
Quantified CTL: expressiveness and model checking

(Extended abstract)

Arnaud Da Costa1, François Laroussinie2, and Nicolas Markey1

1 LSV – CNRS & ENS Cachan
2 LIAFA – Univ. Paris Diderot & CNRS

Abstract. While it was defined long ago, the extension of CTL with
quantification over atomic propositions has never been studied extensively.
Considering two different semantics (depending whether propositional
quantification refers to the Kripke structure or to its unwinding tree),
we study its expressiveness (showing in particular that QCTL coincides
with Monadic Second-Order Logic for both semantics) and characterize
the complexity of its model-checking problem, depending on the number
of nested propositional quantifiers (showing that the structure semantics
populates the polynomial hierarchy while the tree semantics populates the
exponential hierarchy). We also show how these results apply to model
checking ATL-like temporal logics for games.

1 Introduction

Temporal logics. Temporal logics extend propositional logics with modalities for
specifying constraints on the order of events in time. Since [25,5,26], they have
received much attention from the computer-aided-verification community, since
they fit particularly well for expressing and automatically verifying (e.g. via model
checking) properties of reactive systems. Two important families of temporal
logics have been considered: linear-time temporal logics (e.g. LTL [25]) can be
used to express properties of one single execution of the system under study,
while branching-time temporal logics (e.g. CTL [5,26] and CTL∗ [10]) consider
the execution tree. Since the 90s, many extensions of these logics have been
introduced, of which alternating-time temporal logics (such as ATL, ATL∗ [1])
extend CTL towards the study of open systems (involving several agents).

In this landscape of temporal logics, both CTL and ATL enjoy the nice property
of having polynomial-time model-checking algorithms. In return for this, both
logics have quite limited expressiveness. Several extensions have been defined in
order to increase this limited expressive power.

Our contributions. We are interested in the present paper in the extension of
CTL (and CTL∗) with propositional quantification [28,11]. In that setting, propo-
sitional quantification can take different meaning, depending whether the extra
propositions label the Kripke structure under study (structure semantics) or its
execution tree (tree semantics). While these extensions of CTL with propositional

quantification have been in the air for thirty years, they have not been extensively
studied yet: some complexity results have been published for existential quantifica-
tion [15], for the two-alternation fragment [16] and for the full extension [12]; but
expressiveness issues, as well as a complete study of model checking for the whole
hierarchy, have been mostly overlooked. We answer these questions in the present
paper: in terms of expressiveness, we prove that QCTL and QCTL∗ are equally
expressive, and coincide with Monadic Second-Order Logic. Regarding model
checking, we consider both prenex-normal-form formulas (EQCTL) and general
formulas (QCTL), and our results are summarized in the table below (where k in
EQkCTL and QkCTL refers to some measure of quantification height of formulas,
see Section 2.4). Finally, we also characterize the model- and formula-complexities
of our problems, when one of the inputs to the model-checking problem is fixed.
By lack of spaces, most proofs are omitted. They can be found in [8].

structure semantics tree semantics

EQkCTL ΣP
k -c.

k-EXPTIME-c.
QkCTL ∆P

k+1[O(log n)]-c.

EQkCTL∗, QkCTL∗

PSPACE-c.

k+1-EXPTIME-c.

EQCTL, QCTL,
EQCTL∗,QCTL∗

non-elementary

Applications to alternating-time temporal logics. ATL also has several flaws in
terms of expressiveness: namely, it can only focus on (some) zero-sum properties,
i.e., on purely antagonist games, in which two coalitions fight with opposite
objectives. In many situations, games are not purely antagonist, but involve
several independent systems, each having its own objective. Recently, several
extensions of ATL have been defined to express properties of such non-zero-sum
games. Among those, our logic ATLsc [7] extends ATL with strategy contexts,
which provides a way of expressing interactions between strategies. Other similar
approaches include Strategy Logics [4,19] or (B)SIL [32].

Interestingly, the model-checking problem for these extensions of ATLsc (and
also for Strategy Logics) can be seen as a QCTL model-checking problem3: strategy
quantification in ATL is naturally encoded using propositional quantification
of QCTL; since this labelling is persistent, it can encode interactions between
strategies. We give the full encoding in Section 5. Notice that while the tree
semantics of QCTL encodes plain strategies, the structure semantics also finds a
meaning in that translation, as it may correspond to memoryless strategies.

Related works. Propositional quantification was also defined and studied on
LTL [28,29,14], where the model-checking problem for the k-alternation fragment

3 Notice that the link between games and propositional quantification already emerges
in Qdµ [24], which extends the decision µ-calculus with some flavour of propositional
quantification. Also, the main motivation of [16] for studying the two-alternation
fragment of QCTL is a hardness result for the control and synthesis of open systems.

was settled complete for k-EXPSPACE. In the branching-time setting, the results
are more sparse: CTL and CTL∗ with only existential quantification was studied
in [15], where model checking is shown NP- and PSPACE-complete resp. (for
the structure semantics) and EXPTIME- and 2-EXPTIME-complete resp. (for the
tree semantics). The two-alternation fragment was then studied in [16] (only for
the tree semantics): model checking is 2-EXPTIME- and 3-EXPTIME-complete,
respectively for CTL or CTL∗. Finally, satisfiability of the full extension (with
arbitrary quantification) was studied in [12].

Several other semantics have also been defined in the literature: the amorphous
semantics is somewhat intermediary between structure- and tree semantics, and
considers bisimilar structures before labelling with extra atomic propositions [12].
Alternative semantics are proposed and studied in [27,23].

