
Towards synthesis of distributed algorithms with
SMT solvers?

Carole Delporte-Gallet, Hugues Fauconnier, Yan Jurski, François Laroussinie,
and Arnaud Sangnier

IRIF, Univ Paris Diderot, CNRS, France

Abstract. We consider the problem of synthesizing distributed algo-
rithms working on a specific execution context. We show it is possible to
use the linear time temporal logic in order to both specify the correctness
of algorithms and their execution contexts. We then provide a method
allowing to reduce the synthesis problem of finite state algorithms to some
model-checking problems. We finally apply our technique to automatically
generate algorithms for consensus and epsilon-agreement in the case of
two processes using the SMT solver Z3.

Introduction

On the difficulty to design correct distributed algorithms. When designing dis-
tributed algorithms, researchers have to deal with two main problems. First,
it is not always possible to find an algorithm which solves a specific task. For
instance, it is known that there is no algorithm for distributed consensus in the
full general case where processes are subject to failure and communication is
asynchronous[6]. Second, they have to prove that their algorithms are correct,
which can sometimes be very tedious due to the number of possible executions
to consider. Moreover distributed algorithms are often designed by assuming a
certain number of hypothesis which are sometimes difficult to properly formalize.

Even though most distributed algorithms for problems like leader election,
consensus, set agreement, or renaming, are not very long, their behavior is difficult
to understand due to the numerous possible interleavings and their correctness
proofs are extremely intricate. Furthermore these proofs strongly depend on
the specific assumptions made on the execution context which specifies the way
the different processes are scheduled and when it is required for a process to
terminate. In the case of distributed algorithms with shared registers, interesting
execution contexts are for instance the wait-free model which requires that each
process terminates after a finite number of its own steps, no matter what the
other processes are doing [8] or the obstruction-free model where every process
that eventually executes in isolation has to terminate [9]. It is not an easy task to
describe formally such execution context and the difference between contexts can
be crucial when searching for a corresponding distributed algorithm. As a matter
of fact, there is no wait-free distributed algorithm to solve consensus [10], even
with only two processes, but there exist algorithms in the obstruction-free case.

? Supported by ANR FREDDA (ANR-17-CE40-0013).

Proving correctness vs synthesis. When one has designed a distributed algorithm
for a specific execution context, it remains to prove that it behaves correctly. The
most common way consists in providing a ’manual’ proof hoping that it covers
all the possible cases. The drawback of this method is that manual proofs are
subject to bugs and they are sometimes long and difficult to check. It is often
the case that the algorithms and their specification are described at a high-level
point of view which may introduce some ambiguities in the expected behaviors.
Another approach consists in using automatic or partly automatic techniques
based on formal methods. For instance, the tool TLA+ [3] provides a language
to write proofs of correctness which can be checked automatically thanks to a
proof system. This approach is much safer, however finding the correct proof
arguments so that the proof system terminates might be hard. For finite state
distributed algorithms, another way is to rely on model-checking [2, 14]. Here,
a model for the algorithm together with a formula specifying its correctness,
expressed for example in temporal logics like LTL or CTL [5], are given, and
checking whether the model satisfies the specification is then automatic. This is
the approach of the tool SPIN [11] which has allowed to verify many algorithms.

These methods are useful when they succeed in showing that a distributed
algorithm is correct, but when it appears that the algorithm does not respect its
specification, then a new algorithm has to be conceived and the tedious work
begins again. One way to solve this issue is to design distributed algorithms which
are correct by construction. In other words, one provides a specification and
then an automatic tool synthesizes an algorithm for this specification. Synthesis
has been successfully applied to various kinds of systems, in particular to design
reactive systems which have to take decisions according to their environment:
in such cases, the synthesis problem consists in finding a winning strategy in a
two player games (see for instance [7]). In a context of distributed algorithms,
some recent works have developed some synthesis techniques in order to obtain
automatically some thresholds bounds for fault-tolerant distributed algorithms
[12]. The advantage of such methods is that the synthesis algorithm can be used
to produce many distributed algorithms and there is no need to prove that they
are correct, the correctness being ensured (automatically) by construction.

Our contributions. In this work, we first define a simple model to describe
distributed algorithms for a finite number of processes communicating thanks to
shared registers. We then show that the correctness of these algorithms can be
specified by a formula of the linear time temporal logic LTL[13, 15] and more
interestingly we show that classical execution contexts can also be specified in
LTL. We then provide a way to synthesize automatically distributed algorithms
from a specification. Following SAT-based model-checking approach [1], we have
furthermore implemented our method in a prototype which relies on the SMT-
solver Z3 [4] and for some specific cases synthesizes non-trivial algorithms. Of
course the complexity is high and we can at present only generate algorithms for
two processes but they are interesting by themselves and meet their specification
w.r.t. several execution contexts.

2

1 Distributed algorithms and specification language

1.1 Distributed algorithms with shared memory

We begin by defining a model to represent distributed algorithms using shared
memory. In our model, each process is equipped with an atomic register that it
is the only one to write but that can be read by all the others processes (single
writer-multiple readers registers).

