
A Parametric Analysis of the State Explosion
Problem in Model Checking

(Extended Abstract)

S. Demri, F. Laroussinie, and P. Schnoebelen

Lab. Spécification & Vérification
ENS de Cachan & CNRS UMR 8643

61, av. Pdt. Wilson, 94235 Cachan Cedex France
{demri,fl,phs}@lsv.ens-cachan.fr

Abstract. In model checking, the state explosion problem occurs when
one verifies a non-flat system, i.e. a system described implicitly as a
synchronized product of elementary subsystems. In this paper, we inves-
tigate the complexity of a wide variety of model checking problems for
non-flat systems under the light of parameterized complexity, taking the
number of synchronized components as a parameter. We provide pre-
cise complexity measures (in the parameterized sense) for most of the
problems we investigate, and evidence that the results are robust.

1 Introduction

Model checking, i.e. the automated verification that (the formal model of) a
system satisfies some formal behavioral property, has proved to be a revolution-
ary advance for the correctness of critical systems [CGP99]. Investigating the
computational complexity of model checking started with [SC85], and today the
complexity of the main model checking problems is known.

It is now understood that, in practice, the source of intractability is the
size of the model and not the size of the property to be checked. This can
be illustrated with LTL model checking as an example: while the problem is
PSPACE-complete [SC85], it was observed in [LP85] that checking whether S |=
φ can be done in time O(|S| × 2|φ|). In practice φ is small and S is huge, so that
“model checking is in linear time”, as is often stated.

State explosion. In practice, the main obstacle to model checking is the state
explosion problem, i.e. the fact that the model S is described implicitly, as a syn-
chronized product of several components (with perhaps the addition of boolean
variables, clocks, etc.), so that |S| is usually exponentially larger than the size
of its implicit description. For example, if S is given as a synchronized product
A1× · · · ×Ak of elementary components, the input of the model checking prob-
lem has size n =

∑
i|Ai| while S has size O

(∏
i|Ai|

)
, that is O(nk), or O(2n)

when k is not fixed.

H. Alt and A. Ferreira (Eds.): STACS 2002, LNCS 2285, pp. 620–631, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

A Parametric Analysis of the State Explosion Problem in Model Checking 621

From a theoretical viewpoint, the state explosion problem seems inescapable
in the classical worst-case complexity paradigm. Indeed, studies covering all the
main model checking problems and the most common ways of combining com-
ponents have repeatedly shown that model checking problems are exponentially
harder when S is given implicitly [Esp98,HKV97,JM96,KVW00,Rab97,Rab00,
LS00].

A parametric analysis. The state explosion problem can be investigated more
finely through parameterized complexity, a theoretical framework developed by
Downey and Fellows for studying problems where complexity depends differently
on the size n of the input and on some other parameter k that varies less (in
some sense), see e.g. [DF99].

Any of the main model checking problems where the input is a sequence
A1, . . . ,Ak of components can be solved in polynomial-time for every fixed value
of k, e.g. in O(nk). That is, for every fixed k, the problem is polynomial-time.
However, Downey and Fellows consider O(nk) as intractable for parameterized
problems since the exponent k of n is not bounded, while algorithms running
in time f(k) × nc for some function f and constant c are considered tractable
(see [DF99] for convincing arguments).

Parameterized complexity adheres to the “worst-case complexity” viewpoint
but it leads to finer analysis. This can be illustrated on some graph-theoretical
problems: among the NP-complete problems with a natural algorithm running
in O(nk), many admit another algorithm in some f(k)× nc (e.g. existence in a
graph of a cycle of size k) while many others seem not to have any such solution
(e.g. existence of a clique of size k). Note that these problems are “equivalent”
in the classical complexity paradigm.

Our contribution. In this paper, we apply the parameterized complexity view-
point to model checking problems where the input is a synchronized product
of k components, k being the parameter. We investigate model checking prob-
lems ranging from reachability questions to temporal model checking for several
temporal logics, to equivalence checking for several behavioral equivalences.

We provide precise complexity measures (in the parameterized sense) for
most of the problems we investigate, and informative lower and upper bounds for
the remaining ones. We show how the results are generally robust, i.e. insensitive
to slight modifications (e.g. size of the synchronization alphabet) or restrictions
(e.g. to deterministic systems).

