by the
firing of a transition labelled by, the valuatiorw;,, is then obtained fron; +
(t;+1 — t;) by resetting to zero some of the clocks (depending on thsitian which
has been fired). The associated timed word is thent;)(as, t2) . .. For instance,

the timed word associated to the above-mentioned exedst{@n2.67)(b, 3.67) . ..

1.2.3. Parallel composition

It is possible to define the parallel composition of timedoaudta (or of TTSs).
For instance, we can define arary synchronization relation with renaming. If this
feature is essential for modelling systems, it does not aqhdessivity power from
a theoretical point-of-view: indeed, it is always possitdeconstruct a product au-
tomaton having the same behaviours as the parallel conmoéit is even strongly
bisimilar, see Section 1.4).

1. Which, given the form of the invariants, thatt d’ = Inv(q) for every0 < d’ < d.

Model checking timed automata 5

1.3. Decision procedure for checking reachability

In this section, we describe a construction initially pregdin [ALU 90, ALU 94a]
to decide the reachability of a control state in a timed awtimm. This construction
relies on an abstraction of the behaviours of the timed aatom so that checking
whether a location is reachable in the initial timed autanas equivalent to check-
ing whether a state (or set of states) is reachable in a finitavaaton.

To that aim, an equivalence relation of finite index is defioedr the set of con-
figurations of the timed automaton: from two equivalent agunfations, the same
behaviours will be possibld.e., if from a configuration, it is possible to delay (resp.
to take a transition), then so it is from an equivalent configion, and the two con-
figurations resulting from the two moves are then also edgmiaNote however that
precise delays are not respected, the equivalent will aasespond to éime-abstract
bisimulation For timed automata, such an equivalence relation (witkefinidex) al-
ways exists, and it is defined as follows. Two configuratioh®) and (¢, v’) are
equivalent if¢ = ¢ and ifv =,; v' (whereM is the maximal constant appearing in
the automaton). The relatian=,, v’ holds whenever for each cloake X,

Dwv(x) >M < v'(z) > M,

2) if u(z) < M, then|v(z)] = [v'(z)], and({v(:c)} =0 {V(2) = o) 2
and for each pair of clock&e, y),

3)if v(z) < M andu(y) < M, then{v(z)} < {v(y)} & {v'(2)} < {v'(y)}.

Intuitively, the two first conditions express that two eqient valuations satisfy
exactly the same clock constraints of the timed automatbe.ldst condition ensures
that from two equivalent configurations, letting time elapsll lead to the same inte-
gral values for the clocks, in the very same order. The etprie@=,, is called the
region equivalenceand an equivalence class is then calledgion

We illustrate this construction on Figure 1.1 in the casewaf ¢tlocksz andy, the
maximal constant is supposed toherl he partition depicted on Figure 1.1(a) respects
all constraints defined with integral constants smallenthaequal ta2, but the two
valuationse and x are not equivalent due to time elapsing (item 3 above): iddee
if we let some time elapse from the valuatienwe will first satisfy the constraint
x = 1 and theny = 1, while it will be the converse from the valuation. Hence,
the possible behaviours fromand x are different. Condition 3) refines the partition
of Figure 1.1(a) by adding diagonal lines (that somehowesgnt time elapsing), and
the resulting partition is given on Figure 1.1(b) and is agtiabstract bisimulation.

2. |a] represents the integral part@fwhereas{«} represents its fractional part.

6 Titre de 'ouvrage, a définir paititle[titre abrégél{titre}

y 1 1 y 1 1
1 1 1 1
1 1 1 1
L L
D U R N D R N region defined by:
1 1 e PR
: : l, :,l, :]- < a/‘ < 2
1 ;<“*:'“‘E' ““““ 1 “,‘,‘:‘“,‘,E' ““““ l<y<?2
o! ! . 1,7 ! {x} < {y}
0 1 2 x 0 1 2 T
(a) Partition respecting 1) and 2) (b) Partition respecting 1), 2) and 3)

Figure 1.1. Region patrtitioning for two clocks and maximal constant

From the initial timed automaton and this equivalence i@tatwe build a finite
automaton as follows: the states of the automaton are {#aiRy where(is a location
of the timed automaton anfd a region; the transitions aré, R) —— (¢, R') if there
exista transitiof 2, ¢’ in A, avaluationy € R, andt > 0 such thav+t = Inv(¢),
v+tlEg [r—0](v+t) = Inv()andfr — 0](v+1t) € R'.

The resulting finite automatoR 4 is called theregion automatorassociated to
the initial timed automaton. The fundamental property & fimite automaton is that
it recognizes exactly the set of wordsas ... such that there exists a timed word
(a1,t1)(az,t2) ... recognized by the initial timed automaton. Hence, givenreed
automatond and its region automatdR 4, one can reduce the emptiness check for the
timed language accepted by(or equivalently the reachability checking of a location
of 4) to a reachability problem iR 4. This gives an algorithm to decide these two
problems:

THEOREM[ALU 94A].— Checking the reachability of a location in a timed automa-
ton is a PSPACE-Complete problem.

y<1l,a, y:=0

Figure 1.2. Timed automatomd

Model checking timed automata 7

We illustrate the construction of the region automaton @rtitimed automaton de-
picted on Figure 1.2 and taken from [ALU 94a]. The correspogdegion automaton
is depicted on Figure 1.3. In this example, the locafigof A is reachable iff one of
the stateg/s, R) with R a region is reachable in the finite automaton given on Fig-
ure 1.3. In this last automaton, the path, z =y =0) - ({;,0=y<z<1) =

(£3,0<y<xz<1)leads to the locatioti;, which implies that, in the timed automaton

A, there is an executioffo, vo) — (Lo, vo +11) —— (£1,v1) —2 (£1,v1 +13) ——

(£, v2) leading tols (for some real numbers andts).

The complexity of the reachability problem, already memtid in the previous
theorem, has been stated in the original paper [ALU 90, ALH]94

— the PSPACE-Hardness comes from the fact that we can entetehaviour of
a linearly space bounded Turing machine on a given inputedddt is possible to
construct a timed automaton in which clock values encodednéent of the Turing
machine tape along the execution. Notice that such an emgadin be done using
three clocks only [COU 92];

—the PSPACE membership by applying a non-deterministiordign which
stores the current abstract state of the automaton (locatgion) and guesses the
next abstract state, until reaching a goal location (or tagpthe computation when a
counter becomes greater than the size of the region autamalich is exponential).

Figure 1.3. Region automaton associated.to

8 Titre de 'ouvrage, a définir paititle[titre abrégél{titre}

1.4. Other verification problems

Reachability is a key problem in verification. Correctneas often be stated as a
reachability question: “is thBAD state reachable from the initial configuration?”, or
“isittrue that any reachable state is eitBEDUE or RED?”. Nevertheless itis sometimes
useful to consider more complex properties on the behawbthre system, and we
hence need formal specification languages to state prepeffior example, assume
we want to express the following timed property:

“The alarm is activated within at most 10 time units after algpem occurs.” (1.1)

There exist several ways to express such properties ovedtaystems, we briefly
mention most classical ones.