Besides the above-mentioned applications of QCTL to open systems, let us
mention that QCTL has also been used in the setting of three-valued model
checking, where partial Kripke structures are considered (i.e., Kripke structures
where the truth value of some atomic propositions may be unknown) [3].

2 Preliminaries

2.1 Kripke structures and trees

We fix once and for all a set AP of atomic propositions.

Definition 1. A Kripke structure S is a 3-tuple 〈Q,R, `〉 where Q is a countable
set of states, R ⊆ Q2 is a total4 relation and ` : Q→ 2AP is a labelling function.

An execution (or path) in S is an infinite sequence ρ = (qi)i∈N s.t. (qi, qi+1) ∈ R
for all i. We use Exec(q) to denote the set of executions issued from q and Execf(q)
for the set of all finite prefixes of executions of Exec(q). Given ρ ∈ Exec(q) and
i ∈ N, we write ρi for the path (qi+k)k∈N of Exec(qi) (the i-th suffix of ρ), ρi for
the finite prefix (qk)k≤i (the i-th prefix), and ρ(i) for the i-th state qi.

Definition 2. Let Σ and S be two finite sets. A Σ-labelled S-tree is a pair T =
〈T, l〉, where T ⊆ S∗ is a non-empty set of finite words on S s.t. for any non-
empty word n = m · s in T with m ∈ S∗ and s ∈ S, the word m is also in T ; and
l : T → Σ is a labelling function.

The unwinding of a finite-state Kripke structure S = 〈Q,R, `〉 from a state
q ∈ Q is the (finitely-branching) 2AP-labelled Q-tree TS(q) = 〈Execf(q), `T 〉 with
`T (q0 · · · qi) = `(qi). Note that TS(q) = 〈Execf(q), `T 〉 can be seen as an (infinite-
state) Kripke structure where the set of states is Execf(q), labelled according to `T ,
and with transitions (m,m ·s) for all m ∈ Execf(q) and s ∈ Q s.t. m ·s ∈ Execf(q).

Definition 3. For P ⊆ AP, two (possibly infinite-state) Kripke structures S =
〈Q,R, `〉 and S ′ = 〈Q′, R′, `′〉 are P -equivalent (denoted by S ≡P S ′) whenever
Q = Q′, R = R′, and `(q) ∩ P = `′(q) ∩ P for any q ∈ Q.

In other terms, S ≡P S ′ if S ′ can be obtained from S by modifying the
labelling function of S for propositions in P .

4 I.e., for all q ∈ Q, there exists q′ ∈ Q s.t. (q, q′) ∈ R.

2.2 CTL and quantified extensions

Definition 4. The syntax of QCTL∗ is defined by the following grammar:

ϕstate, ψstate ::= p | ¬ϕstate | ϕstate ∨ψstate | Eϕpath | Aϕpath | ∃p. ϕstate

ϕpath, ψpath ::=ϕstate | ¬ϕpath | ϕpath ∨ψpath | Xϕpath | ϕpath Uψpath

where p ranges over AP. Formulas defined as ϕstate are called state-formulas, while
ϕpath defines path-formulas. Only state formulas are QCTL∗ formulas.

We use standard abbreviations as: > = p∨¬ p, ⊥ = ¬>, Fϕ = >Uϕ,
Gϕ = ¬F ¬ϕ, and ∀p · ϕ = ¬∃p · ¬ϕ. The logic QCTL is a fragment of QCTL∗

where temporal modalities are under the immediate scope of path quantifiers:

Definition 5. The syntax of QCTL is defined by the following grammar:

ϕstate, ψstate ::= p | ¬ϕstate | ϕstate ∨ψstate | ∃p. ϕstate |
Eϕstate Uψstate | Aϕstate Uψstate | EXϕstate | AXϕstate.

Standard definition of CTL∗ and CTL are obtained by removing the use of
quantification over atomic proposition (∃p.ϕ) in the formulas. In the following,
∃ and ∀ are called (proposition) quantifiers, while E and A are path quantifiers.

Given QCTL∗ (state) formulas ϕ and (ψi)i and atomic propositions (pi)i
appearing free in ϕ (i.e., not appearing as quantified propositions), we write
ϕ[(pi → ψi)i] (or ϕ[(ψi)i] when (pi)i are understood from the context) for the
formula obtained from ϕ by replacing each occurrence of pi with ψi. Given two
sublogics L1 and L2 of QCTL∗, we write L1[L2] = {ϕ[(ψi)i] | ϕ ∈ L1, (ψi)i ∈ L2}.

2.3 Structure- and tree semantics

Formulas of the form ∃p.ϕ can be interpreted in different manners (see [15,12,27]).
Here we consider two semantics: the structure semantics and the tree semantics.

Structure semantics. Given a QCTL∗ state formula ϕ, a (possibly infinite-
state) Kripke structure S = 〈Q,R, `〉 and a state q ∈ Q, we write S, q |=s ϕ to
denote that ϕ holds at q under the structure semantics. This is defined as for
CTL∗, with the following addition:

S, q |=s ∃p.ϕstate iff ∃S ′ ≡AP\{p} S s.t. S ′, q |=s ϕstate

Intuitively, ∃p.ϕ holds true at state q of structure S if it is possible to modify
the p-labelling of S in such a way that ϕ holds at q.

Example 6. As an example, consider the formula selfloop = ∀z.(z⇒ EX z).
If a state q in S satisfies this formula, then the particular labelling in which
only q is labelled with z implies that q has to carry a self-loop. Conversely, any
state that carries a self-loop satisfies this formula (for the structure semantics).