All the considered problems are shown intractable even in the parameterized
viewpoint (but they reach different intractability levels). See summary of results
in section 7. This shows that these problems (very probably) do not admit so-
lutions running in time f(k)× nc for some f and c, and strengthens the known
results about the computational complexity of the state explosion problem.

While mainly aimed at model checking, our study is also interesting for the
field of parameterized complexity itself. For example, we are able to sharpen the
characterization of the complexity of FAI-II and FAI-III (from [DF99, p. 470])
as shown in [DLS01, Appendix C]. We also introduce, as a useful general tool,

622 S. Demri, F. Laroussinie, and P. Schnoebelen

parameterized problems for Alternating Turing machines and relate them to
Downey and Fellows’ W-hierarchy. Finally, we enrich the known catalog of
parameterized problems with problems from an important application field.

Related work. Parameterized complexity has been applied to model checking
problems where the parameter is the size of the property to be checked (or derived
from it) and where the model is given explicitly: this has no relation with the
state explosion problem and trivially leads to tractability in the parameterized
sense for temporal logics (but becomes interesting when one considers more pow-
erful logics [Gro99] or problems with database queries [PY99], or when one tries
to identify parameters (e.g. tree width) that make problems tractable [GSS01]).

Parameterized complexity has been applied to problems where the input is,
like in our work, a sequence of k synchronized automata, k being the param-
eter [B+95,War01,Ces01]. These works are concerned with automata-theoretic
(or language-theoretic) questions rather than verification and model checking
questions.

Plan of the paper. Sections 2 and 3 recall the basic definitions about parameter-
ized complexity and synchronized products of systems. We investigate reachabil-
ity problems in section 4, temporal logic problems in section 5, and behavioral
equivalence problems in section 6. As a rule proofs omitted from the main text
can be found in [DLS01].

2 Parameterized Complexity

We follow [DF99]. A parameterized language P is a set of pairs 〈x, k〉 where x is a
word over some finite alphabet and k, the parameter, is an integer. The problem
associated with P is to decide whether 〈x, k〉 ∈ P for arbitrary 〈x, k〉.

A parameterized problem P is (strongly uniformly) fixed-parameter tractable,
shortly “FPT”, def⇔ there exist a recursive function f : N 	→ N and a constant
c ∈ N such that the question 〈x, k〉 ∈ P can be solved in time f(k) × |x|c (see
e.g. [DF99, Chapter 2]).

A parameterized problem P is fixed-parameter m-reducible (fp-reducible) to
the parameterized problem P ′ (in symbols P ≤fp

m P ′) def⇔ there exist recursive
total functions f1 : k 	→ k′, f2 : k 	→ k′′, f3 : 〈x, k〉 	→ x′ and a constant c ∈ N

such that 〈x, k〉 	→ x′ is computable in time k′′|x|c and 〈x, k〉 ∈ P iff 〈x′, k′〉 ∈ P ′.
P and P ′ are fixed-parameter equivalent (fp-equivalent) def⇔ P ≤fp

m P ′ ≤fp
m P .

Clearly, if P ≤fp
m P ′ and P ′ is FPT, then P too is FPT.

Parameterized complexity comes with an array of elaborate techniques to de-
vise fp-feasible algorithms, and another set of techniques to show that a problem
is not FPT (or hard for a class conjectured to be strictly larger than FPT).

Downey and Fellows introduced the following hierarchy of classes of param-
eterized problems [DF99]:

FPT⊆W[1]⊆W[2]⊆· · ·⊆W[SAT]⊆AW[1]⊆AW[SAT]⊆AW[P]⊆XP⊆· · ·

A Parametric Analysis of the State Explosion Problem in Model Checking 623

where it is known that FPT
= XP. These classes are closed under fp-equivalence.
W[1] is usually considered as the parameterized analogue of NP (from classical
complexity theory) and a W[1]-hard problem is seen as intractable. XP contains
all problems that can be solved in time O(nk) and is considered as the parame-
terized analogue of EXPTIME. It should be stressed that the above analogies are
only useful heuristics: there is no known formal correspondence between stan-
dard complexity classes (NP, PSPACE, EXPTIME, . . .) and parameterized
complexity classes (W[1], AW[P], XP, . . .)1.

