
T

François Laroussinie
LIAFA, Univ. Paris Diderot – Paris 7 & CNRS UMR 7089, IUF

Francois.Laroussinie@liafa.jussieu.fr

1 Introduction
Model-checking is now a well-established method in the area of formal verifica-
tion. It has been initiated roughly 25 years ago with the seminal papers by Pnueli,
Clarke and Sifakis [25, 13, 26], and since then many theoretical and practical
results have been obtained. In this framework, the behavior of the system to be
analyzed is described with some formal model, the property to be verified is stated
with a specification language and the analysis is done automatically with a tool (a
model checker).

One can use many different types of formalism to represent the behavior of a
system. This choice depends on the nature and the features of the system we deal
with: Which kind of data is manipulated by the system ? Is it necessary to handle
real-time constraints ? Are there probabilities to consider ? The same holds for
the specification language: for example, there is a wide family of temporal logics
allowing to express different kinds of properties. Of course there is a trade-off

between expressiveness and efficiency: at the very end, one aims at using a model-
checker to decide whether the specification is satisfied by the model and then the
efficiency of the decision procedures is crucial.

An important aspect of complex systems is that they are usually composed
by several components that interact together. One can consider them as a whole
and verify that the resulting system satisfies some property: given a complete de-
scription of some protocol (with a sender, several receivers, a network,. . .) one
can ask whether there is no deadlock (with CTL, this could be expressed by
AG ¬deadlock where deadlock would be an atomic proposition characterizing
the deadlocked states). We could also verify that every new message is followed
by a reception with AG (new-message⇒ AF reception).

Sometimes it is interesting to consider one component C (or a subset of com-
ponents) and to express properties over it within its environment (i.e. the other
components): one can then analyze its ability to act upon the whole system in
order to ensure some property. For example, it can be useful to know whether

1

Francois.Laroussinie@liafa.jussieu.fr

C can always ensure that some request will be granted. By always, we mean
whatever the other components do. Thus we need a formalism to model the inter-
action of components and a specification language that allows us to express this
kind of property. And note that it cannot be easily stated with classical temporal
logics because it requires an existential quantification over the actions of C ("C
can ensure. . . ") and an universal quantification over the actions of the remaining
part of the system ("whatever the other components do"). Such problems occur
when considering the verification of open systems that have to behave correctly
whatever their environments do.

Games are a natural and interesting model to represent this kind of problem.
Consider for example the classical train crossing problem. Trains and cars can
arrive at the crossing, and the gate has to be controlled in order to (1) avoid crash
and (2) ensure liveness in the whole system (neither trains nor cars can be blocked
forever). Such a problem can be seen as a game: one player deals with trains,
another one drives cars and the last one, let’s say Alice, has to control (open or
close) the gate. The question is then: Has Alice a winning strategy in this game ?
If so, the corresponding control problem has a solution.
Then we need special specification languages to deal with games: it is important
to be able to state the existence of strategies for a given player. This has motivated
the introduction of Alternating-time Temporal Logics (ATL, ATL?,. . .) where ex-
plicit quantification over the strategies is possible [5]. The aim of this document
is to give an overview of results about these temporal logics. We will mainly fo-
cus on semantic questions (Which kind of properties can be stated ? How can we
increase the expressive power ?), and we will also consider complexity results for
model checking problems.

Plan of the paper. In Section 2 we give the formal definition of Concurrent
Game Structures. In Section 3 the temporal logic ATL and its variant ATL? are
presented. Several questions about the expressive power and the complexity of
these logics will be discussed. In Sections 5 and 6, we will present two exten-
sions of ATL: the first one uses strategy contexts to express complex properties
over strategies and the second one allows us to add real-time constraints in the
specifications.

2 Concurrent Game Structures
Let AP be a set of atomic propositions. Concurrent Game Structures are a multi-
player extension of Kripke structures:

Definition: [Concurrent Game Structure [5]]

A Concurrent Game Structure (CGS) is a 7-tuple S = 〈Q, q0, `,Agt,M,Mv,Edg 〉
where:

• Q is a finite set of control states (or locations) and q0 ∈ Q is the initial
location;

• ` : Q→ P(AP) is a labeling of locations with atomic propositions;

• Agt = {A1, . . . , Ak} is a finite set of agents (or players);

• M is a finite alphabet of moves;

• Mv : Q × Agt → P(M) gives the set of possible moves for every player in
every location;

• Edg : Q ×Mk → Q is the transition table of S: Edg(q,m1, . . . ,mk) is the
new location of S when Ai plays the move mi for i = 1, . . . , k from location
q.

The size |C| of a CGS C is defined as |Q|+ |Edg|, where |Edg| is the size of the
transition table.