Let ϕ be a QCTL∗ formula, and consider now the formula

uniq(ϕ) = EF (ϕ)∧∀z.
(

EF (ϕ∧ z)⇒ AG (ϕ⇒ z)
)
.

In order to satisfy such a formula, at least one ϕ-state must be reachable. Assume
now that two different such states q and q′ are reachable: then for the particular
labelling where only q is labelled with z, the second part of the formula fails to
hold. Hence uniq(ϕ) holds in a state (under the structure semantics) if, and only
if, exactly one reachable state satisfies ϕ.

Tree semantics. The tree-semantics is obtained from the structure semantics
by seeing the execution tree as an infinite-state Kripke structure. We write
S, q |=t ϕ to denote that formula ϕ holds at q under the tree semantics. Formally,
seeing TS(q) as an infinite-state Kripke structure, we define:

S, q |=t ϕ iff TS(q), q |=s ϕ

Clearly enough, selfloop is always false under the tree semantics, while uniq(ϕ)
holds if, and only if, ϕ holds at only one node of the execution tree.

Example 7. Formula acyclic = AG
(
∃z. (z ∧ uniq(z)∧ AX AG ¬ z)

)
expresses

that all infinite paths (starting from the current state) are acyclic, which for
finite Kripke structures is always false under the structure semantics and always
true under the tree semantics.

Equivalences between QCTL∗ formulas. We consider two kinds of equiva-
lences depending on the semantics we use. Two state formulas ϕ and ψ are said
s-equivalent (resp. t-equivalent), written ϕ ≡s ψ (resp. written ϕ ≡t ψ) if for
any finite-state Kripke structure S and any state q of S, it holds S, q |=s ϕ iff
S, q |=s ψ (resp. S, q |=t ϕ iff S, q |=t ψ). We write ϕ ≡s,t ψ when the equivalence
holds for both ≡s and ≡t.

Note that both equivalences ≡s and ≡t are substitutive, i.e., a subformula ψ
can be replaced with any equivalent formula ψ′ without changing the truth value
of the global formula. Formally, if ψ ≡s ψ′ (resp. ψ ≡t ψ′), we have Φ[ψ] ≡s Φ[ψ′]
(resp. Φ[ψ] ≡t Φ[ψ′]) for any QCTL∗ formula Φ.

2.4 Fragments of QCTL∗.

In the sequel, besides QCTL and QCTL∗, we study several interesting fragments.
The first one is the fragment of QCTL in prenex normal form, i.e., in which
propositional quantification must be external to the CTL formula. We write
EQCTL and EQCTL∗ for the corresponding logics5

We also study the fragments of these logics with limited quantification. For
prenex-normal-form formulas, the fragments are defined as follows:

5 Notice that the logics named EQCTL and EQCTL∗ defined in [15] are restrictions of
our prenex-normal-form logics where only existential quantification is allowed. They
correspond to our fragments EQ1CTL and EQ1CTL∗.

– for any ϕ ∈ CTL and any p ∈ AP, ∃p.ϕ is an EQ1CTL formula, and ∀p.ϕ is
in AQ1CTL;

– for any ϕ ∈ EQkCTL and any p ∈ AP, ∃p.ϕ is in EQkCTL and ∀p.ϕ is in
AQk+1CTL. Symmetrically, if ϕ ∈ AQkCTL, then ∃p.ϕ is in EQk+1CTL while
∀p.ϕ remains in AQkCTL.

Using similar ideas, we define fragments of QCTL and QCTL∗. Again, the definition
is inductive: Q1CTL is the logic CTL[EQ1CTL], and Qk+1CTL = Q1CTL[QkCTL].

The corresponding extensions of CTL∗, which we respectively denote with
EQkCTL∗, AQkCTL∗ and QkCTL∗, are defined in a similar way.

Remark 8. Notice that EQkCTL and AQkCTL are (syntactically) included in
QkCTL, and EQkCTL∗ and AQkCTL∗ are fragments of QkCTL∗.

3 Expressiveness

In this section we present several results about the expressiveness of our logics for
both semantics. We show that QCTL, QCTL∗ and Monadic Second-Order Logic are
equally expressive. First we show that any QCTL formula is equivalent to a formula
in prenex normal form (which extends to QCTL∗ thanks to Proposition 12).

3.1 Prenex normal form

By translating path quantification into propositional quantification, we can
extract propositional quantification out of purely temporal formulas: for in-
stance, EX (Q.ϕ) where Q is some propositional quantification is equivalent to

∃z.Q.
(

uniq(z)∧ EX (z ∧ϕ)
)

. This generalizes to full QCTL for both semantics:

Proposition 9. In both semantics, EQCTL and QCTL are equally expressive.

3.2 QCTL and Monadic Second-Order Logic

We briefly review Monadic Second-Order Logic (MSO) over trees and over finite
Kripke structures (i.e., labeled finite graphs). In both case, we use constant
monadic predicates Pa for a ∈ AP and a relation Edge either for the immediate
successor relation in an S-tree 〈T, l〉 or for the relation R in a finite KS 〈Q,R, `〉.

MSO is built with first-order (or individual) variables for nodes or vertices
(denoted with lowercase letters x, y, ...), monadic second-order variables for sets
of nodes (denoted with uppercase letters X,Y, ...). Atomic formulas are of the
form x = y, Edge(x, y), x ∈ X, Pa(x). Formulas are constructed from atomic
formulas using the Boolean connectives and the first- and second-order quantifier ∃.
We write ϕ(x1, ..., xn, X1, ..., Xk) to state that x1, ..., xn and X1, ..., Xk may
appear free (i.e. not within the scope of a quantifier) in ϕ. A closed formula
contains no free variable. We use the standard semantics for MSO, writing
M, s1, ..., sn, S1, ..., Sk |= ϕ(x1, ..., xn, X1, ..., Xk) when ϕ holds on M when si
(resp. Sj) is assigned to the variable xi (resp. Xj) for i = 1, ..., n (resp. j = 1, ..., k).