We don’t recall the formal definitions of these classes since they are not
required for understanding our results. It is enough to admit that W[1] is in-
tractable, and to understand the parameterized problems dealing with short or
compact computations we introduce in the next subsection. Most of the param-
eterized model checking problems we consider in this paper are easily seen to be
in XP.

2.1 Short and Compact TM Computations

Not surprisingly, some fundamental parameterized problems consider Turing
machines (shortly, “TMs”): Short Computation (resp. Compact Compu-
tation) is the parameterized problem where one is given a TM M and where it
is asked whether M accepts in at most k steps (resp. using at most k work tape
squares). These are the parameterized versions of the time and space bounds
from classical complexity theory.

We consider TMs with just one initially blank work-tape (an input word can
be encoded in the control states of the TM). One obtains different problems
by considering deterministic (DTM), non-deterministic (NDTM), or alternating
(ATM) machines.

Short DTM Computation is FPT while Short NDTM Computa-
tion is W[1]-complete [DF99]. Compact Computation is more complex and
reaches high levels in the W-hierarchy: Compact NDTM Computation is
AW[P]-hard [ADF95] and Compact DTM Computation is AW[SAT]-hard
(see e.g. [DF99]).

Remark 2.1. More precise measures are still lacking and [DF99, Chapter 14]
recalls that it is not known whether Compact DTM Computation and Com-
pact NDTM Computation are fp-equivalent (it is not known whether a pa-
rameterized version of Savitch’s theorem holds).

[DF99] does not consider parameterized problems with ATMs, but these
proved very useful in our study2. Our first results show how they correspond
to existing levels of the W-hierarchy:

Theorem 2.2. Short ATM Computation is AW[1]-complete.

1 But see the recent work by Flum & Grohe in this volume.
2 Note that [Ces01] also introduced parameterized problems on TMs to characterize
the parameterized complexity classes W[1], W[2], and W[P].

624 S. Demri, F. Laroussinie, and P. Schnoebelen

Proof. We show equivalence with Parameterized-QBFSATt, shown AW[1]-
complete in [DF99, Chapter 14]. An instance of Parameterized-QBFSATt
is a quantified boolean formula Ψ = ∃=k1X1∀=k2X2 . . .∀=k2pX2pΦ where Φ,
a positive boolean combination of literals, has at most t alternations between
conjunctions and disjunctions. The literals use variables in X = X1 ∪ · · · ∪X2p
and the quantifications “∃=kiXi” and “∀=kiXi” are relativized to valuations of
Xi where exactly ki variables are set to true. The parameter k is k1 + · · ·+ k2p.
Parameterized-QBFSATt ≤fp

m Short ATM Computation:
To an instance Ψ of Parameterized-QBFSATt, we associate an ATM MΨ

that picks k1 + · · ·+ k2p variables in X1 ∪ · · · ∪X2p and checks that Φ evaluates
to true under the corresponding valuation. The structure of Φ is reflected in the
transition table of MΨ , and we use universal states to encode both the universal
quantifications “∀=k2i . . . ” and the conjunctions in Φ.MΨ can be made to answer
in O(k + t) steps, which gives us an fp-reduction since t is a constant.
Short ATM Computation ≤fp

m Parameterized-QBFSATt:
With an ATM M and an odd k = 2p + 1, we associate a formula ΨM that is
true iff M accepts in k moves. The variables in Ψ are all x[i, t, l] and mean “l
is the ith symbol in the instantaneous description (i.d.) of M at step t”. i and
t range over 0, . . . , k, while l is any tape symbol or pair 〈symbol, control state〉
of M . Assuming M starts with an universal move, ΨM has the general form
∃=k+1X0∀=k+1X1 . . .∀=k+1XkΦ where Xt = {x[i, t, l] | i, l . . . } and Φ checks
that the chosen valuations correspond to a run, i.e. has the form

Φ∀︷ ︸︸ ︷(p∧
t=0

Φseq(X2t, X2t+1)
)
⇒
(
Φinit(X0) ∧ Φaccept(Xk) ∧

Φ∃︷ ︸︸ ︷
p∧
t=1

Φseq(X2t−1, X2t)
)

where Φseq(X,X ′) checks that (the valuations of) X and X ′ describe valid i.d.’s
in valid succession. The different treatment between Φ∀ and Φ∃ reflects the fact
that valid successions of existential states are only performed when valid succes-
sions of universal states are done.