From the current location q, any player Ai independently chooses a move mi ∈

Mv(q, Ai) and the transition table Edg provides the new location q′ = Edg(q,m1,
. . . ,mk). We use Next(q, Ai,mi) to denote the set of locations that are reachable
from q when Player Ai chooses mi (i.e. q′ ∈ Next(q, Ai,mi) iff ∃m̄ ∈ Mk with
m̄(j) ∈ Mv(q, A j) for any j, m̄(i) = mi and q′ = Edg(q, m̄)). And Next(q) is the set
of locations reachable from q for some set of moves of the agents (i.e. q′ ∈ Next(q)
iff ∃m̄ ∈ Mk with m̄(i) ∈ Mv(q, Ai) for any i, and q′ = Edg(q, m̄)).

Example: Figure 1 presents a CGS corresponding to the game "Rock-paper-
scissors". There are two players and each one has to choose R (rock), P (paper)
or S (scissors). The alphabet of moves is {R, P, S}. The transitions of the CGS are
labeled with the corresponding set of moves (〈R.P〉 means that the move of Player
1 (resp. Player 2) is R (resp. P).

Note that the transition table may be exponential in the number of agents. This
has motivated the introduction of a succinct encoding of Edg by using Boolean
functions [18]. In this model, namely the implicit CGSs, one can specify the pos-
sible transitions from q as a sequence of "If-Then-Else" tests whose conditions
are Boolean combinations of propositions of the form "Player i chooses mi". For-
mally the transition function from q is defined by a finite sequence ((ϕ0, q0), . . . ,
(ϕn, qn)) s.t.: qi ∈ Q and ϕi is a Boolean combination of propositions “A j → m”
(i.e. “Agent A j plays m”) and ϕn = >. Then we define Edg(q,m1, . . . ,mk) as q j

q0

q2 q1

〈R, P〉, 〈P, S〉, 〈S, R〉 〈P, R〉, 〈S, P〉, 〈R, S〉

〈P, P〉, 〈R, R〉, 〈S, S〉

1-Win2-Win

Figure 1: Rock-paper-scissors

with 1 j = mini{m1 . . .mk |= ϕi}. An example of implicit CGS with three players

is shown in Figure 2 with Mv(q0) def
=

(
(A1 → 1, q0), (A2 → 2, q1), (>, q2)

)
: the

right part of the figure corresponds to the equivalent "explicit" CGS. We will see
in Section 4 that this encoding changes the complexity of model checking.

q0

q1 q2

A1 6→ 1 ∧ A2 → 2 "otherwise"

A1 → 1

q0

q1 q2

〈2.2.1〉, 〈2.2.2〉 〈2.1.1〉, 〈2.1.2〉

〈1.1.1〉, 〈1.1.2〉, 〈1.2.1〉, 〈1.2.2〉

Figure 2: Implicit CGS

Alternating transition systems. In [4], another game model is studied: the Al-
ternating Transition Systems (ATS). In this setting, a move of a player consists in
a subset of successor locations. Mv(q, A) is then a set of subsets of Q. When ev-
ery player has chosen a move, the new location is the intersection of every move.
By construction, this intersection has to be a singleton (this point makes it quite
difficult to design an ATS in practice). Translations from ATSs to CGSs and back
are possible (w.r.t. alternating bisimulation [6]) but may be expensive [21].

Turn-based games. Finally note also that the turn-based CGSs are an important
subclass with interesting semantic and algorithmic properties. In a turn-based
CGS, for every location q, there is at most one player Ai who has several choices:
|Mv(q, A j)| = 1 for any j , i. Thus the set of locations is partitioned into k sets
Q1, . . . ,Qk: Qi contains locations that "belong" to Player Ai (who decides the
successor location).

1with the convention: m1 . . .mk |= ”A j → m” iff m j = m.

Coalitions, executions and strategies. A coalition A is a subset of agents. A
move for A is a move for every player in A. The previous definitions for Next
can easily be extended to deal with coalitions instead of single players. Given m
a move for A and m′ a move for Agt\A, we use m ·m′ to denote the corresponding
move for Agt. Of course we have Next(q,Agt,m · m′) = {Edg(q,m · m′)}.

An execution is an infinite sequence ρ = q0 → q1 → q2 . . . such that qi+1 ∈

Next(qi) for any i. We use ρ[i] to denote the state qi and ρ[0 . . . i] (or ρ|i) for the
prefix q0 → q1 → . . .→ qi.

A strategy for Player Ai is a function fAi that maps any finite prefix q0 . . . q j of
some execution to a possible move for Ai, i.e. satisfying fAi(q0 . . . q j) ∈ Mv(q j, Ai).
We use Strat(Ai) to denote the set of strategies for Ai. This notion can also be
extended to coalitions.

A memoryless (or state-based) strategy fAi only depends on the current state
of the system (i.e. the last state of the prefix): fAi is then a mapping from Q to
M. More generally we could also consider k-bounded-memory strategies for any
integer k [23, 29], this is a way to characterize the resources needed by a strategy.