In the following, we compare the expressiveness of our logics with MSO over
the finite Kripke structures (the structure semantics) and the execution trees
corresponding to a finite Kripke structure (tree semantics). First note that MSO
formulas may express properties directly over trees or graphs, while our logics are
interpreted over states of these structures. Therefore we use MSO formulas with
one free variable x, which represents the state where the formula is evaluated.
Moreover, we restrict the evaluation of MSO formulas to the reachable part of the
model from the given state. This last requirement makes an important difference
for the structure semantics, since MSO can express that a graph is connected.

Formally, for the tree semantics, we say that ϕ(x) ∈ MSO is t-equivalent to
some QCTL∗ formula ψ (written ϕ(x) ≡t ψ) when for any finite Kripke structure S
and any state q ∈ TS , it holds TS(q), q |= ϕ(x) iff TS(q), q |= ψ. Similarly, for the
structure semantics: ϕ(x) is s-equivalent to ψ (written ϕ(x) ≡s ψ) iff for any
finite Kripke structure S and any state q ∈ S, it holds Sq, q |= ϕ(x) iff Sq, q |= ψ,
where Sq is the reachable part of S from q. For these definitions, we have:

Proposition 10. Under both semantics, MSO and QCTL are equally expressive.

Sketch of proof. One inclusion is straightforward: CTL is easily translated into
MSO, and propositional quantification (for both semantics) can be encoded
using second-order quantification. Conversely, every MSO formula Φ(x) can be

translated into an equivalent QCTL formula Φ̂. QCTL propositional quantifications
are used to encode both first-order and second-order quantification in Φ (but in
the first-order case, we require that only one state is labeled by the dedicated
proposition). Then an MSO subformula of the form xi ∈ Xj is rewritten in QCTL
as EF (pxi

∧ pXj
) where pxi

(resp. pXj
) is the proposition associated with xi

(resp. Xj). A formula of the form Edge(xi, xj) is rewritten as EF (pxi ∧ EX pxj),
and xi = xj is replaced by EF (pxi ∧ pxj). Other cases use the same ideas. ut

Remark 11. One can also notice that it is easy to express fixpoint operators
with QCTL in both semantics, thus µ-calculus can be translated into QCTL.
This provides another proof of the previous result for the tree semantics, since
the µ-calculus extended with counting capabilities has the same expressiveness
as MSO on trees [20].

3.3 QCTL and QCTL∗

Finally, we show that QCTL∗ and QCTL are equally expressive for both semantics.
The main idea of the proof is an inductive replacement of quantified subformulas
with extra atomic propositions.

Proposition 12. In the tree and structure semantics, every QCTL∗ formula is
equivalent to some QCTL formula.

Proof. This was shown in [12] for the tree semantic. We give another translation,
which is correct for both semantics. Consider a QCTL∗ formula Φ, and write k

for the number of subformulas of Φ that are not in QCTL. If k = 0, Φ already
belongs to QCTL. Otherwise let ψ be one of the inner-most Φ-subformulas in
QCTL∗ \QCTL. Let (αi)1≤i≤m be the largest ψ-subformulas belonging to QCTL.
These are state formulas, so that ψ is equivalent (for both semantics) to:

∃p1...∃pm.
(
ψ[(αi ← pi)i=1,...,m]∧

∧
i=1,...,m

AG (pi ⇔ αi)
)

Let Ω be ψ[(αi ← pi)i=1,...,m]. Then Ω is a CTL∗ formula: every subformula
of the form ∃p.ξ in ψ appears in some QCTL formula αi, since ψ is one of the
smallest QCTL∗ \QCTL subformula. As every CTL∗ formula is equivalent to some

µ-calculus formula, Ω is equivalent to some QCTL formula Ω̃ (see Remark 11).
Hence

ψ ≡s,t ∃p1...∃pm.
(
Ω̃ ∧

∧
i=1,...,m

AG (pi ⇔ αi)
)

Now, consider the formula obtained from Φ by replacing ψ with the right-hand-
side formula above. This formula is equivalent to Φ and has at most k − 1
subformulas in QCTL∗ \ QCTL, so that the induction hypothesis applies. ut

From Propositions 9, 10 and 12, we get:

Corollary 13. In both semantics, EQCTL, QCTL and QCTL∗ and MSO are
equally expressive.

Remark 14. In [12], French considers a variant of QCTL∗ (which we call FQCTL∗),
with propositional quantification within path formulas: ∃p. ϕpath is a valid path
formula, meaning that ϕpath holds along ρ after modifying the labelling with p:

S, ρ |=s ∃p.ϕpath iff ∃S ′ ≡AP\{p} S s.t. S ′, ρ |=s ϕpath.

For the tree semantics, QCTL is as expressive as FQCTL∗ [12]. For the structure
semantics, we show that FQCTL∗ is strictly more expressive than MSO. Formula

EG
(
∃z.∀z′.[uniq(z)∧ uniq(z′)∧ z ∧¬ z′]⇒X (¬ zU z′)

)
.

expresses the existence of an (infinite) path along which, between any two
occurrences of the same state, all the other reachable states will be visited. This
precisely characterizes the existence of a Hamilton cycle. This is known not to
be expressible in MSO [9, Cor. 6.3.5], it can be expressed in Guarded Second
Order Logic GSO (also called MS2 in [6]), in which quantification over sets of
edges is allowed (in addition to quantification over sets of states). Still, FQCTL∗

is strictly more expressive than GSO, as it is easy to modify the above formula
to express the existence of Euler cycles:

EG
(
∃x.∃y.∀x′.∀y′.