1.4.1. Timed languages

As mentioned earlier, we can associatévaed wordwith an execution of a timed
automaton. It is also possible to consider different acgge conditions in timed au-
tomata (final states, Buchi or Muller condition ,...). Indlgetting the behaviour
of a timed automator is seen as d@med languagel(.A) containing the timed
words read over all accepting executions. Now given a ptgpkrdescribed as a
timed languageCs (for example, the set of wordgtequest,t), (service, t3)”
with t; < to < t1 + 10), the verification problem “doed satisfy the propertyp?”
can be reduced to an inclusion checking over timed langudge(.A) included in
L4? In the untimed case, this classical problem is solved bgiderning the comple-
ment of L4 (i.e. L) and checking the emptiness6fA) N L_4. Unfortunately this
approach cannot be used in the timed case because the lajuais not always ex-
pressible with a timed automaton: most of timed languagedits (of finite words,
or infinite words with Biichi or Muller conditions) are not sked under complemen-
tation. Indeed the inclusion problem is in general unddal@larhus this approach is
only possible for restricted classesd. deterministic Muller timed automata).

1.4.2. Branching-time timed logics

Temporal logic is a very convenient formalism to specifypg@dies over reactive
systems [PNU 77]. They allow to express properties over thdering of events of
a system. One can distinguish branching-time temporatfoghd linear-time tem-
poral logics: in the former case, formulae are interpretesr gtates having several
possible successors (one can quantify existentially oveusally over the different
possible futures of a given state). In the latter case, &8y viewed as a set of runs,

Model checking timed automata 9

and formulae express properties over these runs: in suchaise, a state is always
considered as state along a given ruand then it has a unique successor. These
formalisms differ from an expressiveness point of view, tiedmodel-checking algo-
rithms are also very different.

The most popular (untimed) branching-time temporal logi€TL (Computa-
tion Tree Logic) [CLA 81]. It contains modalities “alwaysAG), “potentially” (EF),
“exists-until” (E_U_), “for-all-until” (A_U_). For example, the formulayU> holds
in a states iff there exists a path from where is true at some positios/, and¢
is true at any position betweenands’. See [EME 91] for a precise introduction to
temporal logics for the specification and verification ofatdae systems.

There exist several timed extensions of temporal logicsst kve can add sub-
scripts with timing constraints to classical Until operatBuch a constraint is of the
form “sx ¢” with < € {=, <, <, >, >} andc € N. For example, the formulaU . .¢
holds in a state iff there exists a rump leading to a state’ such that (1)’ satisfies
1, (2) the duration op is less thart, and (3) any state lying betweaerands’ along
the runp satisfiesp.

The logicTCTL (for TimedCTL) is defined with these extended modalities: it con-
tains the atomic propositions, the boolean operators amdantbdalitiest_U,.. and
A _U,.._. Thus Property 1.1 can then be expressed as follows:

AG(problem = AF<io alarm)

whereAF<1o¢ is an abbreviation foA trueU<¢¢: along every path, there is position
beforel0 t.u. in which¢ holds.

There is another way to add timing constraint<CiiL. The idea is to consider a
new set of clocks — the formula clocks — and to add atomic caimt§ “z > ¢” in
the logic and a new operatorif) to reset a given clock to zero [ALU 94c]. This
extension is calledCTL.. The previous property can be expressed as follows with
TCTL,:

AG(problem = (l in AF (alarm/\ (x < 10))))

wherez is a formula clock which is reset to zero when the propositiosblenmis true,
and it is used to ensure that the time elapsed between théepra@md the activation
of the alarm is less than 10 t.u.

This extension with explicit formula clocks allows us to exgs easily every modal-
ity of TCTL. For example, we have the following equivalence wiemdy areTCTL
formulae:

E (<pU,>q6¢) = zinE (@U(?ﬁ/\xbdc))

10 Titre de I'ouvrage, a définir patitle[titre abrégél{titre}

TCTL, allows to express very precise properties over timed systénias been
shown recently that it is indeed more powerful thE@TL in the dense time frame-
work [BOU 05b]. For example, the followin§CTL, formula cannot be stated with
TCTL:

;L'i_nEF(Pl/\x <1MEG(z <1 =>ﬁP2))

This formula expresses that it is possible to reach a stasatisfyingP; in ¢ time
units witht < 1 and from then it is possible to avoig, during (at least)l — ¢ time
units.

These specification languages are very convenient to expreperties over timed
system. Moreover verification problems are still decidable

THEOREM[ALU 93a].— TheTCTL and TCTL,. model checking problems for timed
automata are PSPACE-complete.

The algorithms use the same techniques as for the readhaisidblem: given a
timed automatom and aTCTL formula®, it is possible to define a region automaton
A’ (over the automata clocks and the formula clocks) a@d'h formula®’ such that
A= o iff A = &', Verifying TCTL formulae over parallel compositions of timed
automata can be done with the téabnos [YOV 97].

1.4.3. Linear-timetimed logics

Linear-time temporal logics (4L [PNU 81]) can also be extended with timing
constraints in the same manner as for branching time caseex@mple the formula
G(problem = F<jpalarm) expresses Property 1.1. The only difference is that such
formulae are interpreted over the runs of a timed automd@grconvention we write
A | @ to specify thaeveryrun of the timed automatad satisfiesb.

In this framework one can mentidaTL [KOY 90, ALU 93b] that contains modal-
ities Uy wherelI is an interval of the forn{l; u), [/; u], ... withl,u € NU {cc}. This
interval provides the timing constraint in a natural waye formulaP, U3, P> is
equivalent taP; U>3 P, etc. We denoteMITL [ALU 96] the fragment oMTL where
singular intervalgc; c] are not allowed (and then the modaliy... is forbidden).

Model checkingMTL is undecidable [ALU 96, OUA 06]. Note that it is also pos-
sible to consider a different semantics where atomic pritipas are interpreted as
punctual events occurring at some date : in this case, mbadekingMTL becomes
decidable over finite runs [OUA 05].

Model checking problem foMITL is easier: it is EXPSPACE-complete (with the
standard semantics) and becomes even PSPACE-completaneassoe consider only
modalitiesU . andU.. (i.e. Ujp,.) andU...)) [ALU 96]. Other tractable fragments
of MTL have been recently investigated [BOU 07b].

Model checking timed automata 11

1.4.4. Timed modal logics

It is also possible to consider timed extensions of modatk{see for example
the Hennessy-Milner logic [HEN 85]). In this case, we use aiitiés (a) and|d]
to deal with the label of transitions. For example) ¢ states that there exists an
a-transition leading to a state verifyingand[a] ¢ expresses thatverystate reach-
able via aru-transition satisfieg. These modalities only deal with states reachable
in one step. But it is possible to use fixpoint to express pt@gxeover unbounded be-
haviours [LAR 90, STI 01]. This kind of formalism can also beéended with formula
clocks, atomic constraintsc“<t ¢” and reset operatoin as inTCTL, [LAR 95a].
These logics allow to express very precise and subtle ptiepdg.g.the timed bisimi-
larity). Model checking these timed modal logics is usuBIKPTIME-complete [ACE 02].

1.4.5. Testing automata

It is sometimes easy to describe a property to be checkedanitined testing
automatori/;.The idea is then to synchroniZg with the system under verification,
and the property checking reduces to some reachabilitygmobf a bad state (when
the system does not satisfy the property) or a good staten(tteesystem meets the
property) [ACE 98]. The relationship between this approand the timed modal
logics is studied in [ACE 03].

1.4.6. Behavioural equivalences

As for the untimed systems, it is also possible to comparedisystems with
respect to several behavioural equivalences. For exanrmglea@n consider the timed
bisimulation: two states ands’ are said to be strongly timed bisimilar when any tran-
sition from s can be simulated frond by a transition with the same label (the same
action or the same amount of time) and the successor stateddbe also strongly
timed bisimilar. This equivalence is very strong: two sys¢ehat are strongly bisim-
ilar cannot be distinguished by any temporal or modal logientioned previously,
they satisfy exactly the same formulae. Deciding whether timed automata are
strongly timed bisimilar is an EXPTIME-Complete problemAR 00].