The processes manipulate a data set D including a set of input values DI ⊆ D,
a set of output values DO ⊆ D and a special value ⊥ ∈ D \ (DI ∪ DO) used to
characterize a register that has not yet been written. The actions performed by
the processes are of three types, they can either write a data in their register, read
the register of another process or decide a value. For a finite number of processes n,
we denote by Act(D, n) = {wr(d), re(k),dec(o) | d ∈ D\{⊥}, k ∈ [1, n], o ∈ DO}
where wr(d) stands for ”write the value d to the register”, re(k) for ”read the
register of process k”, and dec(o) for ”output (or decide) the value o”.

The action performed by a process at a specific instant depends on the values
it has read in the registers of the other processes, we hence suppose that each
process stores a local copy of the shared registers that it modifies when it performs
a read or a write. Furthermore, in some cases, a process might perform different
actions with the same local copy of the registers, because for instance it has
stored some information on what has happened previously. This is the reason
why we equip each process with a local memory as well. A process looking at
its copy of the registers and at its memory value decides to perform an unique
action on its local view and to update its memory. According to this, we define
the code executed by a process in a distributed algorithm as follows.

Definition 1 (Process algorithm). A process algorithm P for an environment
of n processes over the data set D is a tuple (M, δ) where:

1. M is a finite set corresponding to the local memory values of the process;
2. δ : DI ∪ (Dn×M) 7→ Act(D, n)×M is the action function which determines

the next action to be performed and the update of the local memory, such that
if δ(s) = (dec(o),m′) then s = (V,m) ∈ Dn ×M and m = m′.

A pair (a,m) ∈ Act(D, n) ×M is called a move. The last condition ensures
that a process first move cannot be to decide a value (this is only to ease some
definitions) and when a process has decided then it cannot do anything else and
its decision remains the same. Note that the first move to be performed by the
process from an input value i in DI is given by δ(i).

A process state s for a process algorithm P is either an initial value in DI
or a pair (V,m) ∈ Dn ×M where the first component corresponds to the local
view of the processes and m is the memory value. Let SP ⊆ DI ∪ (Dn ×M)
the states associated to P . An initial state belongs to DI . We now define the
behavior of a process when it has access to a shared memory R ∈ Dn and its
identifier in the system is i ∈ [1, n]. For this we define a transition relation
i−→⊆ (SP ×Dn)× (Act(D, n)×M)× (SP ×Dn) such that (s,R)

i,(a,m′)−−−−−→ (s′,R′)

3

iff for all j ∈ [1, n] if i 6= j then R[j] = R′[j], and we are in one of the the
following cases:

1. if a = wr(d) then R′[i] = d and s′ = (V′,m′) such that V′[i] = d and, for all
j ∈ [1, n] \ {i}, if s = (V,m) (i.e. s 6∈ DI) then V′[j] = V[j] and otherwise
V′[j] = ⊥ i.e. the write action updates the corresponding shared register as
well as the local view.

2. if a = re(k) then R′ = R, and s′ = (V′,m′) (i.e. s 6∈ DI) with V′[k] = R[k]
and, for all j ∈ [1, n] \ {k}, if s = (V,m) then V′[j] = V[j] and otherwise
V′[j] = ⊥, i.e. the read action copies the value of the shared register of
process k in the local view.

3. if a = dec(o) then R′ = R and s′ = s, i.e. the decide action does not change
the local state of any process, neither the shared registers.

The transition relation
i−→P⊆ (SP ×Dn)×(SP ×Dn) associated to the process

algorithm P is defined by: (s,R)
i−→P (s′,R′) iff (s,R)

i,δ(s)−−−→ (s′,R′). Different
process algorithms can then be combined to form a distributed algorithm.

Definition 2 (Distributed algorithm). A n processes distributed algorithm
A over the data set D is given by P1 ⊗ P2 ⊗ . . . ⊗ Pn where Pi is a process
algorithm for an environment of n processes over the data set D for all i ∈ [1, n].

We now define the behavior of such a n processes distributed algorithm
P1⊗P2⊗. . .⊗Pn. We call a configuration of A a pair of vectors C = (S,R) where S
is a n dimensional vector such that S[i] ∈ SPi

represents the state for process i and
R ∈ Dn represents the values of the shared registers. We use CA to represent the
set of configurations of A. The initial configuration for the vector of input values
In ∈ DnI is then simply (In,R) with R[i] = ⊥ for all i ∈ [1, n]. Given a process
identifier i ∈ [1, n] and a pair (a,m) where a ∈ Act(D, n) and m is a memory

value for process i, we define the transition relations
i,(a,m)
====⇒ over configurations as

(S,R)
i,(a,m)
====⇒ (S′,R′) iff we have (S[i],R)

i,(a,m)−−−−→ (S′[i],R′) and for every j 6= i:

S′[j] = S[j]. The execution step
i

=⇒A of process i for the distributed algorithm

A is defined by (S,R)
i

=⇒A (S′,R′) iff (S[i],R)
i−→Pi

(S′[i],R′), note that in that

case we have (S,R)
i,δi(S[i])
=====⇒ (S′,R′) if δi is the action function of Pi.