[
tr(x, y)∧ tr(x′, y′)∧ next tr(x, y)∧¬ next tr(x′, y′)

]
⇒X (¬ next tr(x, y) U next tr(x′, y′))

)
where tr(x, y) = uniq(x)∧ uniq(y)∧ EF (x∧X y) states that x and y mark the
source and target of a reachable transition, and next tr(x, y) = x∧X y states
that the next transition along the current path jumps from x to y.

Proposition 15. Under the structure semantics, FQCTL∗ is more expressive
than QCTL∗ and MSO.

Still, FQCTL∗ model checking (see next section) is decidable: for the tree
semantics, it suffices to translate FQCTL∗ to QCTL [12]. The problem in the
structure semantics can then be encoded in the tree semantics: we first assume
that each state of the input Kripke structure S is labelled with its name (so that
any two different states can be distinguished). Then any quantification ∃p.ϕ in
the structure semantics is considered in the tree semantics, with the additional
requirement that any two copies of the same state receive the same p-labelling.

4 QCTL model checking

We now consider the model-checking problem for QCTL∗ and its fragments under
both semantics: given a finite Kripke structure S, a state q and a formula6 ϕ,
is ϕ satisfied in state q in S under the structure (resp. tree) semantics? Some
results already exist, e.g. for EQ1CTL and EQ1CTL∗ under both semantics [15].
Hardness results for EQ2CTL and EQ2CTL∗ under the tree semantics can be
found in [16]. Here we extend these results to all the fragments of QCTL∗ we
have defined. We also characterize the model- and formula-complexities [31] of
model-checking for these fragments.

4.1 Model checking for the structure semantics

Formulas in prenex normal form. Prenex-normal-form formulas are (tech-
nically) easy to handle: a formula in EQkCTL can be model-checked by non-
determinisitically guessing a labelling and applying a model-checking procedure
for AQk−1CTL. We easily derive the following results.

Theorem 16. Under the structure semantics, model checking EQkCTL is ΣP
k -

complete, model checking AQkCTL is ΠP
k -complete, and model checking EQkCTL∗,

AQkCTL∗, EQCTL and EQCTL∗ is PSPACE-complete.

General case. If we drop the prenex-normal-form restriction, we get

Theorem 17. For the structure semantics, model checking is ∆P
k+1[O(log n)]-

complete for QkCTL, and PSPACE-complete for QkCTL∗, QCTL and QCTL∗.

Sketch of proof. The algorithm in ∆P
k+1[O(log n)] is obtained by first noticing

that a formula ϕ ∈ Qk+1CTL can be written as Φ[(qi → ∃Pi. ψi)i] with Φ being
a CTL formula involving fresh atomic propositions qi, and ∃Pi. ψi (with ∃Pi
denoting a sequence of existential quantifications) are subformulas of ϕ with
ψi ∈ QkCTL. The algorithm then consists in asking independant oracles for the
sets of states satisfying ∃Pi. ψi, and applying a CTL model-checking algorithm.
Hardness is proved by encoding PARITY (ΣP

k), which aims at deciding whether
the number of positive instances of ΣP

k in a given set of instances is even [13]. ut
6 For standard notions of size for S and ϕ, unless specified otherwise (see Theorem 18).

Formula- and program-complexity. Most of the proofs above can be adapted
to use a fixed formula or a fixed model. One notable exception is QCTL: when
model checking a fixed formula of QCTL (hence with fixed alternation depth),
there is no hope of being able to encode arbitrary alternation: the program
complexity of QCTL model checking thus lies in the small gap between PH and
PSPACE (unless the polynomial-time hierarchy collapses).

Theorem 18. Under the structure semantics, the formula-complexity (i.e., when
the model is fixed) of model checking is ΣP

k -complete for EQkCTL, ΠP
k -complete for

AQkCTL; it is ∆P
k+1[O(log n)]-complete for QkCTL when considering the DAG-

size of the formula. It is PSPACE-complete for EQkCTL∗, AQkCTL∗, QkCTL∗,
EQCTL, QCTL, EQCTL∗, and QCTL∗.

The program-complexity (i.e., when the formula is fixed) of model checking is
ΣP

k -complete for EQkCTL and EQkCTL∗, ΠP
k -complete for AQkCTL and AQkCTL∗,

and ∆P
k+1[O(log n)]-complete for QkCTL and QkCTL∗ (for positive k). It is PH-

hard but not in PH (unless the polynomial-time hierarchy collapses), and in
PSPACE but not PSPACE-hard for EQCTL, QCTL, EQCTL∗ and QCTL∗.

4.2 Model checking for the tree semantics

Theorem 19. Model checking EQkCTL, AQkCTL and QkCTL under the tree
semantics is k-EXPTIME-complete (for positive k).

Sketch of proof. Since EQkCTL and AQkCTL are dual and contained in QkCTL,
it suffices to prove hardness for EQkCTL and membership for QkCTL. We briefly
sketch the proof here.

I Hardness in k-EXPTIME. The reduction uses the ideas of [16,29]: we encode an
alternating Turing machine M whose tape has size k-exponential. An execution
of M on an input word y of length n is then a tree. Our reduction consists in
building a Kripke structure K and an EQkCTL formula ϕ such that ϕ holds true
in K (for the tree semantics) iffM accepts y. The encoding is depicted on Fig. 1.