Other equivalences can be considered, for example theabatact bisimulation
(mentioned in Section 1.3 about the region graph techniqoky)requires that a de-
lay transition is simulated by another delay transitionibeer possibly with another
amount of time).

1.5. Some extensions of timed automata

To help modelling real systems, it might be useful to mardapah high-level de-
scription language. Hence, several extensions of timezhaata have been considered

12 Titre de I'ouvrage, a définir patitle[titre abrégél{titre}

in the literature, we will present some of them in this sattiBor each of these exten-
sions, we will be interested in: 1) its the decidability, &) éxpressiveness w.r.t. the
original model, 3) its conciseness w.r.t. the original modée first item is crucial if
we aim at using this extension for modelling real systemis. dtso important to have
models which can express many systems (item 2 ensures theanmvmodel many
systems, whereas item 3 characterizes how easy it is to rsgsieims: the smaller is
a model, the more readable it is).

1.5.1. Diagonal clock constraints

In the timed automata model we have presented, clock camstthat can be used
on transitions are rather simple and can only compare theevafl a clock with a
constant. In the original work [ALU 90, ALU 94a], another &ypf constraints was
mentioned, the so-called diagonal constraints, whicwetésts of the form: — y < ¢
wherex andy are clocksi< is a comparison operator ands an integer. The extended
timed automata model using this kind of constraints satisfie following properties:

—checking reachability properties is also a PSPACE-Coteplgrob-
lem [ALU 94a];

— diagonal constraints do not add expressiveness to thealigodel [BER 98];
— diagonal constraints give concisess to the model [BOU.05a]

The decidability of the reachability problem was alreadgved in the original pa-
per [ALU 90, ALU 944], it also relies on the construction of ggion equivalence,
which refines that presented in Section 1.3, and the completnains the same. The
second property (which concerns the expressiveness) iskm@vn, and it has been
proved in [BER 98]: it consists in removing one-by-one diagloconstraints, and in
building an equivalent timed automaton without diagonalstmints (the equivalence
is the strong timed bisimulation). The construction whiemoves one diagonal con-
straint is illustrated on Figure 1.4 (here, we remove thestraintz — y < ¢ wherec

is a nonnegative integer). The key idea of the constructidindt the truth value of the
diagonal constraint — y < ¢ remains unchanged when time elapses, and can only
change when one of the two clock®r y is reset to zero. Hence, we make two copies
of the original automaton, in one of them the constraint y < ¢ will be satisfied,
whereas in the other one, the— y > ¢ will hold. Whenz or y is reset to zero,
we move from one copy to the other one, depending on the valube clocks. For
instance, if we reset clock, we move to the copy where — y < c holds ifz < ¢,
and we move to the copy whete— y > ¢ holds ifz > ¢. This construction doubles
the size of the automaton, inducing an exponential blowngh@ number of diag-
onal constraints) for removing all diagonal constraintisTexponential blowup is
unavoidable in general, as timed automata with diagonadtcaimts are exponentially
more concise than classical timed automata [BOU 05a], whielans that systems

Model checking timed automata 13

copy wherer —y < ¢

¢ positif

copy wherer — y > ¢

Figure 1.4. Diagonal constraints are removed one-by-one

can be modelled using exponentially more succinct autoihdiagonal constraints
are used.

1.5.2. Additive clock constraints

Other types of constraints can be added to the model of tinmalreata. We
consider here the so-called additive clock constraings, constraints of the form
x + y < c wherex andy are clocksp< is a comparison operator, ards a posi-
tive integer. This extension has been studied in [BER 00],itallows to recognize
timed languages which are not recognized by any classioaldtiautomaton. The au-
tomaton on Figure 1.5 recognizes such a timed languaganactiare done at time
pointsi, 2, 1,15 etc

r+y=1la,x:=0

Lt ={(a",t1...tp) |n>1andt; =1 — %} @__

Figure 1.5. A timed language not recognized by any classical timed aaitom

This model of'timed automata with additive clock constrasutisfies the follow-
ing properties [BER 00]:

14 Titre de I'ouvrage, a définir patitle[titre abrégél{titre}

— checking reachability properties in this extended mosl@lacidable when re-
stricting to automata with two clocks;

— checking reachability properties in this extended mosleiridecidable for au-
tomata with four clocks or more.

The decidability of the model with no more than two clocksalslies on the con-
struction of a region equivalence, the set of regions beimgfiaement of the classical
set of regions, see Figure 1.6. For models with four clocksore, the model be-
comes undecidable. The proof is rather involved but alsrésting, and uses several
times the small automaton of Figure 1.5.

0

Figure 1.6. Region equivalence for timed automata with additive clock
constraints and two clocks

Note that it is not known whether the reachability problerdesidable or not for
timed automata with additive clock constraints and threeld. However, it has been
proved that a simple extension of the classical constrandiassed on an equivalence
of finite index cannot be used [ROB 04].

1.5.3. Internal actions

In finite automata, it is well-known that internal actionts¢acallede-transitions
in this context) can be removed and hence do not increasexitessiveness of fi-
nite automata, see for instance [HOP 79]). The timed autafnamework is, maybe
surprisingly, much different: though internal actions dut nohange anything to the
decidability of reachability properties (the construntiaf the region automaton can
be done similarly), they add expressive power to the modeRB8]. The automaton
depicted on Figure 1.7 recognizes a timed language thabtdmenrecognized by a
classical timed automaton. This language is the set of twmds over a single let-
ter a where every: is done at an integral even date: Every two time units, eitfer
transition labelled by: is taken, or the transition labelled bys taken.

Model checking timed automata 15

Figure 1.7. A timed language not recognized by any classical timed aaitom
1.5.4. Updates of clocks

In the original model, there is only a single operation thet enodify the value
of the clocks (apart from time elapsing), which is the resezdro. It is hence nat-
ural to consider more complicated operations on clocks. paate is an operation
of the formz =1 ¢ or z =1 y + ¢, wherex andy are clocksp< is a comparison
operator, and is a constant. For instance, the update< ¢ means that we assign
non-deterministically a value smaller than (or equald®) the clockz; the update
x := y — 1 means that we assign to the clogkhe value ofy decremented by.
Classical reset to zero hence corresponds to updates abrtimerf:= 0. Timed au-
tomata that use these updates, called updatable timed aiaphave been studied
in [BOU 04b]. It is rather straightforward to check that thengral model is undecid-
able as all these updates are rather powerful (it is possililecrement, decrement,
test to zero). However, several subclasses have been pilecathble, we summarize
some of the most noticeable results of [BOU 04b]. The reaitihaproblem is:

— decidable for timed automata with updates of the ferre: ¢;

— decidable for timed automata with self-incrementatibot without diagonal
constraints;

— undecidable for timed automata with self-incrementatimd diagonal con-
straints;

— undecidable for timed automata with self-decrementétion

Once more, decidability results are consequences of arregitbmaton construction.
The refinement of the region equivalence is illustrated ayufé 1.8 for timed au-
tomata with clock constraints — y < 1,y > 1} and update$z := 0,y := 0,y :=
1}. The classical set of regions would be the set of regionsctiegiwith dashed
lines, but it is not correct in that wider framework (the ineagf the gray region by
updatey := 1 overlaps two regions and does not satisfy a time-abstrarhblation
property), it is thus necessary to refine and add the dotteddi distinguish: = 2.

3. l.e,, with updates of the form := x + 1.
4. |.e., with updates of the form := x — 1.