Given a strategy FA for a coalition A, we use Out(q, FA) to denote the set of
executions enforced by the strategy FA: q0 → q1 → q2 . . . ∈ Out(q, FA) iff q0 = q
and for any i we have qi+1 ∈ Next(qi, A, FA(q0 . . . qi)). If F∅ is a strategy for the
empty coalition, Out(q, F∅) is the set of all executions starting from q (denoted by
Exec(q)).

3 Temporal logics for games
Temporal logic (TL) is an interesting framework to express properties over reac-
tive systems [25]: the temporal modalities offer a natural way to deal with the
ordering of events along executions. There are many different TLs differing from
the nature of the underlying models, the allowed temporal modalities, etc. First we
can mention two main families: the linear-time temporal logics and the branching-
time temporal logics. In the first case, a system is viewed as a set of executions
and formulas are interpreted over these runs. This is the case of the well-known
LTL. One can specify that "any problem is followed by an alarm" by using the fol-

lowing formula: "ϕ def
= G (problem ⇒ F alarm)". Modality G (resp. F) means

"Always along the run" (resp. "Eventually along the run"). When we say that an
LTL formula ϕ holds for a Kripke structure S , we usually mean that every run of
S satisfies ϕ. There is an implicit universal quantification over the executions of
S .

Branching-time temporal logics (such as CTL or CTL?) are interpreted over
states of Kripke structures. Every state may have several successors. In addition

to classical temporal modalities, we can use the existential (E) or universal (A)
quantification over the runs starting from the current state. The previous property
can be stated in CTL with the following formula: " AG (problem⇒ AF alarm)".
The formula AG (problem ⇒ EF alarm) is very different: it specifies that from
any problem state, it is possible to find a run leading to alarm. This property
cannot be expressed in linear-time temporal logic (see [15] for a detailed overview
of temporal logics). Adding path quantifications allows us to express complex
properties on the behavior of reactive systems. In this framework CTL? is very
powerful and contains both CTL and LTL.

When considering games, it is natural to deal with the strategies for agents
to enforce temporal properties. For example, in the game Rock-paper-scissors,
one could ask whether there exists a strategy for Player 1 to reach the state 1-Win.
Such a query is in fact an existential quantification over a subset of runs (generated
by a strategy for Player 1) followed by an universal quantification over the runs of
this subset. It cannot be expressed by using the existential or universal quantifica-
tion over paths and this has motivated the introduction of modalities 〈〈A〉〉 in [5]:
〈〈A〉〉Φ means that "there exists a strategy for A such that Φ holds for any run".
This provides a new family of temporal logics: ATL, ATL?,. . . that correspond to
branching-time TLs where E and A have been replaced by modalities 〈〈A〉〉 for
A ⊆ Agt.

Formally ATL is defined as follows:

Definition: [Syntax of ATL]

ATL 3 φs, ψs ::= P | ¬φs | φs ∨ ψs | 〈〈A〉〉 φp

φp ::= X φs | φs U ψs | φs R ψs

with P ∈ AP and A ⊆ Agt.

As usual we can easily define ⇒, ∧, >, ⊥. . . We will use F ϕ (resp. G ϕ) as
a shorthand for >U ϕ (resp. ¬F ¬ϕ). ATL formulas are interpreted over states of
CGS (the case of Boolean operators is omitted):

q |=S 〈〈A〉〉 φp iff ∃FA ∈ Strat(A). ∀ρ ∈ Out(q, FA) we have ρ |=S φp,

ρ |=S X φs iff ρ[1] |=S φs,

ρ |=S φs U ψs iff ∃i. ρ[i] |=S ψs and ∀0 ≤ j < i we have ρ[j] |=S φs

ρ |=S φs R ψs iff ∀i :
(
∃ j < i. ρ(j) |=S φs

)
∨ ρ(i) |=S ψs

ATL? is defined in the same manner as CTL? with 〈〈A〉〉 modalities: there is
no restriction on the embedding of temporal modalities and any strategy quantifier

〈〈A〉〉 can be followed by a general path formula defined as:

φp, ψp ::= φs | φp ∨ ψp | ¬φp | X φp | φp U ψp

For example, 〈〈A〉〉G F P is an ATL?formula.
Note that classical quantifications E and A can be easily expressed with

modalities 〈〈A〉〉 :

EΦ ≡ 〈〈Agt〉〉Φ AΦ ≡ 〈〈∅〉〉Φ

Indeed the existential quantification corresponds to a case where all agents
cooperate together in order to satisfy a property. Conversely if Φ is true when
nobody tries to make it to be true, it means that Φ is always true. This implies that
ATL contains CTL, and ATL? contains CTL?(note also that a Kripke structure can
be seen as a one-player CGS).

Example of properties. Now we give examples of properties that can be ex-
pressed with ATL.

• 〈〈Controller〉〉G (¬Pb): there exists a strategy for the controller to ensure
that Pb is never true.