The main tool in this proof is a set of (polynomial-size) formulas of EQkCTL
that are able to relate two states that are at distance k-exponential. This is used
in our reduction to ensure that the content of one cell of the Turing machine is
preserved from one configuration to the next one, unless the tape head is around.

Our set of formulas will ensure the following (see Fig. 2): given a tree labeled
with propositions s and t (among others), both s and t appear exactly once along
each branch, and the distance between them is F (k, n), defined as

F (0, n) = n F (k + 1, n) = F (k, n) · 2F (k,n).

The formulas for k = 0 are easy to write. Given a formula for level k, we build the
formula for level k + 1 as follows: we add a new proposition r, which is required
to hold at s and t, and at distance F (k, n) from each other inbetween. We then
use existential quantification over another proposition in order to implement a
counter enforcing that there are exactly 2F (k,n) occurrences of r between s and t.

1
1
0
0

F (k, n)

0
1
0
0

1
1
0
0

0
1
0
0

0
0
0
0

1
0
0
0

Fig. 1. A run of M

s

t

F (k, n)
s

t

F (k, n)

Fig. 2. Chunks of height F (k, n)

I Membership in k-EXPTIME. Our algorithm for QkCTL model checking uses
alternating parity tree automata[21,30]. The construction is inductive: we be-
gin with building automata for the innermost CTL formulas [18], and then use
projection to encode existential quantification. This requires turning the alter-
nating automata into non-deterministic ones, which comes with an exponential
blowup [22]. We apply this procedure recursively, until the last propositional
quantifier. We end up with a non-deterministic parity tree automaton with size
k-exponential and index (k − 1)-exponential; emptiness is then solved in time
k-exponential [17]. We apply a CTL model-checking algorithm to handle the
possible outermost CTL operators. This whole algorithm runs in k-EXPTIME. ut

Theorem 20. Model checking EQkCTL∗, AQkCTL∗ and QkCTL∗ under the tree
semantics are (k+1)-EXPTIME-complete (for positive k).

Proof. The proof techniques are the same as in the previous proof. Member-
ship requires that we build an automaton for a CTL∗ formula, which entails
an additional exponential blowup. Hardness is proven by using CTL∗ to have
yardstickn0 (s, t) enforce that the distance between s and t is 2n. ut

Formula- and program-complexity. The reductions above can be made to
work with a fixed model. When fixing the formula, the problem becomes much
easier (in terms of theoretical complexity):

Theorem 21. Under the tree semantics, the formula-complexity of model-checking
is k-EXPTIME-complete for EQkCTL, QkCTL, EQkCTL∗ and QkCTL∗ with k ≥ 1.
It is non-elementary for EQCTL, QCTL, EQCTL∗ and QCTL∗.

The program-complexity of model-checking is PTIME-complete for all those
fragments of QCTL∗.

5 Using QCTL for specifying multi-agent systems

Extending CTL with propositional quantification has already found several ap-
plications for reasoning about complex systems. In this section, we show how a

model-checking problem involving a multi-agent system (typically a concurrent
game) and a property written in ATLsc (see below) is logspace-reducible to a
QCTL model-checking problem.

5.1 Basic definitions

Definition 22 ([1]). A Concurrent Game Structure (CGS) C is a 7-tuple 〈Q,R,
`,Agt,M,Mov,Edge〉 where: 〈Q,R, `〉 is a Kripke structure, Agt = {A1, ..., Ap}
is a finite set of agents, M is a non-empty set of moves, Mov : Q × Agt →
P(M) r {∅} defines the set of available moves of each agent in each state, and
Edge : Q×MAgt → R is a transition table associating, with each state q and each
set of moves of the agents, the resulting transition departing from q.

The size of a CGS C is |Q|+ |Edge|. For a state q ∈ Q, we write Next(q) for the
set of all transitions corresponding to possible moves from q, and Next(q, Aj ,mj),
with mj ∈ Mov(q, Aj), for the restriction of Next(q) to possible transitions from q
when player Aj plays move mj . We extend Mov and Next to coalitions (i.e., sets
of agents) in the natural way. A path in C is a path in its underlying Kripke
structure. For a finite prefix π of a path, we write last(π) = πi for its last state.

A strategy for some player Ai ∈ Agt is a function fi that maps any history to
a possible move for Ai, i.e., satisfying fi(π) ∈ Mov(last(π), Ai). A strategy for
a coalition A is a mapping assigning a strategy to each agent in A. The set of
strategies for A is denoted Strat(A). The domain dom(FA) of FA ∈ Strat(A) is A.
Given a coalition B, the strategy (FA)|B (resp. (FA)rB) denotes the restriction
of FA to the coalition A ∩ B (resp. Ar B). Given two strategies F ∈ Strat(A)
and F ′ ∈ Strat(B), we define F ◦F ′ ∈ Strat(A

⋃
B) as (F ◦F ′)|Aj

(ρ) = F|Aj
(ρ)

(resp. F ′|Aj
(ρ)) if Aj ∈ A (resp. Aj ∈ B rA).

Let ρ be a history. A strategy FA = (fj)Aj∈A for some coalition A induces a
set of paths from ρ, called the outcomes of FA after ρ, and denoted Out(ρ, FA):
an infinite path π = ρ · q1q2 . . . is in Out(ρ, FA) iff, writing q0 = last(ρ), for
all i ≥ 0 there is a set of moves (mi

k)Ak∈Agt such that mi
k ∈ Mov(qi, Ak) for

all Ak ∈ Agt, mi
k = fAk

(π|ρ|+i) if Ak ∈ A, and qi+1 ∈ Next(qi,Agt, (mi
k)Ak∈Agt).