1.2 Example

Algorithm 1 provides a classical representation of a tentative distributed algorithm
to solve consensus with two processes. Each process starts with an input value V
and the consensus goal is that both processes eventually decide the same value
which must be one of the initial values. It is well known that there is no wait-free
algorithm to solve consensus [6, 8] hence this algorithm will not work for any set
of executions, in particular one could check that if the two processes start with
a different input value and if they are executed in a round-robin manner (i.e.
process 1 does one step and then process 2 does one and so on) then none of the

4

Algorithm 1 Consensus algorithm for process i with i ∈ {1, 2}
Require: V: the input value of process i
1: while true do
2: r[i]:=V
3: tmp:=r[3-i]
4: if tmp=V or tmp = ⊥ then
5: Decide(V)
6: Exit()
7: else
8: V:=tmp
9: end if

10: end while

process will ever decide and they will exchange their value for ever. We shall see
however later that under some restrictions on the set of considered executions
this algorithm solves consensus.

◦

◦ ⊥ , A

(wr(◦), A)

◦ • , B

(re(2), B)

◦ ◦ , B(dec(◦), B)

◦ ⊥ , B(dec(◦), B)

◦ ◦ , A
(re(2), B)

•

• ⊥ , A

(wr(•), A)

• ◦ , B

(re(2), B)

(wr(◦), A)

• • , B (dec(•), B)

•⊥ , B (dec(•), B)

• • , A
(re(2), B)

(wr(•), A)

Fig. 1. View of a process algorithm P for a process with identifier 1

Figure 1 gives a visual description of the process algorithm corresponding to
the Algorithm 1 supposing that the corresponding process has identifier 1. In
this graph, each nodes represents a process state, the memory is the set {A,B}
and the data belongs to {◦, •}. From each node, we have some edges labeled with
the action to perform according to the process state. The first action consists
in writing the input data in the register, which leads to a state where the local
view contains the data in the first register and ⊥ in the local copy of the second
register and the local memory cell is A. Afterwards, the process reads the second
register and on Figure 1, we represent all the possible data that could be in this
register (i.e either ◦, • or ⊥) in the local view and the memory cell evolves to B.

5

Hence, the elements A and B of the memory set are used to represent the local
state of the algorithm: when the local memory is A it means that the last action
performed by the process was the write action corresponding to the Line 2 of
Algorithm 1 and when its value is B, it means that the Algorithm has performed
the read action corresponding to the Line 3. We only need these two values for
the memory, because in our setting after having read the memory, the read value
is stored in the local copy of the register and according to it, the algorithm either
decides or goes back to Line 2. Note that when we leave one of the state at the
bottom of the figure by reading the second register, we take into account that ⊥
cannot be present in this register, since at this stage this register has necessarily
been written.

2 Using LTL to reason on distributed algorithms

2.1 Kripke structures and LTL

We specify distributed algorithms with the Linear time Temporal Logic (LTL).
We recall here some basic definitions concerning this logic and how its formulae
are evaluated over Kripke structures labeled with atomic propositions from a set
AP.

Definition 3 (Kripke structure). A Kripke structure K is a 4-tuple (Q,E, `,
qinit) where Q is a countable set of states, qinit ∈ Q is the initial state, E ⊆ Q2

is a total 1 relation and ` : Q→ 2AP is a labelling function.

A path (or an execution) in K from a state q is an infinite sequence q0q1q2 · · ·
such that q0 = q and (qi, qi+1) ∈ E for any i. We use PathK(q) to denote the set
of paths from q. Given a path ρ and i ∈ N, we write ρi for the path qiqi+1qi+2 . . .
(the i-th suffix of ρ) and ρ(i) for the i-th state qi.

In order to specify properties over the execution of a Kripke structure, we use
the Linear time Temporal Logic (LTL) whose syntax is given by the following
grammar φ, ψ ::= p | ¬φ | φ∨ψ | Xφ | φUψ where p ranges over AP. We
use standard abbreviations: >, ⊥, ∨, ⇒. . . as well as the classical temporal

modalities Fφ
def
= >Uφ and Gφ

def
= ¬F¬φ. Given a path ρ of a Kripke structure

K = (Q,E, `, qinit), the satisfaction relation |= for LTL is defined inductively by:

ρ |= p iff p ∈ `(ρ(0))

ρ |= ¬φ iff ρ 6|= φ

ρ |= φ∨ψ iff ρ |= φ or ρ |= ψ

ρ |= Xφ iff ρ1 |= φ

ρ |= φUψ iff ∃i ≥ 0. ρi |= ψ and ∀0 ≤ j < i. ρj |= φ

We then write K |= φ iff ρ |= φ for any ρ ∈ PathK(qinit). Since we quantify
over all the paths, we speak of universal model-checking.

1 I.e., for all q ∈ Q, there exists q′ ∈ Q s.t. (q, q′) ∈ E.

6

2.2 Specifying distributed algorithms

We will now see how to use LTL formulae for specifying the correctness of
distributed algorithms under specific execution contexts. We consider distributed
algorithms for n processes working over a data set D. The set of atomic proposi-
tions that we will use in this context will then be : APnD = {activei,Di}1≤i≤n ∪
{Indi }1≤i≤n,d∈DI ∪ {Out

d
i }1≤i≤n,d∈DO where activei represents the fact that pro-

cess i has been the last one to execute an action, Di that process i has decided,
Indi that the initial value of process i is d and Outdi that the output value of
process i is d. Note that we always have: Di ⇔

∨
dOut

d
i .