Finally, we can easily rewrite Φ as a positive boolean combination of liter-
als with 5 alternations and therefore obtain an instance of Parameterized-
QBFSAT5 with k′ = (k + 1)2 and size n′ = O(k2n3). ��
Theorem 2.3. Compact ATM Computation is XP-complete.

Proof. We show fp-equivalence with Pebble Game, shown XP-complete
in [DF99, Theorem 15.5]. An instance of Pebble Game is a set N of nodes,
a starting position S = {s1, . . . , sk} ⊆ N of k pebbles on k nodes, a terminal
node T ∈ N and a set of possible moves R ⊆ N ×N ×N . Players I and II play
in turn, moving pebbles and trying to reach T . A possible move 〈x, y, z〉 ∈ R
means that any player can move a pebble from x to z if y is occupied (the pebble
jumps over y) and z is free. The problem is to determine whether player I has a
winning strategy. The parameter is k = |S|.
Compact ATM Computation ≤fp

m Pebble Game:
[KAI79, Theorem 3.1] shows that Pebble Game is EXPTIME-hard by reducing

A Parametric Analysis of the State Explosion Problem in Model Checking 625

space-bounded ATMs. Their reduction can be turned into an fp-reduction where
an ATM of size n running in space k gives rise to a pebble game instance where
k′ is k + 1, and where n′ is bounded by a polynomial of n.
Pebble Game ≤fp

m Compact ATM Computation:
Given an instance G = 〈N,S, T,R〉 with |S| = k, one constructs an ATM MG

that emulates the game and accepts iff player I wins. The alphabet of MG is N
and k worktape squares are sufficient to store the current configuration at any
time in the game. Moves by player I are emulated with existential states, moves
by player II use universal states. Information about R (the set of rules) and S
is stored in the transition table of MG. This gives an fp-reduction since |MG| is
in O(|G|) and k′ = k. ��

3 Synchronized Transition Systems

A labeled transition system (LTS) A over some alphabet Σ is a tuple 〈Q,Σ,→〉
where Q = {s, t, . . . } is the set of states and →⊆ Q×Σ×Q are the transitions.
We assume the standard notation s

a−→ t, s w−→ t (w ∈ Σ∗), s ∗−→ t, s +−→ t, etc.
The size of a finite LTS A is |A| def= |Q|+ |Σ|+ |→|.

Non-flat systems are products A1 × · · · × Ak of (flat) component LTSs. As-
suming Ai = 〈Qi, Σi,→i〉 for i = 1, . . . , k, the product denotes a LTS 〈Q,Σ,→〉
where Q def=

∏k
i=1Qi, Σ

def=
⋃k
i=1Σi and where →⊆ Q × Σ × Q depends on the

synchronization protocol one considers: strong or binary synchronization.
In strong synchronization all components move at the same time:

〈s1, . . . , sk〉 a−→str 〈t1, . . . , tk〉 iff si a−→i ti for all i = 1, . . . , k.
In binary synchronization any two components synchronize while the rest

does not move: 〈s1, . . . , sk〉 a−→bin 〈t1, . . . , tk〉 iff there exist i and j (i
= j) s.t.
si

a−→i ti and sj
a−→j tj while sl = tl for all l
∈ {i, j}.

In this paper, we consider strong synchronization as the natural model for
non-flat systems and the notation A1×· · ·×Ak assumes strong synchronization
when we don’t explicitly say otherwise. However, our results are robust and re-
main unchanged when one adopts binary synchronization (see [DLS01, Appendix
B]).

4 Parameterized Complexity of Non-flat Reachability

Reachability problems are the most fundamental problems in model checking.