We now introduce the extension of ATL with strategy contexts [2,7]:

Definition 23. The syntax of ATLsc is defined by the following grammar (where
p ranges over AP and A over 2Agt):

ϕstate, ψstate ::=p | ¬ϕstate | ϕstate ∨ψstate | ·〉A〈·ϕstate | 〈·A·〉ϕpath

ϕpath, ψpath ::=Xϕstate | ϕstate Uψstate | ϕstate Wψstate.

That a formula ϕ in ATLsc is satisfied by a state q of a CGS C under a strategy
context F ∈ Strat(B) (for some coalition B), denoted C, q |=F ϕ, is defined as
follows (omitting Boolean operators and path modalities):

C, q |=F ·〉A〈·ϕstate iff C, q |=FrA
ϕstate

C, q |=F 〈·A·〉ϕpath iff ∃FA ∈ Strat(A).∀ρ′ ∈ Out(q, FA ◦F). C, ρ′ |=FA ◦F ϕpath

In the following we will use 〈·A·〉ϕstate as a shorthand for 〈·A·〉 ⊥Uϕstate.

5.2 From ATLsc to QCTL∗ and QCTL model checking

Let C = 〈Q,R, `,Agt,M,Mov,Edge〉 be a CGS, andM be {m1, . . . ,mk}. We con-
sider the following sets of fresh atomic propositions: PQ = {pq | q ∈ Q},
PjM = {mj

1, . . . ,m
j
k} for every Aj ∈ Agt, and PM =

⋃
Aj∈Agt PjM.

Let SC be the Kripke structure 〈Q,R, `+〉 where for any state q, we have:
`+(q) = `(q) ∪ {pq}. SC is the Kripke structure underlying C, in which every
state q is labelled with its own atomic proposition pq. In the following, every
labelling function we consider coincides with `+ on AP\PM.

A strategy for an agent Aj can be seen as a function labelling the execution

tree of SC with PjM. More precisely, a strategy for Aj is a labelling function

fj : Execf(`) → PjM. A memoryless strategy for Aj corresponds to a labelling

function fj : Q→ PjM, i.e., a labelling of the Kripke structure SC .
Let F ∈ Strat(C) be a strategy context and Φ ∈ ATLsc. We reduce the

question whether C, q |=F Φ to a model-checking instance for QCTL∗ over SC.
For this, we define a QCTL∗ formula Φ̂C inductively; for non-temporal formulas,

·̂〉A〈·ϕ
C

= ϕ̂
CrA

ϕ̂∧ψ
C

= ϕ̂
C
∧ ψ̂

C
¬̂ψ

C
= ¬ ϕ̂

C
P̂C = P

For a formula of the form 〈·A·〉Xϕ with A = {Aj1 , . . . , Ajl}, we let:

̂〈·A·〉Xϕ
C

= ∃mj1
1 ...m

j1
k ...m

jl
1 ...m

jl
k .
∧
Aj∈A

AG (Φstrat(Aj))∧ A
(
Φ
[A∪C]
out ⇒X ϕ̂C∪A

)

where: Φstrat(Aj) =
∨
q∈Q

(
pq ∧

∨
mi∈Mov(q,Aj)

(mj
i ∧
∧
l 6=i ¬mj

l)
)

Φ
[A]
out = G

∧
q∈Q

m∈Mov(q,A)

(
(pq ∧Pm)⇒X

(∨
q′∈Next(q,A,m)

pq′
))

where m is a move (mj)Aj∈A ∈ Mov(q, A) for A and Pm is the propositional
formula

∧
Aj∈Am

j characterizing m. Formula Φstrat(Aj) ensures that, the labelling

of propositions mj
i s describes a feasible strategy for Aj . Formula Φ

[A]
out characterizes

the outcomes of the strategy for A that is described by the atomic propositions

in the model. Note that Φ
[A]
out is based on the transition table Edge of C. Then:

Theorem 24. Let q be a state in C. Let Φ be an ATLsc formula and F be a
strategy context for some coalition C. Let T ′ be the execution tree TSC (q) with
a labelling function `′ s.t. for every π ∈ Execf(q) of length i and any Aj ∈ C,

`′(π) ∩ PjM = mj
i iff F (π)|Aj

= mi. Then C, q |=F Φ iff T ′, q |= Φ̂C .

We get a non-elementary model-checking algorithm for ATLsc, similar to [7].

Remark 25. The translation above assumes the tree semantics. However, it also
makes sense in the structure semantics, where quantification then corresponds to
the selection of a memoryless strategy. A variant of Theorem 24 can be stated
for the structure semantics for QCTL and memoryless strategies for ATLsc.

Remark 26. Our reduction above is into QCTL∗ but we can use Proposition 12
to get an equivalent QCTL formula. This may increase the quantifier height of
the formula. For the tree semantics, a direct translation into QCTL exists: instead

of using Φ
[A]
out, we can use an extra atomic proposition pout for labelling outcomes.

This yields a QCTL formula with the same quantifier height.

Using a converse translation, from QCTL to ATLsc, we can prove:

Theorem 27. Model-checking the fragment of ATLsc with at most k non-trivial
nested strategy quantifiers is k-EXPTIME-complete.

Strategy logic (SL) [4,19] is another temporal logic for non-zero-sum games,
which has explicit first-order quantification over strategies. Our results above can
be adapted to SL, correcting a wrong claim in [19, Theorem 4.2]:

Theorem 28. The model-checking problems for QCTL, ATLsc and SL are inter-
reducible (in logarithmic space). They all are non-elementary.