We shall now see how we associate a Kripke structure labeled with these
propositions with a distributed algorithm. Let A = P1 ⊗ P2 ⊗ . . . ⊗ Pn be a
n process distributed algorithm over the data set D. The states of the Kripke
structures contain configurations of A together with information on which was
the last process to perform an action as well as the output value for each process
(set to ⊥ if the process did not output any value yet). Formally, we define
KA = (QA, EA, `A, q

A
init) with:

– QA = {qAinit}∪ (CA× [0, n]× (DO ∪{⊥})n), the first component is a configura-
tion of A, the second is the identifier of the last process which has performed
an action (it is set to 0 at the beginning), the third contains the output value;

– EA is such that:
•
(
qAinit, ((In,⊥), 0,⊥)

)
∈ E for all initial configurations (In,⊥) of A (here

⊥ stands for the unique vector in {⊥}n), i.e. the initial configurations
are the one accessible from the initial state qinit after one step,

•
(
((S,R), i,O), ((S′,R′), j,O′)

)
∈ EA iff (S,R)

j
=⇒A (S′,R′) and if the

action performed by process j (from S[j] to S′[j]) is dec(o) then O′[j] = o
and O′[k] = O[k] for all k ∈ [1, n] \ {j}, otherwise O = O′.

– the labelling function `A is such that:
• `A(qAinit) = ∅,
• activei ∈ `A((S,R), i,O) and activej 6∈ `((S,R), i,O) if j 6= i, i.e the last

process which has performed an action is i,
• Indj ∈ `A((S,R), i,O) iff S[j] ∈ DI and d = S[j], i.e. process j is still in

its initial configuration with its initial value d,
• Dj ∈ `A((S,R), i,O) iff O[j] 6= ⊥, i.e. process j has output its final value;

• Outdj iff O[j] = d, i.e. the value output by process j is d.

For a LTL formula φ over APnD, we say that the distributed algorithm A
satisfies φ, denoted by A |= φ, iff KA |= φ.

The LTL formulae over {Indi }1≤i≤n,d∈DI ∪{Out
d
i }1≤i≤n,d∈DO will be typically

used to state some correctness properties about the link between input and output
values. The strength of our specification language is that it allows to specify
execution contexts thanks to the atomic propositions in {activei,Di}1≤i≤n.

Even if this is not the main goal of this research work, we know that given a
n processes distributed algorithm A over a finite data set D and a LTL formula
Φ over APnD, one can automatically verify whether A |= Φ and this can be done
in polynomial space. Indeed model-checking an LTL formula Φ over a Kripke

7

structure can be achieved in polynomial space [15]: the classical way consists
in using a Büchi automaton corresponding to the negation of the formula Φ
(which can be of exponential size in the size of the formula) and then checking for
intersection emptiness on the fly (the automaton is not built but traveled). The
same technique can be applied here to verify A |= Φ without building explicitly
KA. Therefore we have the following result which is a direct consequence of [15]:

Proposition 1. Given a n processes distributed algorithm A over a finite data
set D and a LTL formula Φ over APnD, verifying whether A |= Φ is in Pspace.

2.3 Examples

Specification for consensus algorithms. We recall that the consensus prob-
lem for n processes can be stated as follows: each process is equipped with an
initial value and then all the processes that decide must decide the same value
(agreement) and this value must be one of the initial one (validity). We do not
introduce for the moment any constraints on which process has to propose an
output, this will come later. We assume that the consensus algorithms work over
a data set D with DI = DO, i.e. the set of input values and of output values are
equal. The agreement can be specified by the following formula:

Φcagree
def
= G

∧
1≤i 6=j≤n

(
(Di ∧Dj) ⇒ (

∧
d∈DO

Outdi ⇔ Outdj)
)

We state here that if two processes have decided a value, then this value is the
same. For what concerns the validity, it can be expressed by:

Φcvalid
def
= X

∧
1≤i≤n

∧
d∈DI

((
F Outdi

)
⇒
(∨

1≤j≤n

Indj

))
In this case, the formula simply states that if eventually a value is output, then
this value was the initial value of one the processes. Note that this formula begins
with the temporal operator X because in the considered Kripke structure the
initial configurations are reachable after one step from qinit.

We are now ready to provide specifications for the execution context, i.e. the
formulae which tell when processes have to decide. First we consider a wait-free
execution context, each process produces an output value after a finite number
of its own steps, independently of the steps of the other processes [8]. This can
be described by the LTL formula:

Φwf
def
=

∧
1≤i≤n

(
(G F activei) ⇒ (F Di)

)
This formula states that for each process, if it is regularly (infinitely often) active,
then at some point (i.e. after a finite number of steps) it must decide. Consequently
if a distributed algorithm A is such that A |= Φcagree ∧ Φcvalid ∧ Φwf, then A is a
wait-free distributed algorithm for consensus. However we know that even for two

8

processes such an algorithm does not exist [6, 8]. But, when considering other
execution contexts, it possible to have an algorithm for consensus.