16 Titre de I'ouvrage, a définir patitle[titre abrégél{titre}

1
1
1
1
+
1
1
1

Figure 1.8. A set of regions for automata using constraints
{r —y <1,y >1}andupdatedz := 0,y := 0,y := 1}

The reachability problem is undecidable for timed automatag self-decrementation.
Indeed, we can easily encode the behaviour of a two-courdehime with these au-
tomata: the value of countér is stored in clockz., incrementing this counter is
encoded by letting one time unit elapse, and then by decrémgethe clock associ-
ated with the second counter bydecrementing this counter is directly encoded using
the updater,. := . — 1.

Note that classes of updatable timed automata that havepbeesd decidable can
be transformed into equivalent classical timed automattainiernal actions [BOU 046]
On the other hand, these updatable timed automata are exailyemore concise
than classical timed automata [BOU 05a].

Finally, it is worth noticing that updates of clocks are sokired of macros that
are very useful to model real systems. For instance, we cationehe modelization
scheduling problems which naturally uses updates [FER 02].

1.5.5. Linear hybrid automata

Linear hybrid automata extend timed automata in severattons:

— general linear constraints can be used, for instancereamstof the fornBx; +
4o — 223 < 56;

— very rich updates can be used, for instance, affine furetorvariables;

— derivatives of variables can change from one location ¢oatther one: instead
of having only clocks (whose derivative is alwal)s we can use dynamical variables.

In fact, even a single of these extensions lead to the undeitiiy of all verifi-
cation questions! We have already mentioned that for agddfiock constraints, and
updates of clocks. It is also the case for variables with riedymssible slopes in the
model: the reachability problem is undecidable for timetbeata in which a sin-
gle variable can have two different slopes. We refer to [HBN®& more recently

5. The equivalence relation is then the timed language elguive.

Model checking timed automata 17

to [RAS 05] for surveys on these questions, where some of ¢lceldble classes of
linear hybrid automata are described.

Note that looking for decidable subclasses of hybrid autarigaan important re-
search topic (for instance rectangular initialized hylatitbmata are decidable [HEN 98],
and o-minimal hybrid automata are decidable [LAF 00]). laiso important to find
either semi-algorithm8,or approximation and optimization algorithms for undecid-
able classes of hybrid automata. Indeed, undecidableesdl@ss have a great interest
in practice, like the class gfautomata [BER 99] for the description of telecommuni-
cation protocols, or stopwatch automaita.(timed automata in which clocks can be
stopped for awhile) for scheduling problems with preemptio

Most of these methods rely on the manipulation of linear trairgts to represent
set of states of the system [ALU 95], and algorithms use pedya libraries (as the
Parma Polyhedra Library). One of the most prominenttools for linear hybrid systems
is HyTech, which both allows the computation step-by-step succeqsomredeces-
sors) of sets of states, and fix-point computations (howentiout a guarantee that
the computation will terminate). See [HEN 97] for more distaind examples. The
tool HyTech can be downloaded attp: //www-cad.eecs.berkeley.edu/ tah/
HyTech/.

1.6. Subclasses of timed automata

As explained above, timed automata are a very expressivgafm and almost
every extension leads to undecidability of verificationtpems. Instead of extending
the expressiveness of timed automata, it is also possillertsider restricted versions
in order to obtain new properties, for instance efficienbatgms. In this section,
we present some of the classical restricted classes: tm-m@rding automata, the
one-clock timed automata, and the timed extensions ofickldsripke structures.

1.6.1. Event-recording automata

In this subclass, the set of automata clockXis = {z, | a € ¥}: every action
has a corresponding clock and every clock is associatedamitittion. The definition
of the event-recording automata (see [ALU 94b]) also rexputhat the clock:, is

6. That is, computation procedures that may not terminateerAi-@lgorithm can then answer
either “The property is satisfied”, or “The property is ndtisi@ed”, or “| don’t know”.
7. Seehttp://www.cs.unipr.it/ppl/

18 Titre de I'ouvrage, a définir patitle[titre abrégél{titre}

reset to zero when antransition is performed. Then, given a configuratigyv), the
valuewv(z,) is the time elapsed since the last occurrence af adtiorP.

The event-recording automata (ER-TA) have important priigse First the non-
determinism can be removed: any ER-TA can be transformediideterministic ER-
TA. Secondly the timed languages associated with this @gsslosed under comple-
ment. But note that from the complexity point of view, thesend change: emptiness
checking remains PSPACE-Complete (the same hold8@3In. model checking).

1.6.2. One-clock timed automata

In [COU 92], it is shown that reachability of a control locatiin timed automata
with three clocks is PSPACE-Hard. This has motivated thdystf model checking
for timed automata with one or two clocks.

In [LAR 04], the following results have been proved for theeeziock timed au-
tomata (1C-TA in short):

— Reachability of a control location in 1C-TA is NLOGSPACB@plete {.e. the
same complexity class as for reachability in standard ggaph

— There exist polynomial time algorithms for model checKif@TL< >~ over 1C-
TA. (TCTL< > is the fragment off CTL where timing constraints= ¢” are forbid-
den.)

— Model checkingrCTL over 1C-TA is PSPACE-Complete.

The main result is that model checking 1C-TA can be done efftty if the spec-
ification is stated wititTCTL< >. Note that the complexity blow-up induced by the
punctuality(the constraint = ¢”) occurs in other cases (for instance, in the case of
linear-time timed logics [ALU 96]).

The model checking algorithm fGiICTL< > over 1C-TA works as follows. Given
a 1C-TAA and aTCTL< > formula®, we compute, for any stateand any subfor-
mulat, the set of valuations such that(g, v) |= ¢. As A has only one clock, such a
valuationwv is a unique value, and the sets of valuati®at[q, ¢'] can be represented
as a union of intervals), («;, 8;) — with (e {[, (},) € {],)} anda;, 3; € NU {cc}.
One can show that the number of interval$Siat[¢, ¢] is bounded by - |¢| - |A].

For example, consider the subformil@U< .1 and assume that the s&at|q, ¢]
and Sat[q, ¢)] have already been computed for apy The aim is to compute the
minimal duration — denoted™ (¢, v) — to reach from(q,v) a) state along a path

8. A variant — theevent-predictingautomata — consists in storing iz,) the amount of time
beforethe next actioru (in this case, clocks are initialized with a negative value)

Model checking timed automata 19

satisfyingy. To compute the functiosi™, we first build a simplified region automaton
(its size is polynomial in.A| and |®|) whose states are paifg,y) where~ is an
interval of valuations such that the truth valuesgfy) and any guard ind do not
change alongy. This property entails that the functi@fi” has a special form over
every~: itis either decreasing with slopel (the shortest paths to reagigo through
the rightmost position of), or constant (the shortest paths to readmave to perform
an action transition with a reset of the clock before anyylgkmnsition) or it combines
the two previous cases, that is, it is first constant over &ingerval ofy and then
decreasing. Thus every functid‘) can be defined by its value on the leftmost
and rightmost positions of, and these value can be computed easily with a shortest
path algorithm. And it remains to use the threshgld: to find the intervals where
EdU<.1) is true [LAR 04].

Note also that one-clock timed automata have other verydastimg properties:

— The timed language inclusion is decidable for finite worsliC-TA [OUA 04]
(but remains undecidable for infinite words [ABD 05]).

— Checking emptiness is decidable for one-cloekernating timed au-
tomata [LAS 05, OUA 05].

— Model checking one-clockprobabilistic timed automata can be done in
polynomial time for PTCTL< > formulae, and almost sure reachability is P-
Complete [JUR 07].

— Model checkingVCTL is decidable (in PSPACE) for thericedtimed automata
with one clock [BOU 07a]WCTL is a specification language (its syntax is the same
asTCTL) to express quantitative properties over the cost of ex@asitin priced timed
automata (where a cost slope is associated with every ¢tonati

— Computing optimal costs can be done fpriced timed game with one
clock [BOU 06].