• 〈〈A〉〉F
(
¬ 〈〈B〉〉F P ∧ ¬ 〈〈C〉〉F P

)
: there exists a strategy for A to reach a

state where neither B nor C can manage alone reach P.

• 〈〈A〉〉F
(
¬ 〈〈B〉〉F P ∧ ¬ 〈〈C〉〉F P ∧ 〈〈B,C〉〉F P

)
: there exists a strategy for A

to reach a state where neither B nor C can manage alone reach P, but where
B and C can cooperate together to reach P.

• 〈〈Sender, Receiver〉〉F (msg-ok): there exists a strategy for the sender and
the receiver to reach a state where msg-ok is true.

Dealing with strategy quantifiers is not always easy. For example, consider
two path formulas Φ1 and Φ2, it is clear that E(Φ1 ∨ Φ2) is equivalent to EΦ1 ∨

EΦ2 (and A(Φ1 ∧ Φ2) ≡ AΦ1 ∧ AΦ2). But such rules are not true when consid-
ering strategy quantifiers:

〈〈A〉〉 (Φ1 ∨ Φ1)
6⇒
⇐ 〈〈A〉〉Φ1 ∨ 〈〈A〉〉Φ1

CGSs are not determined for temporal properties [5, 16]: if a coalition A does
not have a strategy to enforce Φ, it does not imply that Agt\A has a strategy to
ensure ¬Φ. Thus ¬ 〈〈A〉〉ϕ is not equivalent to 〈〈Agt\A〉〉 ¬ϕ. For example, in the

"Rock-paper-scissors" game, nobody has a strategy to win or to prevent a defeat
and thus we have: q0 6|= 〈〈A1〉〉X 1-Win and q0 6|= 〈〈A2〉〉X ¬1-Win.

Finally note that memoryless strategies are sufficient to deal with ATL spec-
ifications [5, 28] but this is not the case for ATL?: for example, the formula
〈〈A〉〉 (F P1 ∧ F P2) – "there exists a strategy for A to reach P1 and to reach P2"
– may require to choose two different moves in the same location in order to reach
first P1 and then P2.

In [9] there is an extension of ATL? with strategy quantifiers of the form
〈〈A, k〉〉 with k ∈ N in order to quantify over strategies using a memory of size
k. These modalities increase the expressive power (and even the distinguishing
power) of ATL?.

Other specification languages. In addition to ATL and ATL?, there are different
specification languages in the literature. First 2 we can mention the Alternating-
time µ-Calculus (AMC) [5] based on the modality 〈〈A〉〉X and fixed-point opera-
tors, its semantics is similar to that of propositional µ-calculus.

Game Logic [5] allows us to deal explicitly with the trees obtained by the
choice of a given strategy for a coalition. In GL, there is an existential quantifier
over the strategies of coalition A (∃∃A), and path quantifiers (∃ and ∀ = ¬∃¬) to
deal with the paths in the underlying tree corresponding to the chosen strategy.
The syntax is as follows (GLt contains the tree formulas, and GLp contains the
path formulas):

Definition: [Syntax of GL [5]]

GL 3 φs, ψs ::= P | ¬φs | φs ∨ ψs | ∃∃A.φt

GLt 3 φt, ψt ::= φs | ¬φt | φt ∨ ψt | ∃φp

GLp 3 φp, ψp ::= φt | ¬φp | φp ∨ ψp | X φp | φp U ψp

with A ⊆ Agt and P ∈ AP.

Semantics is natural: ∃∃A.φt holds for a location q iff there is a strategy FA ∈

Strat(A) such that the tree TFA produced by FA from q (i.e. whose branches belong
to Out(q, FA)) satisfies φt.

For example, ∃∃A.(∃G P1 ∧ ∃G P2) holds for q iff there is a strategy FA for A
such that there exist a run where P1 is always true and another one verifying P2:
both runs belong to Out(q, FA). This formula cannot be stated with ATL? [5]. We
will see in Section 5 an extension of ATL allowing to express such properties.

2We will consider other logics in Section 5.

4 Model checking
Given a CGS S and an ATL formula Φ, the model checking problem consists in
deciding whether the initial location of S satisfies Φ or not.

The decision procedure computes the subset [[ψ]] of locations of S satisfying ψ
for any subformula ψ in Φ. It proceeds in a bottom-up manner starting by atomic
propositions and then dealing with outermost formulas. Boolean operators can be
easily handled. The set [[〈〈A〉〉X ϕ]] corresponds to the controllable predecessors
of [[ϕ]] by A, denoted CPre(A, [[ϕ]]). Given a set of locations S and a coalition A,
we have:

CPre(A, S) def
= {q ∈ Q | ∃mA ∈ Mv(q, A) such that Next(q, A,mA) ⊆ S }

From any location in CPre(A, S), A can enforce to reach a location in S .
And the treatment of 〈〈A〉〉 _ U _ and 〈〈A〉〉 _ R _ is based on a standard fixed-

point computation in which we use the controllable predecessors. Given Ψ
def
=

〈〈A〉〉 P1 U P2, the set [[Ψ]] is defined as the least fixed-point of the function: f :
2Q → 2Q defined as follows:

f (Z) def
= [[P2]] ∪

(
[[P1]] ∩ CPre(A,Z)

)
(1)

The formula Ψ can also be expressed by using the following Alternating-time
µ-calculus formula: µZ.