An another interesting execution context is the obstruction-free context. Here,
every process that eventually executes in isolation has to produce an output value
[9]. This can be ensured by the following LTL formula which exactly matches
the informal definition.

Φof
def
=

∧
1≤i≤n

((F G activei)⇒ (F Di))

The distributed algorithm Acof = P1 ⊗ P2, where P1 is the process algorithm
described by Figure 1 and P2 is the symmetric of P1 obtained by replacing the
action re(2) actions by re(1), is such that Acof |= Φcagree ∧ Φcvalid ∧ Φof.

Finally, another interesting context is the one corresponding to a round-robin
scheduling policy. This context is given by the LTL formula, which basically
states that if the n processes behave in a round-robin fashion, i.e. there are active
one after another, then they all have to decide.

Φrr
def
=

[
G
(∧

1≤i≤n

(activei ⇒ X active(1+i%n))
)]
⇒
[∧
1≤i≤n

(
FDi

)]
For the previously mentioned algorithm, we have Acof 6|= Φrr, in fact as said in
Section 1.2, if the processes are scheduled in a round-robin fashion and if their
input values are different, then they will exchange their value forever and never
decide. Note that we could easily define some Φkrr formula to specify a round-robin
policy where every process performs exactly k successive moves (instead of 1).

Specification for ε-agreement algorithms. We assume that the data set D
is such that DI and DO are finite subset of Q. We now present a variant of the
ε-agreement. As for consensus, each process receives an initial value and the
output values must respect the following criteria: (1) they should be between
the smallest input value and the greatest one (validity) and (2) the outputs
values all stand in an interval whose width is less or equal to ε (agreemeent). For
instance, if we take DI = {0, 1} and DO = {0, 12 , 1}, then if the two processes have
input 0 and 1 respectively, the sets of accepted output values for 1

2 -agreement is
{{0}, {1}, { 12}, {0,

1
2}, {

1
2 , 1}}. In this case, we can rewrite the formula for validity

and agreement as follows:

Φεvalid
def
= X

[∨
dm≤dM∈DI

[
(
∨

1≤i≤n

Indmi)∧(
∨

1≤i≤n

IndMi)∧

G
[(∧

d<dm∈DO

∧
1≤i≤n

¬Outdi
)
∧
(∧
d>dM∈DO

∧
1≤i≤n

¬Outdi
)]]]

And:

Φεagree
def
= G

∧
1≤i 6=j≤n

(
(Di ∧Dj) ⇒ (

∨
d,d′∈DOs.t.|d′−d|≤ε

Outdi ∧Out
d′

j)
)

9

For what concerns the specification of the execution context, we can take the
same formulae Φwf, Φof and Φrr introduced previously for the consensus.

3 Synthesis

3.1 Problem

We wish to provide a methodology to synthesize automatically a distributed
algorithm satisfying a specification given by a LTL formula. In this matter, we
fix the number of processes n, the considered data set (which contains input and
output values) D and the set of memory values M for each process. A process
algorithm P is said to use memory M iff P = (M, δ). A distributed algoritm
A = P1 ⊗ ...⊗ Pn uses memory M if for i ∈ [1, n], the process Pi uses memory
M . The synthesis problem can then be stated as follows:

Inputs: A number n of processes, a data set D, a set of memory values M and
a LTL formula Φ over APnD

Output: Is there a n processes distributed algorithm A over D which uses
memory M and such that A |= Φ ?

We propose a method to solve this decidability problem and in case of positive
answer we are able to generate as well the corresponding distributed algorithm.

3.2 A set of universal Kripke structures for the synthesis problem

We show here how the synthesis problem boils down to find a specific Kripke
structure which satisfies a specific LTL formula. In the sequel, we fix the pa-
rameters of our synthesis problem: a number n of processes, a data set D, a set
of memory values M and a LTL formula Φspec over APnD . We build a Kripke
structure Kn,D,M similar to the Kripke structure KA associated to a distributed
algorithm A but where the transition relation allows all the possible behaviors
(all the possible move for every process in any configuration).

First, note that each process algorithm P for an environment of n processes
over the data set D which uses memory M has the same set of process states SP .
We denote S = DI ∪ (Dn ×M) this set. Similarly each n processes distributed
algorithm A over D which uses memory M has the same set of configurations CA
that we will denote simply C. We recall that these configurations are of the form
(S,R) with S ∈ Sn is a vector of n processes states and R ∈ Dn.