Exact Reachability (Exact-Reach)
Instance: k LTSs A1, · · · ,Ak, two configurations s̄ and t̄ of A1 × · · · × Ak.
Question: Does s̄ ∗−→ t̄ ?

We are interested in the parameterized versions k-Exact-Reach, where k
is the parameter. Other variants of this problem are used in model checking,
for instance by considering a finite set of target states instead of a unique state

626 S. Demri, F. Laroussinie, and P. Schnoebelen

t̄, or by asking for repeated reachability of a control state, that is we ask for
s̄
∗−→ t̄

+−→ t̄. Finally, another standard variant consists in considering fair reach-
ability. Details of the definition of these parameterized problems can be found
in [DLS01]. It is a folklore result that the four non-flat reachability problems are
equivalent in the classical sense (i.e. via logspace reductions) and are PSPACE-
complete and we can show this equivalence can be lifted to the parameterized
case [DLS01, Theorem 4.1].

Lemmas 4.2 and 4.3 allow the following characterization:

Theorem 4.1. k-Exact-Reach is fp-equivalent to Compact NDTM Com-
putation.

Hence k-Exact-Reach and the above mentionned variants of k-Exact-Reach
are AW[P]-hard. The characterization given by Theorem 4.1 is robust: it stays
unchanged when we consider binary synchronization or when we restrict to a
binary alphabet or to deterministic LTSs (see [DLS01, Appendix B & C]).

Lemma 4.2. Compact NDTM Computation ≤fp
m k-Exact-Reach.

Proof (sketch). With an NDTM M and an integer k we associate a product
A1 × · · · × Ak × Astate × Ahead of k + 2 LTSs that emulate the behaviour of
M on a k-bounded tape. For i = 1, . . . , k, Ai stores the current contents of the
i-th tape square, Astate stores the current control-state of M and Ahead stores
the position of the TM head. These LTSs synchronize on labels of the form
〈t, i〉 that stand for “rule t of M is fired while head is in position i”. Successful
acceptance by M is directly encoded as an exact reachability criterion (we add
an extra label for the final transition). Finally we translated our instance to a
k-Exact-Reach instance with k′ = k + 2 and n′ = O(kn2). ��

Lemma 4.3. k-Exact-Reach ≤fp
m Compact NDTM Computation.

Proof (sketch). An instance of k-Exact-Reach of the form A1, . . . ,Ak, s̄, t̄,
is easily reduced to an instance of Compact NDTM Computation. The TM
M emulates the behaviour of the product A1 × · · · × Ak by writing the initial
configuration s̄ on its tape (one component per tape square, the tape alphabet
contains all control states of the Ai’s). Then M picks non-deterministically a
synchronization letter a, updates all local states of the Ais by firing one of their
a-transitions (M blocks if some local state has no a-transition), and repeats until
the configuration t̄ is reached. This yields an fp-reduction: k′ = k and n′ is in
O(kn). ��

5 Parameterized Complexity of Non-flat Temporal Logic
Model Checking

In this section, we investigate the parameterized complexity of temporal logic
model checking problems when the input is a synchronized product of LTSs (and

A Parametric Analysis of the State Explosion Problem in Model Checking 627

a temporal formula!). We assume familiarity with the standard logics used in
verification: LTL, CTL, HML, the modal µ-calculus (see [Eme90,CGP99,BS01]).

For modal logics, LTSs are the natural models, while for temporal logics like
CTL or LTL the natural models are Kripke structures. Below we call Kripke
structure (or shortly KS) a pair M = 〈A,m〉 of a finite LTS A = 〈Q,Σ,→〉
extended with a finite valuation m ⊆ Q × AP of its states (with AP a set of
atomic propositions). The size |M| ofM = 〈A,m〉 is |A|+ |m|.

We omit the standard definition of when state s in M satisfies formula φ,
written M, s |= φ. There is one detail though: for linear-time logics (LTL and
its fragments) we follow [SC85] and assume, for the sake of uniformity, that the
question “M, s |= φ?” asks for the existence of a path from s that verifies φ,
which is dual to the universal “all paths from s” formulation commonly used in
applications.