(
P2 ∨ (P1 ∧ 〈〈A〉〉X Z)

)
.

The difference from CTL model checking is then the use of 〈〈A〉〉X instead
of EX : we need to consider controllable predecessors instead of classical prede-
cessors. Note also that if we consider turn-based games, it is possible to express
〈〈A〉〉 P1 U P2 with the standard propositional µ-calculus because for every state we
can use either the existential modality EX or the universal modality AX depend-
ing on the "owner" (A or Ā) of the state.

The complexity of ATL model checking depends on the complexity of the
computation CPre (see [21] for these results for ATS, CGS and implicit CGS).
Finally we have:

Theorem: Model checking ATL formulas. . .

• is P-complete on CGSs [5];

• is ∆
p
3-complete on implicit CGSs [21];

• is ∆
p
2-complete on ATSs [21].

For ATL?, we have:

Theorem: [[5, 21]] Model checking ATL* is 2EXPTIME-complete on ATSs as
well as on CGSs and implicit CGSs.

Satisfiability. For ATL (and ATL?) the satisfiability problem ("given Φ, does
there exists a CGS satisfying Φ?") can be defined in several ways [30]:

(Pb 1.) Given Φ and a finite set of agents Agt, does there exist a multi-agent model
over Agt satisfying Φ ?

(Pb 2.) Given Φ, does there exist a finite set of agents Agt such that there is a multi-
agent model over Agt satisfying Φ ?

(Pb 3.) Given Φ, does there exist a multi-agent model over AgtΦ (i.e. the set of
agents occurring in Φ) satisfying Φ ?

These three variations are discussed in [30]. The importance of the agents is high-
lighted by the following example: consider ¬ 〈〈A〉〉X P∧¬ 〈〈A〉〉X P′∧ 〈〈A〉〉X (P∨
P′). This formula is not satisfiable in a model where A is the unique player. But
it is clearly satisfiable when considering two players. In [30] it is shown that for
ATL specifications, we have: (Pb 1.) and (Pb 3.) are polynomially reducible to
each other and (Pb 2.) can be reduced to (Pb 1.) by considering one extra player
in addition to AgtΦ. These remarks could also be extended to ATL?. Finally we
have:

Theorem:

• Satisfiability problems for ATL are EXPTIME-complete [30].

• Satisfiability problems for ATL? are 2EXPTIME-complete [27].

Finally note that in [30] the problem is considered for Alternating Transition
Systems (and not for CGSs), but as there exist translations between ATS and CGS
(where the set of agents is preserved), the decision problems for the existence of
ATS or CGS have the same complexity.

5 Extension with strategy contexts
In this section, we present an extension of ATL and ATL? with strategy contexts
that allow us to express complex properties over strategies [9]. The basic idea is to
deal with properties of the following form: given a strategy FA for A, does there
exist (1) a strategy FB for B such that the combination of FB with FA (denoted
"FB◦FA") ensures some property Φ, and (2) a strategy FC for C such that "FC◦FA"
ensures some property Ψ ? The choices of FB and FC are independent (we do not
assume any kind of cooperation between B and C) but they rely on the choice of
FA.

Consider the following example. A server S has to treat the requests of n
agents A1,. . . , An. We want to check whether there is a strategy for S in order to
grant any request of the agents. Expressing such a property with ATL or ATL? is
not possible. Something like 〈〈S 〉〉G

(∧
i reqi ⇒ 〈〈Ai〉〉F granti

)
is not cor-

rect because the strategy for S is not taken into account in the choices of A1, A2,
. . . This would mean that every agent can enforce the server to grant its request.
The property 〈〈S 〉〉G

(∧
i reqi ⇒ 〈〈S , Ai〉〉F granti

)
is not right: because we

want to specify that one given strategy for S ensures the property for every agent.
Finally 〈〈S , A1, . . . , An〉〉

(
G

∧
i reqi ⇒ F granti

)
does not work because we do

not want to assume that agents cooperate together. This has motivated the use of
new modalities 〈·A·〉 that are interpreted in strategy contexts containing the strate-
gies fixed by outermost quantifiers: the previous property could then be expressed
by the following formula:

〈〈S 〉〉
(∧

i=1...n

(reqi ⇒ 〈·Ai·〉F granti)
)

The innermost modalities 〈·Ai·〉 s are strategy quantifiers within the context of
the strategy for S selected by the outermost modality 〈〈S 〉〉 .