The Kripke structure Kn,D,M uses the set of atomic propositions APnD ∪ APC,O
where APC,O = {PC,O | C ∈ C,O ∈ (DO∪{⊥})n} contains one atomic proposition
for every pair made by a configuration C and vector of output values O. Its
states will be the same as KA but for every possible actions there will be an
outgoing edge. Formally, we have Kn,D,M = (Q,E, `, qinit) with:

– Q = {qinit} ∪ (C × [0, n]× (DO ∪ {⊥})n) (as for KA)
– E is such that:

10

•
(
qinit, ((In,⊥), 0,⊥)

)
∈ E for all initial configurations (In,⊥) in DnI ×

{⊥}n), (as for KA),

•
(
((S,R), i,O), ((S′,R′), j,O′)

)
∈ E iff (S,R)

j,(a,m)
====⇒ (S′,R′) for some

(a,m) ∈ Act(D, n)×M . And:
∗ if a = dec(o) then S[j] = (V,m) for V ∈ Dn and O′[j] = o and

O′[k] = O[k] for all k ∈ [1, n] \ {j}, otherwise O = O′ (the memory
cells does not change once the decision is fixed),

∗ if O[j] 6= ⊥, then a = dec(O[j]) (the decision cannot change, no
other action can be performed).

– the labelling function ` is defined the same way as in KA for the atomic
propositions in APnD and PC,O ∈ `((S,R), i,O) iff C = (S,R) and O = O.

Hence the relation E simulates all the possible moves from any configuration
(S,R) and the Kripke structure Kn,D,M contains all possible executions of any n
processes algorithms over D using memory M .

Defining an algorithm consists in selecting exactly one action for each process
in every configuration. Here we do this by adding to the structure extra atomic
propositions Pi(a,m) with 1 ≤ i ≤ n and (a,m) ∈ Act(D, n)×M which specifies
for each configuration what should be the next move of process i. We denote by
APnAct,M this set of new atomic propositions. An algorithm labelling for Kn,D,M
is then simply a function `′ : Q 7→ 2APn

Act,M . We denote by K`′n,D,M the Kripke
structure obtained by adding to Kn,D,M the extra labelling provided by `′. When
defining such an algorithm labelling, we need to be careful that it corresponds
effectively to a distributed algorithm: our processes are deterministic (only one
action is allowed for Pi in some configuration) and a process has to choose the
same action when its local view is identical. Such an algorithm labelling `′ is said
to be consistent iff the following conditions are respected:

1. `′(qinit) = ∅,
2. for all ((S,R), i,O) ∈ Q, for all j ∈ [1, n] there exists a unique Pj(a,m) ∈
`′((S,R), i,O), each process has exactly one move in each configuration,

3. for all ((S,R), i,O), ((S′,R′), j,O′) ∈ Q, if S[k] = S′[k] and if Pk(a,m) ∈
`′((S,R), i,O) then Pk(a,m) ∈ `

′((S′,R)′, j,O′), i.e. in all configuration with
the same state of process k, the moves of process k must be the same.

A consistent algorithm labelling `′ induces then a distributed algorithm A`
′

=
P1 ⊗ . . . ⊗ Pn where for all j ∈ [1, n], we have Pi = (M, δi) and δi(s) = (a,m)
iff for all configurations ((S,R), j,O) ∈ Q such that S[i] = s, we have Pi(a,m) ∈
`′(((S,R), j,O)). Conditions 1. to 3. ensure that this definition is well-founded.

To check by the analysis of the Kripke structure K`′n,D,M whether the algorithm

A`
′

induced by a consistent algorithm labelling satisfies the specification Φspec,

we have to find a way to extract from K`′n,D,M the execution corresponding to

A`
′
. This can be achieved by the following LTL formula:

Φout
def
= X G

[∨
C∈C

∨
O∈O

∨
i,a,m

(
Pi(a,m) ∧PC,O ∧X(activei⇒PNext(C,O,i,a,m))

)]

11

where Next(C,O, i, a,m) is the (unique) extended configuration (C ′,O′) such

that C
i,(a,m)
====⇒ C ′ and O[j] = O′[j] for all j 6= i and O′[i] = o if a = dec(o)

otherwise O′[i] = ⊥. We can then combine Φout with the correctness specification
Φspec to check in K`′n,D,M whether the executions of A`

′
(which are the executions

of KA`′) satisfy Φspec.

Proposition 2. Given a consistent algorithm labelling `′ and its induced dis-
tributed algorithm A`

′
,

A`
′
|= Φspec iff K`

′

n,D,M |= Φout ⇒ Φspec

Sketch of proof. To prove this it is enough to see that the control states of KA`′

and of K`′n,D,M are the same and that any infinite sequence of such states ρ

beginning in qinit is an execution in KA`′ iff it is an execution in K`′n,D,M verifying
Φout. ut

Consequently, to solve the synthesis problem it is enough to find a consistent
algorithm labelling `′ such that K`′n,D,M |= Φout ⇒ Φspec. Note that as explained

before this produces exactly the correct algorithm A`
′
. We have hence a decision

procedure for the synthesis problem: it reduces to some instances of model-
checking problem for LTL formulae.

4 Experiments

We have implemented a prototype to automatically synthesize algorithms for
consensus and ε-agreement problems. For this we use the SMT solver Z3[4]: it
is now classical to use SAT solver for model-checking [1] and it was natural
to consider this approach especially because we need to add an existential
quantification over the atomic propositions encoding the moves of the processes 2.
Our prototype is however a bit different from the theoretical framework explained
in Section 3 and we explain here the main ideas behing its implementation.

First, the implementation does not consider general (quantified) LTL formulas
but encodes directly the considered problem (consensus or ε-agreement) for a set
of parameters provided by the user into a Z3-program, and the result provided
by the SMT solver Z3 is then automatically analysed in order to get algorithms
for processes.