The labels of the transitions of a KS do not appear in temporal formulae.
They are only used for synchronization purposes: 〈A1,m1〉 × · · · × 〈Ak,mk〉
is the KS 〈A,m〉 where A = A1 × · · · × Ak (implicitly assuming strong
synchronization) and where m is a valuation built from m1, . . . ,mk. For the
sake of simplicity, we assume w.l.o.g. that m is the “sum” of m1, . . . ,mk, that
is 〈〈q1, . . . , qk〉,p〉 ∈ m as soon as 〈qi,p〉 ∈ mi for some i.

The problems we consider have the following general form, where L is
LTL, CTL, the modal µ-calculus, or some of their fragments, and where the
parameterized version has the pair k, |φ| as parameter:

Parameterized model checking for logic L (MCL)
Instance: Kripke structuresM1, . . . ,Mk, a configuration s̄, an L-formula φ.
Question: DoesM1 × · · · ×Mk, s̄ |= φ?

5.1 Linear Time

LTL model checking for non-flat systems is PSPACE-complete. In our parame-
terized setting we have:

Theorem 5.1. k, φ-MCLTL is fp-equivalent to Compact NDTM Computa-
tion and to k-Exact-Reach (and hence is AW[P]-hard).

Proof. k-Exact-Reach reduces to k, φ-MCLTL since s̄
∗−→ 〈t1, . . . , tk〉 in some

A1 × . . .×Ak iff 〈A1, {〈t1,p1〉}〉 × . . . 〈Ak, {〈tk,pk〉}〉, s̄ |= F(p1 ∧ . . .∧ pk). This
provides an fp-reduction since |F(p1 ∧ . . . ∧ pk)| is in O(k log k).

In the other direction, the question “doesM1 × · · · ×Mk, s̄ |= φ?” reduces
to a repeated reachability problem forM1×· · ·×Mk×Bφ, where Bφ is a Büchi
automaton that accepts the paths satisfying φ3. There remains to check that
this classical reduction is a reduction in the parameterized sense: since |Bφ| is in
3 Strictly speaking, Bφ synchronizes with M1 × · · · ×Mk using a protocol different
from what we used up to now: s̄ a−→ t̄ and q v−→ q′ synchronize iff m(s̄) = v. However,

628 S. Demri, F. Laroussinie, and P. Schnoebelen

O(2|φ|), the reduction has k′ in O(k) and n′ in O(2k × n), which is enough for
fp-reducibility. ��

Model checking is already intractable for the fragment LT0 of LTL that does
not allow to state reachability questions. LT0 formulae are built with atomic
propositions, X and ∨ only (no negation allowed):
Theorem 5.2. [DLS01] k, φ-MCLT0 is W[1]-complete, even if we restrict to
formulae using only one atomic proposition.

5.2 Branching Time

Model checking non-flat systems is EXPTIME-complete for the µ-
calculus [Rab00] and PSPACE-complete for HML or CTL. (Observe that HML,
the fragment of the µ-calculus without fixed-points, does not allow stating reach-
ability questions). In our parameterized setting we have:

Theorem 5.3. k, φ-MCµ is XP-complete.

Proof. Writing n for
∑
i|Mi|, k, φ-MCµ can be solved in time

O
(
(|φ|.nk)|φ|) [KVW00, Theo. 6.4] and hence is in XP.
XP-hardness is proved by a reduction from non-flat bisimilarity. Ander-

sen [And93, section 4.3] showed how bisimilarity checking can be stated in the
branching-time mu-calculus: consider two LTSs A and B on a common Σ, and
build B′ out of B by renaming all its actions a ∈ Σ by copies a′
∈ Σ. Then

A and B are bisimilar iff A ‖ B′ |= νX.
∧
a∈Σ

([a]〈a′〉X ∧ [a′]〈a〉X). (1)

The interleaved product A ‖ B′ can be replaced by strong synchronization if we
add Σ-loops in all states of B′ and Σ′-loops in all states of A. Using (A1×A2)′ =
A′1 ×A′2, the reduction carries to non-flat systems.

Since non-flat bisimilarity is XP-hard already when |Σ| = 2 [DLS01, Theorem
D.4], we can bound the size of the µ-formula in (1) and have an fp-reduction. ��

Theorem 5.4. k, φ-MCHML is AW[1]-complete.