Note that these properties do not hold any more when the tataimata have
two clocks (reachability is NP-Hard for two-clocks timedt@mata [LAR 04], al-
most sure reachability is EXPTIME-Complete in two clockshpabilistic timed au-
tomata [JUR 07]etc).

1.6.3. Discrete time models

Instead of considerin®>o, it is possible to use a discrete time domain. For ex-
ample, one can consider the semantics of timed automatain@gral clocks. This
change does not modify the main complexity results of motlecking: for exam-
ple, reachability and th& CTL model checking remain PSPACE-Complete. To get
polynomial time algorithms, we need to consider simpler eied

20 Titre de I'ouvrage, a définir paArtitle[titre abrégél{titre}

In many works, classical Kripke structures have been usetbidel real-time sys-
tems with the hypothesis that every transition takes exacté time unit. In this case,
one can us&CTL formulae to specify quantitative properties (over the namif
transitions) along the paths. With this simple approacéretexist polynomial time
model checking algorithms for model checkim@TL [EME 92], they can also be
extended to models where transition t@aker 1 time unit [LAR 03].

A natural extension consists in associating integral domatwith the transitions
of a Kripke structure. Several semantics can be defined f&setlsystems. In that
framework, the main interesting result is that model chegRiCTL< > can be done
in polynomial time (contrary td CTL, whose model checking is eith&-Complete
or PSPACE-Complete depending on the semantics which issoh@sAR 06]. This
polynomial-time algorithm has been implemented in the iI&®MV [MAR 04].

1.7. Algorithms for timed verification

In this section, we describe algorithms implemented ingdike Uppaal or Kro-
nos for verifying timed automata. Indeed, in practice the regagotomaton construc-
tion is not used in tools because the region partition is &fimed and hence it is not
efficient to manipulate the regions. Tools better use thd®fimrepresentation called
zonesand rely on on-the-fly algorithms.

There are mostly two families of (semi-)algorithms for arzéthg reachability prop-
erties of systems. The first one, called forward analysissists in computing itera-
tively the successors of the initial states and in checkiagthe state we want to reach
is eventually computed or not. The second one, called backamalysis and some-
how the dual of the first method, consists in computing iteeat the predecessors of
the states we want to reach and in checking that an inititd &aventually computed
or not. These methods are generic and are used in many cgrftaxinstance on the
model of linear hybrid automata that we already mentioneskiation 1.5.

Before presenting these analysis methods, we first prasemost currently used
symbolic representation for the verification of timed sysde

1.7.1. A symbolic representation for timed automata: the zones

The set of configurations of a timed automaton is infinite. &aify this model,
it is thus mandatory to be able to manipulate large sets digrations and thus to
have an efficient symbolic representation for these setstd#s The most commonly
used is the zone representation: a zone is a set of valuatémed by a conjunction
of atomic constraints of the form < ¢ or x — y < ¢ wherex andy are clocksp«
is a comparison operator, ards a constant. Hence, in the forward and backward

Model checking timed automata 21

analysis algorithms, objects that are manipulated ars paiZ) where/ is a location
andZ a zone.

Many operations can be performed using this representation

— the future of a zon&, defined by? ={v+t|veZandte T}

— the past of a zong, defined by? ={v—t|ve Zandt e T},

— the intersection of andZ’, definedbyZ N2’ = {v | v € Zandv € Z'};
—theresetto zero C X of Z, defined by[r — 0]1Z = {[r — OJv | v € Z};

— the relaxation with respect toC X of Z, defined byjr < 0]7*Z = {v | [r <
Olv € Z}.

These operations, defined as first order formulae over zpneserve zones (see the
Fourier-Motzkin elimination principle [SCH 98]).

We now present the backward analysis algorithm as it is thelsist one. We will
then turn to the forward analysis algorithm, which is inddezlmost commonly used
method, but also the most complicated one.

1.7.2. Backward analysisin timed automata

As already said, the backward analysis consists in comgatap-by-step the pre-
decessors of the final configurations, starting with the ¢y gredecessors, then the
two steps predecessoedcand in checking whether an initial state is eventually com-
puted. If such an initial state is computed, it means thagtied location is reachable,
and if such an initial state is not computed, it means thagtee location is not reach-
able. The principle of the backward analysis is illustrated-igure 1.9.

« .. 0.'00'0

Figure 1.9. Backward analysis: step-by-step, predecessors of gotdstae
computed

One step of the backward analysis can easily be computed meimes. Indeed,
if t = ¢ 2“5 ¢ is a transition of the automaton and4f is a zone, the set of one-
step predecessors @f, Z') when taking transition is the set of configurationd, v)

wherev isinthe zoneZ = g N [r < 0]74(Z' N (r = 0)).

22 Titre de I'ouvrage, a définir paArtitle[titre abrégél{titre}

The characteristic of the backward analysis is that thatitex computation always
terminates: indeed it can be proved thaZifis a zone and if this zone is a union of
regions (see Section 1.3), then the zdHeve have described before is a zone and also
a union of regions! As there are finitely many regions, theeeaaly finitely many
pairs(¢, Z) which can be computed.

Though the backward analysis has some non-negligiblettgslin practice, it is
not much implemented in tools, and the forward analysise$gored. There are mul-
tiple reasons for this implementation choice: forward gsial only visits reachable
statesij.e,, states that are relevant in the system; furthermore, backanalysis is not
appropriate for verifying systems defined with high-levatadstructures like integral
variables orC-like instructionsetc For instance, the todJppaal (see Section 1.8)
only implements the forward analysis paradigm.

1.7.3. Forward analysis of timed automata

As already said, the forward analysis consists in compugieg-by-step the suc-
cessors of the initial configurations, starting with the step successors, then the two
steps successomsicand in checking whether a goal location is eventually comgut
If such a final location is computed, it means that the goaltioo is reachable, and if
such an initial state is not computed, it means that the gaalion is not reachable.
The principle of the forward analysis is illustrated on Figa.10.

o .Q ..,.Q,D

Figure 1.10. Forward analysis: step-by-step, successors of initialestare
computed

One step of the forward analysis algorithm can be computiedjzenes. Indeed,
g,a,r

if t = ¢ =—— (' is a transition of the timed automaton and’ifis a zone, the set of
successors in one step @ Z) by taking transitiort is the set of state@”’, v’) where

v" belongs to the zong’ = [r — 0](g N 7).

Contrary to the backward computation, the iterative fooh@mputation does not
terminate in general. This is illustrated by the timed awton of Figure 1.11. In
this example, each iteration of the algorithm increasesahee of the clock by, the
computation will hence never terminate.

Model checking timed automata 23

8
%
@)—‘
I >

Figure 1.11. The iterative forward computation may not terminate

To overcome this termination problem, an abstraction dpeis usually applied
at each iteration of the computation. In the literatures #iistraction operator is called
normalization, or extrapolation, we use the latter forrtialahere. We assume thiat
is the largest constant appearing in the constraints ofitfredt automaton. 17 is a
zone, the extrapolation df w.r.t. k is the smallest zone which contaidsand which
is defined with constants inbetweerk and+k. The intuition behind this operator
is the following: the automaton cannot distinguish betweleck values abové, it
may thus be not relevant to keep in the zone information akoltas worth noticing
first that applying this extrapolation at each iterationh## lgorithm ensures termi-
nation of the computation as there are only finitely many satefined with constants
inbetween-k and+k. However, there is another problem: at each iteration, @n-ov
approximation of the set of states which is really reachabt®mputed. It may thus
happen that a location is computed whereas it is not reaghabl

In [BOU 044a], it is proven that this iterative and abstradtasvard computation is
correct for the class of timed automata without diagonabkt@ints, but incorrect for
the class of timed automata with diagonal constraints.