Another example to illustrate the semantics of the new modality 〈·A·〉 is given
in Figure 3. The left part of the figure gives a graphical interpretation of the for-
mula 〈〈A〉〉G 〈〈B〉〉F P in a location q: the first strategy quantifier 〈〈A〉〉 selects
a set of runs satisfying G 〈〈B〉〉F P, thus from every state q′ along these execu-
tions there is a strategy for B to ensure F P (and this strategy does not rely on
the previous strategy for A). In the right part of figure, we consider the formula
〈〈A〉〉G 〈·B·〉F P : B has to select a set of executions among those provided by the
strategy fixed by A.

To formally define the new modalities 〈·−·〉 , we first introduce some notions
over the strategies. A strategy context is a strategy for a subset of agents in Agt.
Let F be a strategy for A ⊆ Agt. We use dom(F) to denote A (the domain of
F). Given B ⊆ Agt, (FA)|B (resp. (FA)\B) denotes the restriction of FA to the
coalition A ∩ B (resp. A\B). It is also possible to combine two strategies F ∈
Strat(A) and F′ ∈ Strat(B), resulting in a strategy F ◦F′ ∈ Strat(A ∪ B) defined
as follows: (F ◦ F′)|A j(q0 . . . qm) equals F|A j(q0 . . . qm) if A j ∈ A, and it equals
F′
|A j

(q0 . . . qm) if A j ∈ B r A. Finally, given a strategy F and a finite execution ρ,
we define the strategy Fρ corresponding to the behaviour of F after ρ as follows:
Fρ(π) = F(ρ · π).
Now we define ATLsc:

Definition: [Syntax of ATLsc [9]]

ATLsc 3 φs, ψs ::= P | ¬φs | φs ∨ ψs | 〈·A·〉 φp | ·〉A〈· φs

φp ::= X φs | φs U ψs | φs R ψs

〈〈A〉〉G 〈〈B〉〉F P

F P

Out(q, FA)

Out(q′, FB) q′

Exec(q)

〈〈A〉〉G 〈·B·〉F P

F P

Out(q, FA)

Out(q′, FB◦FA)q′

Figure 3: Interpretation of formulas in strategy contexts.

with P ∈ AP and A ⊆ Agt.

ATLsc formulas are interpreted over states of a CGS S within a context F:

q |=S,F 〈·A·〉 φp iff ∃FA ∈ Strat(A). ∀ρ ∈ Out(q, FA◦F) we have ρ |=S,FA◦F φp,

ρ |=S,F X φs iff ρ[1] |=S,Fρ[0] φs,

ρ |=S,F φs U ψs iff ∃i. ρ[i] |=S,Fρ[0...i−1] ψs and ∀0 ≤ j < i we have ρ[j] |=S,Fρ[0... j−1] φs

ρ |=S,F φs R ψs iff ∀i :
(
∃ j < i. ρ(j) |=S,Fρ[0... j−1] φs

)
∨ ρ(i) |=S,Fρ[0...i−1] ψs

The modality ·〉A〈· is used to remove the strategy for A from the current strat-
egy context. This modality allow us to easily express ATL strategy quantifiers
〈〈A〉〉 :

〈〈A〉〉Φ ≡ ·〉Agt〈· 〈·A·〉 Φ

We define ATL?sc as the variant of ATL? with 〈·−·〉 modalities.
Note that ATL?sc formula like 〈·A1·〉 (〈·A2·〉Φ ∧ ¬ 〈·A3·〉Φ

′) can be written in ATLsc

as follows: 〈·A1·〉 ⊥U (〈·A2·〉Φ∧¬ 〈·A3·〉Φ
′). Thus we can nest strategy quantifiers

in ATLsc.
In [9] several results about the expressiveness of ATLsc and ATL?sc are given.

In particular, we can see that these logics have a stronger distinguishing power
than ATL (and ATL?): alternating-bisimilar CGSs can be distinguished with 〈·A·〉
modalities.

Moreover, examples of complex properties – like Nash equilibrium and win-
ning secure equilibrium – are given in [9]. Note that these properties have been
used to motivate the introduction of Strategy Logic (SL) in [12]. SL extends

linear-time temporal logics with first-order quantification over strategies, this lo-
gic has been studied for the two-player turn-based games.

The model checking problem for ATLsc is decidable. Indeed ATLsc can be
translated into Dµ [24] that is a powerful extension of µ-calculus with special
modalities to deal with strategies.

Finally note also that ATLsc and ATL?sc are uncomparable with the Alternating-
time µ-calculus and strictly more expressive than GL [9].

There exist other logics that have been introduced to deal with such complex
properties over strategies. In [1], a variant of ATL called IATL is proposed: the
main idea is to consider irrevocable strategies (the difference with strategy con-
texts is that with IATL as soon as a player has chosen a strategy, he cannot modify
it in the sequel). Decision procedures are given when one consider memoryless
strategies. Stochastic Game Logic [8] is a probabilistic extension of ATL that uses
a variant of strategy contexts, for stochastic games (model checking is undecid-
able in the general case, but proved decidable when restricting to memoryless
strategies).