We now sketch the main aspects of the reduction to Z3. The code starts by
existentially quantifying over the action functions for each process: an action
function δp for a process p is encoded as an integer value δps for every process
state s which gives the next action to performed. In Z3, such a δps is a bitvector
(whose size is log2(|Act(D, n) × M | + 1)). It remains to encode the different
properties we want to ensure (depending on the considered problem). Here are
several examples:

2 We do not describe here the reduction: it uses standard techniques for encoding LTL
formulae to SAT instance.

12

– To deal with the formula Φcagree for the consensus, we use a set of Boolean
constants (one for every global configuration C). Their truth value can be
easily defined as true when all processes in C have terminated and decided
the same value, or as false when at least two processes have decided different
values in C. For the other cases, we add constraints stating that the value
associated with C equals true when for every successor (here a successor is
any configuration reachable after an action (a,m) of some process p such
that this action (a,m) corresponds to the value δps where s is the state of p
in C). It remains to add a last constraint: for every initial configuration C0,
the constant associated with Φcagree has to be true. Note that this definition
is based on the fact that the property is an invariant: we want to ensure that
no reachable configuration violates a local property.

– Encoding the formula Φcvalid follows the same approach: we use a boolean
value for every configuration C and for every input data d, and define their
truth value in such a way that it is true iff the value d cannot be decided
in the next configurations. If some process has already decided d in C, the
constant equals to false. If all processes have decided and no one choose d, it
is true. Otherwise a positive value requires that for every successor C ′, the
constants are also true. Finally we add constraints specifying for every initial
configuration C0 the values d that cannot be chosen by requiring that their
corresponding values are true.

– The obstruction free context Φof is encoded as follows: we need two sets of
constants for every process p. The first set contains one integer value (encoded
as a bitvector in Z3) for every configuration and it is defined in order to
be the number of moves that process p has to perform (alone) to decide
(and terminate). This distance is bounded by the number of states nbstate
of process p (and we use the value nbstate to represent the non-termination
of the process). In addition, we consider a set of boolean values (one for
every configuration) which are defined in order to equal to true iff for every
reachable configuration from C, the computed distance is strictly less than
nbloc.

– Encoding the wait-free context uses the same idea. We have to verify that
from every reachable configuration, every process will terminate (for this
we use the fact that when a process decides a value, it does not perform
action anymore, and then other processes progress). Note that in this case,
the bound on the distance is the number of global configurations.

In addition to this encoding, we can also use standard techniques of bounded
model-checking by fixing a smaller bound for the computation of the distances
described above. When this is done, the program may provide an algorithm, or
answer that an algorithm with this bound does not exist (it remains to try
with a greater bound). This heuristic is crucial to synthesize algorithms in many
cases (the computation of distances is quite expensive since it is connected to
the number of states or configurations).

The parameters of our prototype are then: (1) the number of processes: n,
(2) the range of initial values and the range of possible values in registers, (3)

13

the size of the processess memory, (4) the types of scheduling policy (wait free,
obstruction free, round-robin, or a combination of them), and (5) the value of ε
for the ε-agreement problem. Finally one can ask for symmetric programs (each
process has the same action function) and in the following we only consider
symmetric solutions.

State explosion problem. As explained in previous sections, we are faced with
a huge complexity. For example, with 2 processes, two possible initial values
and a memory size equals to 2, there are more than 450 configurations for the
distributed algorithms. If we consider 3 processes, 2 initial values et a memory size
equals to 3, we get more than 240 thousands configurations ! This gap explains
why our prototype only provides algorithms for 2 processes. Note that even for
the case n = 2, the complete encoding of the problem may use several thousands
of variables in the Z3 code, and the SMT solver succeeds in providing a result.
Of course, the implementation of our prototype in its current form is quite naive
and some efficiency improvements are possible.

Moreover note that our prototype is often more efficient for finding algorithms
when they exist than for proving that no algorithm within the resource fixed by
the parameters3 exists. First it is often easier to find a valuation than verifying
that no valuation exists, and secondly we can use heuristics to accelerate the
procedure (for example by bounding the length of computations: in this case, if
a valuation is found, we can stop, otherwise we have to try again with different
settings). This fact can be seen as a variant of a well-known phenomenon in sat-
based model-checking: it is usually very efficient to find a bug (that is an execution
satisfying or not a formula), but it is not the case to prove full verification.

Consensus. For 2 components, 2 initial and final values, a memory of size 2 and
the obstruction free policy, we get the algorithm of Section 1.2 (Figure 1) except
that the processes use their register to write the value they do not plan to decide
(it is clearly symmetric to the previous algorithm). Note that the size of memory
is important: there is no algorithm with memory of size 1: indeed we need to
distinguish the configuration (0, 0) (the proper register equals to 0 and the last
read value of the register of other process is 0) when it is reached after a Read
(both process agree on the value to decide) and when it is reached after a Write(0)
performed by the process to update its register in order to agree with the other
process. This absence of algorithm with a memory of size 1 corresponds to an
UNSAT result for the program: the formula Φsynth with these parameters is not
satisfiable. When we tried to look for algorithms for wait-free case, we found no
solution with our program: indeed we know that there is no such algorithms !