1.7.4. A data structure for timed systems: the DBMs

The DBM acronym meanBifference Bound Matricelt is a rather classical data
structure used for representing systems of differencetings [COR 90], and they
have in particular a great interest for the verification ofdd systems because they
can be used to represent zones. DBMs have first been usedlyzeatiasne Petri
nets [BER 83], and they are now intensively used to analyaediautomata [DIL 90].

If n is the number of clocks, a DBM/ is an(n + 1)-square matrix with integral
coefficient8. If M = (m; ;)o<i j<n, the coefficientn; ; represents the constraint
z; —x; < m;; where{z; | 1 < i < n} is the set of clocks and is a fictive

9. In general, coefficients need to be pdins, <) wherem is an integer anek is either<, or
<, but here, to simplify the presentation, we forget about garison operators in DBMs.

24 Titre de I'ouvrage, a définir paArtitle[titre abrégél{titre}

clock whose value is always Hence, to represent a constraint< 6, we will write
m;,0 = 6 as this constraint is equivalentig — zo < 6.

34 9
Figure 1.12. Zone defined by the constraint
(xl 23)/\(x2§5)/\(x1—x2§4)

The following DBM represents the set of valuations definedthry constraint
(x1 > 3) A (z2 <5) A (z1 — 22 < 4), and is represented on Figure 1.12 :

To & T2
To +o00 —3 +o©
T +o00 400 4
T2 5 +oo0 400

A coefficient+oco means that there is no constraint on the corresponding didek
ference. The coefficient; = —3 represents the constraints > 3 because this
constraint is equivalent tgy — z; < —3.

Every DBM represents a zone, and every zone can be reprddaynta DBM.
However, a zone can be represented by several DBMs (fomioestan the previous
DBM, if we replace the coefficient:; o = +oo by my = 9, it will not change
the zone which is represented). There exists a normal fornrbBMs, which can
be computed using the Floyd-Warshall shortest paths algofCOR 90]: the DBM
which is obtained stores the strongest constraints whitihelthe corresponding zone.
For the previous example, the normal form DBM is:

0 -3 0
9 0 4
5 2 0

All operations that are needed for both the backward andoitvesfrd analysis iter-
ative computations can be done using DBMs (see [CLA 99, BO4&] @3F a detailed
description of operations using DBMs).

DBMs are basic data structures for manipulating sets of gardtions of timed
automata, but several improvements can be done, and f@ntesta minimization
of DBMs [LAR 974a] or the use of CDDsGlock Difference DiagramgLAR 99] or
more recently of federations [DAV 06] which allows to repasand manipulate more
compactly unions of DBMs.

Model checking timed automata 25

1.8. The model-checking tooUppaal

Uppaal is a model-checking tool for verifying timed systems. It b&en jointly
developed by Uppsala University (Sweden) and Aalborg Usitse(Denmark) [LAR 97b].
This tool can be downloaded Bttp://www.uppaal.com/. The model that can be
verified byUppaal is a variant of the classical timed automata model. This rhigde
syntactically very rich as we can explicitely add urgencthemodel (for instance, we
can enforce a transition to be taken immediately, withoytdelay), we can enforce
atomicity of several transitions (a sequence of transitimist then be taken instanta-
neously), we can ad@-like instructionsgetc All these features don’t add expressivity
to the model but they make the modelling phase easier, asmeuila rather concise
and readable models.

Properties that can be verified using the tbplpaal are reachability properties,
safety properties, and response properties. A tutoriatHat tool is available on-
line [BEH 04].

/Applications /Uppaal/Demo/2doors.xml — UPPAAL

System Editor | Simulator Verifier

Drag out

(Next) (Reset)
Simulation Trace

Doorl

(closing, wait, idle, idle)
Doorl

(closed, wait, idle, idie)
closed1: Doorl --> Door2
(closed, opening, idle, idle)
Doorl

Jms

(idle, opening, idle, idle)

Trace File:

(Prev) Next | (Replay)

(" Open) (" Save) (Random)

oor
T e
Slow Fast (idie)

Figure 1.13. The toolUppaal

|

Apart from the modelling GUI and the verification moduldppaal has a simu-
lation module in which it is possible to “play” with the modahd hence have a first
check that the model does what it is expected to do. A scre¢nshhe tool is given
on Figure 1.13.

The toolUppaal is developed since more than ten years, and it has been succes
fully used to verify industrial systems. For instance, wa ogntion audio protocols

26 Titre de I'ouvrage, a définir paArtitle[titre abrégél{titre}

like [BEN 02], or the Bang & Olufsen protocol whose analysis hocated a known
bug, and for which a validated correction has been provigigV/[97].

The currentversion dippaal is 4.0 and the new features are described in [BEH 06].

1.9. Bibliography

[ABD 05] ABDuULLA P. A., DENEUX J., QUAKNINE J., WORRELL J., “Decidability and
Complexity Results for Timed Automata via Channel Machin€soc. 32nd International
Colloquium on Automata, Languages and Programming (ICABERvol. 3580 ofLecture
Notes in Computer Scienc8pringer, p. 1089-1101, 2005.

[ACE 98] AceToL., BURGUENOA., LARSEN K. G., “Model-Checking via Reachability
Testing for Timed Automata’Proc. 4th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS\@8) 1384 ofLecture Notes in
Computer Sciengespringer, p. 263—280, 1998.

[ACE 02] AceToL., LAROUSSINIEF., “Is your Model-Checker on Time ? On the Com-
plexity of Model-Checking for Timed Modal Logics”,Journal of Logic and Algebraic
Programmingvol. 52-53, p. 7-51, 2002.

[ACE 03] AceTOL., BOUYERP., BURGUENOA., LARSENK. G., “The Power of Reach-
ability Testing for Timed Automata”,Theoretical Computer Scienceol. 300, num. 1-3,
p. 411-475, 2003.

[ALU90] ALURR., DiLL D., “Automata for Modeling Real-Time SystemsProc. 17th In-
ternational Colloquium on Automata, Languages and Prograng (ICALP’90) vol. 443
of Lecture Notes in Computer Scien&pringer, p. 322-335, 1990.

[ALU 93a] ALURR., COURCOUBETISC., DiLL D., “Model-Checking in Dense Real-Time”,
Information and Computatigrvol. 104, num. 1, p. 2—34, 1993.

[ALU93b] ALURR., HENZINGERTH. A., “Real-Time Logics: Complexity and Expressive-
ness”, Information and Computatiqrvol. 104, num. 1, p. 35-77, 1993.

[ALU94a] ALUR R., DiLL D., “A Theory of Timed Automata”,Theoretical Computer Sci-
encevol. 126, num. 2, p. 183-235, 1994.

[ALU 94b] ALUR R., AX L., HENZINGER TH. A., “A Determinizable Class of Timed Au-
tomata”, Proc. 6th International Conference on Computer Aided \@ifon (CAV’'94)
vol. 818 ofLecture Notes in Computer Scien&pringer, p. 1-13, 1994.

[ALU 94c] ALURR., HENZINGERTH. A., “A Really Temporal Logic”,Journal of the ACM
vol. 41, num. 1, p. 181-204, 1994.

[ALU95] ALUR R., COURCOUBETISC., HALBWACHS N., HENZINGER TH. A., HO P.-
H., NicoLLIN X., OLIVERO A., SIFAKIS J., YOVINE S., “The Algorithmic Analysis of
Hybrid Systems”,Theoretical Computer Scienceol. 138, num. 1, p. 3-34, 1995.