Proof (idea). That k, φ-MCHML is fp-equivalent to Short ATM Computation
can be proved by adapting the techniques of Theorem 5.2 to ATMs. ��

Theorem 5.5. Compact NDTM Computation ≤fp
m k, φ-MCCTL. (Hence

k, φ-MCCTL is AW[P]-hard).

Proof (idea). CTL allows to state reachability questions. ��
using the same techniques as in [DLS01, Appendix B], the parametrized reachability
problems for this form of synchronized products can also be proved fp-equivalent to
Compact NDTM Computation.

A Parametric Analysis of the State Explosion Problem in Model Checking 629

Remark 5.6. For the moment, we do not have a more precise characterization
for k, φ-MCCTL. Observe that, by definition, model checking CTL is closed by
complementation (unlike the LTL case) so that a conjecture about their being
fp-equivalent to Compact NDTM Computation would have an impact on
the open problems mentioned in Remark 2.1. For upper bounds, the problem
is obviously in XP and we failed to refine this, partly because parameterized
complexity does not offer many natural classes above AW[P].

6 Parameterized Complexity of Non-flat Bisimilarity

We assume familiarity with bisimulation and the other behavioral equivalences
in the branching time – linear time spectrum [Gla01]. Checking for bisimilarity
among non-flat systems is EXPTIME-complete in the classical framework [JM96,
LS00]. For our parametric analysis, k-Bisim asks whether two given configura-
tions in a product of k LTSs are bisimilar.

Theorem 6.1. k-Bisim is XP-complete.

Proof (idea). k-Bisim is in XP since bisimilarity of flat systems is polynomial-
time [KS90]. XP-hardness is seen by observing that the reduction in the proof
of [LS00, Theorem 4.1] can be seen as an fp-reduction from Compact ATM
Computation to k-Bisim. ��

This result is robust and [DLS01, Appendix D] shows that it still holds when
we consider binary synchronization or restricted alphabets (a result we used in
the proof of Theorem 5.3). [DLS01] further proves XP-hardness for a wide range
of behavioral equivalences and preorders, along the lines of [Rab97,LS00,SJ01].

7 Conclusion

We studied the complexity of model checking synchronized products of LTSs un-
der the light of Downey and Fellows’s theory of parameterized complexity. Here
the parameter k is the number of components (and the size of the property). We
considered a wide variety of problems, and assumed two different synchronization
protocols.

It is known that for any fixed value of the parameter, the problems have
polynomial-time solutions in O(nk) and we show that solutions in some f(k)×
nc (for some constant c) do not exist (unless Downey and Fellows’s hierarchy
collapses). Therefore our results show that these problems are probably not
tractable even in the parameterized sense of being FPT, and their complexity
is in general quite high in the hierarchy (see summary in Fig. 1 where edges
correspond to the existence of an fp-reduction).

The problems remain intractable (possibly at a weaker level) when natural re-
strictions are imposed. We think this must be understood as arguing against any
hope of finding “tractable” algorithms for model checking synchronized products
of components even when the number k of components varies much less than
the size of the components themselves.

630 S. Demri, F. Laroussinie, and P. Schnoebelen

Fig. 1. A summary of existing reductions between parameterized problems

References

[ADF95] K. A. Abrahamson, R. G. Downey, and M. R. Fellows. Fixed-parameter
tractability and completeness IV: On completeness for W[P] and PSPACE
analogs. Annals of Pure and Applied Logic, 73(3):235–276, 1995.

[And93] H. R. Andersen. Verification of Temporal Properties of Concurrent Systems.
PhD thesis, Aarhus University, Denmark, June 1993.

[B+95] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and H. T. Wareham. The
parameterized complexity of sequence alignment and consensus. Theoretical
Computer Science, 147(1–2):31–54, 1995.

[BS01] J. Bradfield and C. Stirling. Modal logics and mu-calculi: an introduction.
In Handbook of Process Algebra, ch 4, pp 293–330. Elsevier Science, 2001.

[C+97] Liming Cai, Jianer Chen, R. G. Downey, and M. R. Fellows. On the pa-
rameterized complexity of short computation and factorization. Archive for
Mathematical Logic, 36(4/5):321–337, 1997.