More interestingly we can ask for a program correct w.r.t. several execution
contexts. For example, we can ask for program correct w.r.t. obstruction free,
round-robin for one step and also round-robin for two steps. The program
generates 4 the algorithm depicted in Figure 2 (we follow the same presentation

3 Note that we cannot prove that no algorithm exists, but only that no algorithm with
this memory bound exists if the corresponding SAT instance has no solution.

4 It takes few seconds to produce the algorithm on a standard laptop.

14

as in Section 1 for the algorithm and since we have only two processes, we
use (re,−) instead of (re(1),−): a read operation always deals with the other
process).

◦

◦ ⊥ , B

(wr(◦), B)

◦ ◦ , A

(re, A)

◦ ⊥ , A

(dec(◦), A) ◦ • , A

◦ ◦ , B

(re, A)

(dec(◦), B)
• ◦ , A

(wr(◦), A) ◦ • , B

(re, A)

• • , B

(wr(•), B)

(re, A)

•

• ⊥ , A

(wr(•), A)

• ⊥ , B

(dec(•), B)

• ◦ , B

(re, B)

• • , A
(re, B)

(dec(•), A)

Fig. 2. View of a process algorithm P for consensus, w.r.t. to obstruction free and
round-robin 1 and 2.

ε-agreement. For this problem, we have to fix ε. In Figure 3, we present an
algorithm for 1

5 -agreement for 2 processes, with initial values {0, 1} and memory
3. The set of possible decision values is {0, 15 ,

2
5 ,

3
5 ,

4
5 , 1}. Note that this algorithm

works for the wait-free execution context, and therefore also for round-robin (for
any step) and for obstruction free. Here the memory size equals to 3: this is
illustrated by the fact that the configuration (0, 0) (the register’s value is 0 and
the last read value from the other process is 0) appears in three nodes.

5 Conclusion

We have shown here that in theory it is possible to solve the synthesis problem
for distributed algorithm as soon as we fix the set of data that can be written in
the registers and the memory needed by each process in the algorithm. However
even if this problem is decidable, our method has to face two different problems:
first, it does not scale and second, when the answer to the synthesis problem
is negative, we cannot conclude that there is no algorithm at all. In the future,
we will study more intensively whether for some specific cases we can decide

15

0

1 ⊥ , A

(wr(1), A)

1 1 , B

(dec(0
5
), A)

1 ⊥ , B

(re, B)

(dec(0
5
), B)

1 0 , B

0 0 , B

(wr(0), B)

0 1 , A

(re, A)

(dec(2
5
), A)

0 0 , A

(re, A)

(dec(4
5
), A)

1

0 ⊥ , A

(wr(0), A)

0 0 , C

(dec(5
5
), C)

0 ⊥ , C

(re, C)

(dec(5
5
), C)

0 1 , C

1 1 , C

(wr(0), C)

0 1 , A

(re, A)

(dec(1
5
), A)

1 0 , A

(re, A)

(dec(3
5
), A)

Fig. 3. View of a process algorithm P for 1
5
-agreement, w.r.t. wait free scheduling.

16

the existence of a distributed algorithm satisfying a given specification without
fixing any restrictions on the exchanged data or on the size of the algorithms.
We believe that for some specific distributed problems, this is in fact feasible.

References

1. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

2. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In D. C. Kozen, editor, LOP’81, volume 131
of LNCS, pages 52–71. Springer-Verlag, 1982.

3. D. Cousineau, D. Doligez, L. Lamport, S. Merz, D. Ricketts, and H. Vanzetto. TLA
+ proofs. In FM’12, volume 7436 of LNCS, pages 147–154. Springer, 2012.

4. L. M. de Moura and N. Bjørner. Z3: an efficient SMT solver. In TACAS’08, volume
4963 of LNCS, pages 337–340. Springer, 2008.

5. E. A. Emerson. Temporal and modal logic. In J. v. Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, chapter 16, pages 995–1072. Elsevier,
1990.

6. M. J. Fischer, N. A. Lynch, and M. Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374–382, 1985.

7. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite
Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February
2001], volume 2500 of LNCS. Springer, 2002.

8. M. Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13(1):124–
149, 1991.

9. M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-
ended queues as an example. In ICDCS’03, pages 522–529, 2003.

10. M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan
Kaufmann, 2008.

11. G. J. Holzmann. The SPIN Model Checker - primer and reference manual. Addison-
Wesley, 2004.

12. M. Lazic, I. Konnov, J. Widder, and R. Bloem. Synthesis of distributed algorithms
with parameterized threshold guards. In OPODIS’17, volume 95 of LIPIcs, pages
32:1–32:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

13. A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (FOCS’77), pages 46–57. IEEE
Comp. Soc. Press, Oct.-Nov. 1977.

14. J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In M. Dezani-Ciancaglini and U. Montanari, editors, SOP’82, volume 137
of LNCS, pages 337–351. Springer-Verlag, Apr. 1982.

15. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification (preliminary report). In LICS’86, pages 332–344. IEEE Computer
Society, 1986.

17