[ALU 96] ALURR., FEDERT., HENZINGERTH. A., “The Benefits of Relaxing Punctuality”,
Journal of the ACMvol. 43, num. 1, p. 116-146, 1996.

Model checking timed automata 27

[BEH 04] BEHRMANN G., DaviD A., LARSEN K. G., “A Tutorial on Uppaal”, Proc. 4th
International School on Formal Methods for the Design of @ater, Communication and
Software Systems: Real Time (SFM-04;R/D). 3185 ofLecture Notes in Computer Sci-
ence Springer, p. 200-236, 2004.

[BEH 06] BEHRMANN G., DAavID A., LARSENK. G., HAKANSSONJ., FETTERSSONP., YI
W., HENDRIKS M., “Uppaal 4.0”, Proc. 3rd International Conference on the Quantitative
Evaluation of SysTems (QEST'QBEE Computer Society Press, p. 125-126, 2006.

[BEN 02] BENGTSSONJ., GRIFFIOENW. D., KRISTOFFERSENK. J., LARSENK. G., LARS-
SON F., PETTERSSONP., YI W., “Automated Verification of an Audio-Control Protocol
using Uppaal”, Journal of Logic and Algebraic Programmingol. 52-53, p. 163-181,
2002.

[BER 83] BERTHOMIEUB., MENASCHEM., “An Enumerative Approach for Analyzing Time
Petri Nets”, Proc. IFIP 9th World Computer Congressol. 83 ofInformation Processing
North-Holland/ IFIP, p. 41-46, 1983.

[BER 98] BERARD B., DIEKERT V., GASTIN P., FETIT A., “Characterization of the Expres-
sive Power of Silent Transitions in Timed Automatd&undamenta Informaticaevol. 36,
num. 2-3, p. 145-182, 1998.

[BER 99] BERARD B., FRIBOURG L., “Automated Verification of a Parametric Real-Time
Program: the ABR Conformance Protocol”’Proc. 11th International Conference on
Computer Aided Verification (CAV'99yol. 1633 ofLecture Notes in Computer Science
Springer, p. 96-107, 1999.

[BER 00] BERARD B., DUFOURD C., “Timed Automata and Additive Clock Constraints”,
Information Processing Lettersol. 75, num. 1-2, p. 1-7, 2000.

[BOU 04a] BouYERP., “Forward Analysis of Updatable Timed Automat&grmal Methods
in System Desigrvol. 24, num. 3, p. 281-320, 2004.

[BOU 04b] BouYERP., DUFOURDC., FLEURY E., PETIT A., “Updatable Timed Automata”,
Theoretical Computer Scienceol. 321, num. 2-3, p. 291-345, 2004.

[BOU 05a] BouYERP., CHEVALIER F., “On Conciseness of Extensions of Timed Automata”,
Journal of Automata, Languages and Combinatgnad. 10, num. 4, p. 393-405, 2005.

[BOU 05b] BOUYER P., CHEVALIER F., MARKEY N., “On the Expressiveness of TPTL
and MTL”, Proc. 25th Conference on Foundations of Software Techgcdogl Theoret-
ical Computer Science (FST&TCS'Q%pl. 3821 ofLecture Notes in Computer Science
Springer, p. 432—443, 2005.

[BOU 06] BOUYER P., LARSEN K. G., MARKEY N., RASMUSSENJ. |., “Almost Optimal
Strategies in One-Clock Priced Timed Automat&toc. 26th Conference on Foundations
of Software Technology and Theoretical Computer Scien3 7 CS’06) vol. 4337 of
Lecture Notes in Computer Scien&pringer, p. 345-356, 2006.

[BOU 07a] BoUuYERP., LARSENK. G., MARKEY N., “Model-Checking One-Clock Priced
Timed Automata”, Proc. 10th International Conference on Foundations of \Bafé Sci-
ence and Computation Structures (FOSSaCS'0dl) 4423 ofLecture Notes in Computer
ScienceSpringer, p. 108-122, 2007.

28 Titre de I'ouvrage, a définir paAritle[titre abrégél{titre}

[BOU 07b] BOUYER P., MARKEY N., OUAKNINE J., WORRELL J., “The Cost of Punctual-
ity”, Proc. 21st Annual Symposium on Logic in Computer Scienc@S0i7) IEEE Com-
puter Society Press, 2007, To appear.

[CLA81] CLARKE E. M., EMERSONE. A., “Design and Synthesis of Synchronous Skele-
tons using Branching-Time Temporal LogicProc. 3rd Workshop on Logics of Programs
(LOP’81), vol. 131 ofLecture Notes in Computer Scien&pringer-Verlag, p. 52—-71, 1981.

[CLA99] CLARKE E., GRUMBERGO., PELED D., Model-Checking The MIT Press, Cam-
bridge, Massachusetts, 1999.

[COR 90] GoRMEN TH. H., LEISERSONC. E., RVEST R. L., Introduction to Algorithms
The MIT Press, Cambridge, Massachusetts, 1990.

[COU 92] CoURCOUBETISC., YANNAKAKIS M., “Minimum and Maximum Delay Problems
in Real-Time Systems”,Formal Methods in System Desjgvol. 1, num. 4, p. 385415,
1992.

[DAV 06] DAvID A., “Merging DBMs Efficiently”, Proc. 17th Nordic Workshop on Program-
ming TheoryDIKU, University of Copenhagen, p. 54-56, 2006.

[DIL90] DiLL D., “Timing Assumptions and Verification of Finite-State i@uoirrent Sys-
tems”, Proc. of the Workshop on Automatic Verification Methods fioitE State Systems
(1989) vol. 407 ofLecture Notes in Computer Scien&pringer, p. 197-212, 1990.

[EME 91] EMERSONE. A., “Temporal and Modal Logi¢vol. B (Formal Models and Seman-
tics) of Handbook of Theoretical Computer Scienpe995-1072, MIT Press Cambridge,
1991.

[EME 92] EMERSONE. A., MOK A. K., SISTLA A. P., RINIVASAN J., “Quantitative Tem-
poral Reasoning’Real-Time Systemgol. 4, num. 4, p. 331-352, 1992.

[FER 02] FERSMANE., PETTERSONP., YI W., “Timed Automata with Asynchrounous Pro-
cesses: Schedulability and Decidability?roc. 8th International Conference on Tools and
Algorithms for the Construction and Analysis of System€@&02) vol. 2280 ofLecture
Notes in Computer Scienc8pringer, p. 67-82, 2002.

[HAV 97] HAVELUND K., SKOU A., LARSENK. G., LUND K., “Formal Modeling and Anal-
ysis of an Audio/Video Protocol: An Industrial Case StudyingsUppaal’, Proc. 18th
IEEE Real-Time Systems Symposium (RTSSIBEE Computer Society Press, p. 2-13,
1997.

[HEN 85] HENNESSYM., MILNER R., “Algebraic Laws for Nondeterminism and Concur-
rency”, Journal of the ACMvol. 32, num. 1, p. 137-161, 1985.

[HEN 94] HENZINGER TH. A., NICOLLIN X., SIFAKIS J., YOVINE S., “Symbolic Model-
Checking for Real-Time Systemdhformation and Computatigivol. 111, num. 2, p. 193—
244, 1994,

[HEN 97] HENZINGERTH. A., HO P.-H., WoNG-TolI H., “HyTech: A Model-Checker for
Hybrid Systems”, Journal on Software Tools for Technology Transfesl. 1, num. 1-2,
p. 110-122, 1997.