6 Timed extensions

Classical model checking framework has been adapted to handle timed verifica-
tion: both models and specification languages have been extended to deal with
real-time constraints. Several models have been proposed; the most interesting is
probably the well-known timed automata introduced by Alur and Dill [3]. Tem-
poral logics have also been extended in several manners to measure time elapsing
between system events.

In this section we will consider a simple real-time extension of CGS with
integer durations and two variants of games over dense time. In these models, we
have a notion of duration (denoted Duration(π)) associated with any finite prefix
π of an execution. We will only present them informally and mention the main
related results.

From the specification language point of view, we will consider an extension
of ATL where real-constraints are associated with U modalities (exactly as it is
done for many timed temporal logics as TCTL [2]).

6.1 Timed ATL

TATL has been introduced in [17].

Definition: [Syntax of TATL]

TATL 3 φs, ψs ::= P | ¬φs | φs ∨ ψs | 〈〈A〉〉 φp

φp ::= φs U∼c ψs | φs R∼c ψs

with P ∈ AP and A ⊆ Agt.

The integer constants are assumed to be encoded in binary (this is important
for the complexity results). TATL formulas are interpreted over states in a timed
game model. The semantics is defined as follows:

q |=S 〈〈A〉〉 φp iff ∃FA ∈ Strat(A). ∀ρ ∈ Out(q, FA) we have ρ |=S φp,

ρ |=S φs U∼d ψs iff ∃p. ρ[p] |=S ψs and Duration(ρ|p) ∼ d
and ∀p′ <ρ p we have ρ[p′] |=S φs

ρ |=S φs R∼d ψs iff ρ |=S ¬(¬φs U∼d ¬ψs).

Note that we do not consider X modality because as soon as we consider dense
time models, the notion of successor state is not relevant.
In the definition of the semantics of U , we use p and p′ to denote positions along
the run ρ and <ρ is the precedence relation over these positions. In the discrete-
time case, a position is an integer but for the dense-time case a position is defined
as a pair (k, δ) ∈ N × R≥0 to represent the configuration reached after the k-th
action-transition followed by a δ time units delay.

6.2 Discrete time
First we consider a simple timed variant of CGSs: A Durational CGS (DCGS)
is a CGS where integer durations are associated with every transition [20]. More
precisely the transition table is of the form Edg : Q×Mk → I×Q where I denotes
the set of intervals over N∪ {∞}. For every transition Edg(q,m) = ([d; D], q′), the
final choice of the duration among the interval [d; D] is done by an additional
agent. This allows us to use these agents in the strategy quantifiers within the
formulas. Note also that we call TDCGS (Tight DCGS) the class of DCGS where
every interval is restricted to a single value.

Given a formula φ def
= 〈〈A〉〉 P1 U≤d P2 with P1, P2 ∈ AP, we can label the

locations satisfying φ by computing the minimal duration d′ required by A to
enforce reaching P2 along a path satisfying P1. This can be done recursively
over the number of turns in the game. See [20] for a complete description of the
algorithms.

Theorem: [Model checking DCGS and TDCGS [20]]

• Model checking TATL formula over DCGS or Tight DCGS is EXPTIME-
complete.

• Model checking TATL≤,≥ over DCGS or Tight DCGS is P-complete.

EXPTIME-hardness. The complexity lower bound for TATL is based on the
complexity of model checking 〈〈A〉〉F =cP in a tight DCGS. It corresponds to a
two-players game – the countdown game – in a weighted graph (V, E,w) with
w : E → N>0. A configuration of this game is a pair (q, α) with q ∈ V and
α ∈ N. At every turn, Player A1 chooses an integer d such that (1) 0 < d ≤ α
and (2) ∃(q, r) ∈ E s.t. w(q, r) = d. Then Player A2 chooses a transition from
q whose duration is d and leading to some q′. The new configuration is then
(q′, α − d). A configuration (q, 0) is winning for A1 (for any q). A configuration
(q, α) with α > 0 and no transition from q whose duration is less than α is winning
for A2. Deciding whether there is a winning strategy for A1 in such a game is
EXPTIME-complete [19]. It can easily be reduced to a model checking problem
of 〈〈A1〉〉F =cP over a Tight DCGS.

6.3 Dense time
Here we present two variants of game models based on timed automata (other
models exist, see for example [22, 7]).

Timed Games. The most well-known timed models for games are the Timed
Games Automata (TGA) introduced in [14]. As in timed automata, there are
clocks that progress synchronously with time and every transition is guarded by a
constraint over the clocks. The main difference with TA is that the set of transi-
tions is partitioned in two subsets: one for each player (NB: this is a two-player
game).