6 Conclusions and future works

We have proposed a complete picture of CTL extended with propositional quan-
tifiers w.r.t. expressiveness and model-checking. On the expressiveness side,
we proved how adding quantification on top of CTL fills in the gap between
temporal logics and monadic second-order logic. As for model checking, we ex-
haustively characterized the complexity of QCTL and its variants, completing
the earlier results from [15,12]. Finally, we provided an application (which was
our original motivation) of QCTL for reasonning about multi-agent systems.
Satisfiability of fragments of QCTL∗ is part of our future work.

References

[1] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
J. ACM, 49(5):672–713, 2002.

[2] Th. Brihaye, A. Da Costa, F. Laroussinie, and N. Markey. ATL with strategy
contexts and bounded memory. In LFCS’09, LNCS 5407, p. 92–106. Springer, 2009.

[3] G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued
temporal logics. In CAV’99, LNCS 1633, p. 274–287. Springer, 1999.

[4] K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. In CONCUR’07,
LNCS 4703, p. 59–73. Springer, 2007.

[5] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching-time temporal logic. In LOP’81, LNCS 131, p. 52–71. Springer,
1982.

[6] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic, a
Language Theoretic Approach. Cambridge University Press, 2011.

[7] A. Da Costa, F. Laroussinie, and N. Markey. ATL with strategy contexts: Expres-
siveness and model checking. In FSTTCS’10, LIPIcs 8, p. 120–132. LZI, 2010.

[8] A. Da Costa, F. Laroussinie, and N. Markey. Quantified CTL: expressiveness
and model checking. Research Report LSV-12-02, Laboratoire Spécification et
Vérification, ENS Cachan, France, 2012.

[9] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1995.
[10] E. A. Emerson and J. Y. Halpern. ”Sometimes” and ”not never” revisited:

On branching versus linear time temporal logic. J. ACM, 33(1):151–178, 1986.
[11] E. A. Emerson and A. P. Sistla. Deciding full branching time logic. Inf.&Cont.,

61(3):175–201, 1984.
[12] T. French. Decidability of quantified propositional branching time logics. In

AJCAI’01, LNCS 2256, p. 165–176. Springer, 2001.
[13] G. Gottlob. NP trees and Carnap’s modal logic. J. ACM, 42(2):421–457, 1995.
[14] Y. Kesten and A. Pnueli. A complete proof systems for QPTL. In LICS’95, p. 2–12.

IEEE Comp. Soc. Press, 1995.
[15] O. Kupferman. Augmenting branching temporal logics with existential quantifica-

tion over atomic propositions. In CAV’95, LNCS 939, p. 325–338. Springer, 1995.
[16] O. Kupferman, P. Madhusudan, P. S. Thiagarajan, and M. Y. Vardi. Open systems

in reactive environments: Control and synthesis. In CONCUR’00, LNCS 1877,
p. 92–107. Springer, 2000.

[17] O. Kupferman and M. Y. Vardi. Weak alternating automata and tree automata
emptiness. In STOC’98, p. 224–233. ACM Press, 1998.

[18] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model-checking. J. ACM, 47(2):312–360, 2000.

[19] F. Mogavero, A. Murano, and M. Y. Vardi. Reasoning about strategies. In
FSTTCS’10, LIPIcs 8, p. 133–144. LZI, 2010.

[20] F. Moller and A. Rabinovich. Counting on CTL*: on the expressive power of
monadic path logic. Inf.&Comp., 184(1):147–159, 2003.

[21] D. E. Muller and P. E. Schupp. Alternating automata on infinite trees. TCS,
54(2-3):267–276, 1987.

[22] D. E. Muller and P. E. Schupp. Simulating alternating tree automata by non-
deterministic automata: New results and new proofs of the theorems of Rabin,
McNaughton and Safra. TCS, 141(1-2):69–107, 1995.

[23] A. C. Patthak, I. Bhattacharya, A. Dasgupta, P. Dasgupta, and P. P. Chakrabarti.
Quantified computation tree logic. IPL, 82(3):123–129, 2002.

[24] S. Pinchinat. A generic constructive solution for concurrent games with expressive
constraints on strategies. In ATVA’07, LNCS 4762, p. 253–267. Springer, 2007.

[25] A. Pnueli. The temporal logic of programs. In FOCS’77, p. 46–57. IEEE Comp. Soc.
Press, 1977.

[26] J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In SOP’82, LNCS 137, p. 337–351. Springer, 1982.

[27] S. Riedweg and S. Pinchinat. Quantified µ-calculus for control synthesis. In
MFCS’03, LNCS 2747, p. 642–651. Springer, 2003.

[28] A. P. Sistla. Theoretical Issues in the Design and Verification of Distributed Systems.
PhD thesis, Harvard University, Cambridge, Massachussets, USA, 1983.

[29] A. P. Sistla, M. Y. Vardi, and P. Wolper. The complementation problem for Büchi
automata with applications to temporal logics. TCS, 49:217–237, 1987.

[30] W. Thomas. Languages, automata and logics. In Handbook of Formal Languages,
p. 389–455. Springer, 1997.

[31] M. Y. Vardi. The complexity of relational query languages. In STOC’82, p. 137–146.
ACM Press, 1982.

[32] F. Wang, C.-H. Huang, and F. Yu. A temporal logic for the interaction of strategies.
In CONCUR’11, LNCS 6901, p. 466–481. Springer, 2011.

http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/ rr-lsv-2012-02.pdf
http://www.lsv.ens-cachan.fr/Publis/RAPPORTS_LSV/PDF/ rr-lsv-2012-02.pdf

	Quantified ATL : expressiveness and model checking(Extended abstract)