[HEN 98] HENZzINGER TH. A., KOPKE P. W., RURI A., VARAIYA P., “What's Decidable
about Hybrid Automata?”,Journal of Computer and System Sciencead. 57, num. 1,

Model checking timed automata 29

p. 94-124, 1998.

[HOP 79] HopcRroOFT]. E., ULLMAN J. D.,Introduction to Automata Theory, Languages and
Computation Addison-Wesley, 1979.

[JUR 07] LRDZzINSKI M., LAROUSSINIEF., SPROSTONJ., “Model Checking Probabilistic
Timed Automata with One or Two ClocksProc. of the 13th International Conference on
Tools and Algorithms for Construction and Analysis of SystéTACAS’07)vol. 4424 of
Lecture Notes in Computer Scien&pringer, p. 170-184, 2007.

[KOY 90] KoymaNs R., “Specifying Real-Time Properties with Metric Tempotaigic”,
Real-Time Systemeol. 2, num. 4, p. 255-299, 1990.

[LAF 00] LAFFERRIEREG., PAPPASG. J., ASTRY S., “O-Minimal Hybrid Systems"Math-
ematics of Control, Signals, and Systerd. 13, num. 1, p. 1-21, 2000.

[LAR 90] LARSENK. G., “Proof Systems for Satisfiability in Hennessy-Milneogic with
Recursion”, Theoretical Computer Scienceol. 72, num. 2-3, p. 265-288, 1990.

[LAR 95a] LAROUSSINIEF., LARSENK. G., WEISEC., “From Timed Automata to Logic —
and Back”,Proc. 20th International Symposium on Mathematical Fouiuetes of Computer
Science (MFCS'95)ol. 969 ofLecture Notes in Computer Scien&pringer, p. 529-539,
1995.

[LAR 95b] LARSENK. G., PETTERSSONP., YI W., “Model-Checking for Real-Time Sys-
tems”, Proc. 10th International Conference on Fundamentals of @atation Theory
(FCT'95), vol. 965 ofLecture Notes in Computer Scien&pringer, p. 62—88, 1995.

[LAR 97a] LARSENK. G., LARSSONF., PETTERSSONP., YI W., “Efficient Verification of
Real-Time Systems: Compact Data Structure and State-Rmahection”,Proc. 18th IEEE
Real-Time Systems Symposium (RTSSIBEE Computer Society Press, p. 14-24, 1997.

[LAR 97b] LARSENK. G., PETTERSSONP., YI W., “UPPAAL in a Nutshell’, Journal of
Software Tools for Technology Transfeol. 1, num. 1-2, p. 134-152, 1997.

[LAR99] LARSENK. G., PEARSONJ., WEISE C., YI W., “Clock Difference Diagrams”,
Nordic Journal of Computingvol. 6, num. 3, p. 271-298, 1999.

[LAR 00] LAROUSSINIEF., SCHNOEBELENPH., “The State-Explosion Problem from Trace
to Bisimulation Equivalence”Proc. 3rd International Conference on Foundations of Soft-
ware Science and Computation Structures (FoSSaCSu@d) 1784 ofLecture Notes in
Computer Sciengeépringer, p. 192—-207, 2000.

[LAR 03] LAROUSSINIEF., SCHNOEBELEN PH., TURUANI M., “On the Expressivity and
Complexity of Quantitative Branching-Time Temporal LagjicTheoretical Computer Sci-
ence vol. 297, num. 1, p. 297-315, 2003.

[LAR 04] LAROUSSINIEF., MARKEY N., SCHNOEBELENPH., “Model Checking Timed Au-
tomata with One or Two Clocks”,Proc. 15th International Conference on Concurrency
Theory (CONCUR’04)vol. 3170 ofLecture Notes in Computer Scien&pringer, p. 387—
401, 2004.

[LAR 06] LAROUSSINIE F., MARKEY N., SCHNOEBELEN PH., “Efficient Timed Model
Checking for Discrete-Time SystemsTheoretical Computer Scienceol. 353, num. 1-3,
p. 249-271, 2006.

30 Titre de I'ouvrage, a définir paArtitle[titre abrégél{titre}

[LAS 05] LASOTAS., WALUKIEWICZ ., “Alternating Timed Automata”,Proc. 8th Interna-
tional Conference on Foundations of Software Science amdpDeation Structures (FoS-
SaCS’'05)vol. 3441 ofLecture Notes in Computer Scien&pringer, p. 250-265, 2005.

[MAR 04] MARKEY N., SCHNOEBELENPH., “Symbolic Model Checking of Simply-Timed
Systems”, Proc. Joint Conference on Formal Modelling and Analysis ohdd Systems
and Formal Techniques in Real-Time and Fault Tolerant SysEEORMATS+FTRTFT'04)
vol. 3253 ofLecture Notes in Computer Scien&pringer, p. 102-117, 2004.

[OUA 04] OUAKNINE J., WORRELL J., “On the Language Inclusion Problem for Timed Au-
tomata: Closing a Decidability GapRroc. 19th Annual Symposium on Logic in Computer
Science (LICS'04)EEE Computer Society Press, p. 54—63, 2004.

[OUA 05] OuAKNINE J., WORRELL J., “On the Decidability of Metric Temporal Logic”,
Proc. 19th Annual Symposium on Logic in Computer SciendeS105) IEEE Computer
Society Press, p. 188-197, 2005.

[OUA 06] OUAKNINE J., WORRELL J., “On Metric Temporal Logic and Faulty Turing Ma-
chines”, Proc. 9th International Conference on Foundations of SafénvScience and
Computation Structures (FOSSaCS’08)l. 3921 ofLecture Notes in Computer Science
Springer, p. 217-230, 2006.

[PNU 77] PNUELI A., “The Temporal Logic of Programs”Proc. 18th Annual Symposium
on Foundations of Computer Science (FOCS TEEE Computer Society Press, p. 46-57,
1977.

[PNU 81] PNUELI AL, “The Temporal Semantics of Concurrent Progranidigoretical Com-
puter Sciencevol. 13, num. 1, p. 45-60, 1981.

[RAS 05] RaskiIN J.-F., “An Introduction to Hybrid AutomataChapter Handbook of Net-
worked and Embedded Control Systems, p. 491-518, Spripg@5.

[ROB 04] RoBIN A., Aux frontieres de la décidabilité..., Master's the§}&A Algorithmique,
Paris, 2004.

[SCH 98] SHRIJVERA., Theory of Linear and Integer Programmingnterscience Series in
Discrete Mathematics and Optimization, Wiley, 1998.

[SCH01] SCHNOEBELENP., BERARDB., BIDOIT M., LAROUSSINIEF., PETIT A., Systems
and Software Verification - Model-Checking Techniques aalsT Springer, 2001.

[STI01] SrtirRLING C., Modal and Temporal Properties of Processe3$exts in Computer
Science, Springer, 2001.

[TRI98] TRIPAKIS S., YOVINE S., “Verification of the Fast Reservation Protocol with De-
layed Transmission using the Todlonos”, Proc. 4th IEEE Real-Time Technology and
Applications Symposium (RTAS'98EE Computer Society Press, p. 165-170, 1998.

[YI90] Y1 W., “Real-Time Behaviour of Asynchronous Agent®roc. 1st International Con-
ference on Theory of Concurrency (CONCUR’9@)l. 458 ofLecture Notes in Computer
ScienceSpringer, p. 502-520, 1990.

[YOV 97] YovINE S., “Kronos: A Verification Tool for Real-Time Systems”Journal of
Software Tools for Technology Transfeol. 1, num. 1-2, p. 123-133, 1997.