[Ces01] M. Cesati. The Turing way to the parameterized intractability, September
2001. Submitted.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
1999.

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

[DLS01] S. Demri, F. Laroussinie, and Ph. Schnoebelen. A parametric analysis of
the state explosion problem in model checking. Research Report LSV-01-4,
Lab. Specification and Verification, ENS de Cachan, France, Apr. 2001.

A Parametric Analysis of the State Explosion Problem in Model Checking 631

[Eme90] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical
Computer Science, vol. B, ch 16, pp 995–1072. Elsevier Science, 1990.

[Esp98] J. Esparza. Decidability and complexity of Petri net problems — an intro-
duction. In Advances in Petri Nets 1998, LNCS 1491, pp 374–428. Springer,
1998.

[Gla01] R. J. van Glabbeek. The linear time – branching time spectrum I. In
Handbook of Process Algebra, ch 1, pp 3–99. Elsevier Science, 2001.

[Gro99] M. Grohe. Descriptive and parameterized complexity. In Computer Science
Logic (CSL’99), LNCS 1683, pp 14–31. Springer, 1999.

[GSS01] M. Grohe, T. Schwentick, and L. Segoufin. When is the evaluation of
conjunctive queries tractable? In 33rd ACM Symp. Theory of Computing
(STOC’01), pp 657–666, 2001.

[HKV97] D. Harel, O. Kupferman, and M. Y. Vardi. On the complexity of verify-
ing concurrent transition systems. In Concurrency Theory (CONCUR’97),
LNCS 1243, pp 258–272. Springer, 1997.

[JM96] L. Jategaonkar and A. R. Meyer. Deciding true concurrency equivalences
on safe, finite nets. Theoretical Computer Science, 154(1):107–143, 1996.

[KAI79] T. Kasai, A. Adachi, and S. Iwata. Classes of pebble games and complete
problems. SIAM J. Comput., 8(4):574–586, 1979.

[KS90] P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state processes
and three problems of equivalence. Information and Computation, 86(1):43–
68, 1990.

[KVW00] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic ap-
proach to branching-time model checking. J. ACM, 47(2):312–360, 2000.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent pro-
grams satisfy their linear specification. In 12th ACM Symp. Principles of
Programming Languages (POPL’85), pp 97–107, 1985.

[LS00] F. Laroussinie and Ph. Schnoebelen. The state explosion problem from trace
to bisimulation equivalence. In Found. Software Science & Computation
Structures (FOSSACS’2000), LNCS 1784, pp 192–207. Springer, 2000.

[PY99] C. H. Papadimitriou and M. Yannakakis. On the complexity of database
queries. J. Computer and System Sciences, 58(3):407–427, 1999.

[Rab97] A. Rabinovich. Complexity of equivalence problems for concurrent systems
of finite agents. Information and Computation, 139(2):111–129, 1997.

[Rab00] A. Rabinovich. Symbolic model checking for µ-calculus requires exponential
time. Theoretical Computer Science, 243(1–2):467–475, 2000.

[SC85] A. P. Sistla and E. M. Clarke. The complexity of propositional linear tem-
poral logics. J. ACM, 32(3):733–749, 1985.

[SJ01] Z. Sawa and P. Jančar. P-hardness of equivalence testing on finite-state
processes. In Current Trends in Theory and Practice of Informatics (SOF-
SEM’01), LNCS 2234, pp 326–335. Springer, 2001.

[War01] H. T. Wareham. The parameterized complexity of intersection and com-
position operations on sets of finite-state automata. In Implementation &
Application of Automata (CIAA’2000), LNCS 2088, pp 302–310. Springer,
2001.

	A Parametric Analysis of the State Explosion Problem in Model Checking
	Introduction
	Parameterized Complexity
	Short and Compact TM Computations

	Synchronized Transition Systems
	Parameterized Complexity of Non-flat Reachability
	Parameterized Complexity of Non-flat Temporal Logic Model Checking
	Linear Time
	Branching Time

	Parameterized Complexity of Non-flat Bisimilarity
	Conclusion
	References