At every turn, from a configuration (q, v) where q is a location and v is a
valuation for the clocks, Player Ai has to choose a delay di and a transition ti from
his set of transitions (starting from q). Then the new configuration of the game
is computed as follows: assume d1 < d2 (resp. d2 < d1) then the transition t1

(resp. t2) is fired after d1 (resp. d2) time units. If d1 = d2, the system chooses
non-deterministically to perform t1 or t2 after d1 time units.

Consider the example below:

q1 q2

c2; x := 0

c1; x > 0

If Player A1 plays (1.5, c1) and A2 chooses (0.8, c2) from (q1, 0), then the new
configuration is (q1, 0) after 0.8 time units. If A1 chooses (0.5, c1) and A2 plays
(0.8, c2) then the new configuration is (q2, 0.5).

On this example, one can see that A2 can avoid to reach q2 by always choosing
(0, c2) since Player A1 has to play (d, c1) with d > 0. . . But such a strategy for
A2 is not fair: it is a Zeno strategy, it makes time converge. In TGA, we usually
require strategies to be non-Zeno: a player cannot block time elapsing. For exam-
ple, in [14] it is assumed that a player win a game only if its winning objective is
satisfied and either time diverges or this player is not responsible for the conver-
gence of time. With such a requirement the previous strategy for A2 is not winning
any more even if his control objective is to avoid q2. And in this game, Player A1

has a strategy to reach q2.

Timed CGS. Timed CGSs are CGS with real-time constraints [10]. The main
difference compared with the previous TGA is that the concurrency of CGS is
preserved: the next location depends on the choices of all agents. An example is
given in the Figure below.

q1 q2 q4

q3

〈 2,1 〉

x≤2
〈 2,1 〉

x≤2

〈 1,2 〉

x≥2

〈 1,2 〉

x≥2,x:=0

〈 2,2 〉

x=1

In these games, every player chooses a delay d (after which he wants to play)
and a move function from R+ inM that gives a move for any possible delay. This
function allows the player to participate to the move even if another player asks to
play before d. From the choices (di, fi) for i = 1, . . . , k, one can deduce the new

location as follows: the system will delay for d def
= min(d1, . . . , dk) time units and

then perform the transition Edg(q, f1(d), . . . , fk(d)).
Consider the previous example. First note that some transitions are missing:

for example, when x < 2 there is no move 〈1.2〉 from q1. In this case we assume
that these moves correspond to a self-loop in the TCGS. From (q1, x = 1.2), as-
sume that Player A1 chooses (d1, f1) with d1 = 0.9 and f1(d) = 2 if d ≤ 0.5 and
f1(d) = 1 when d > 0.5. Moreover assume that A2 chooses (d2, f2) with d2 = 1.4
and f2(d) = 2 when d ≤ 1 and f2(d) = 1 otherwise. Then with these moves, the
system will perform the transition q2 → q3 labeled with 〈1.2〉 after 0.9 time units.

Model checking TATL specifications over TCGS is decidable (one can build a
finite "region" CGS that is time-abstract game-bisimilar to the infinite CGS corre-
sponding to the semantics of the TCGS).

And we have:

Theorem:

• Model checking TATL over TGA is EXPTIME-complete [14].

• Model checking TATL over TCGS is EXPTIME-hard and can be done in
EXPSPACE [10].

Finally note that there is a tool – UppAal Tiga 3 – to automatically analyze
a variant of TGA. One can check reachability properties with an on-the-fly algo-
rithm [11].

Acknowledgments
Special thanks to Nicolas Markey, Arnaud Da Costa, Thomas Brihaye and Ghas-
san Oreiby for all the work we have done together on ATL and its variants. . . Many
thanks to Luca Aceto and Béatrice Bérard for the interesting discussions about
temporal logics.

References
[1] Thomas Ågotnes, Valentin Goranko, and Wojciech Jamroga. Alternating-time tem-

poral logics with irrevocable strategies. In Proceedings of the 11th Conference on
Theoretical Aspects of Rationality and Knowledge (TARK’07), pages 15–24, June
2007.

[2] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time. Infor-
mation and Computation, 104(1):2–34, 1993.

[3] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[4] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time tempo-
ral logic. In Revised Lectures of the 1st International Symposium on Compositional-
ity: The Significant Difference (COMPOS’97), volume 1536 of LNCS, pages 23–60.
Springer, 1998.

[5] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time tempo-
ral logic. Journal of the ACM, 49(5):672–713, 2002.

[6] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. Al-
ternating refinement relations. In Proceedings of the 9th International Conference
on Concurrency Theory (CONCUR’98), volume 1466 of LNCS, pages 163–178.
Springer, 1998.

3http://www.cs.aau.dk/~adavid/tiga/

http://www.cs.aau.dk/~adavid/tiga/

[7] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed au-
tomata. In Proc. Symp. System Structure & Control, pages 469–474. Elsevier, 1998.

[8] Christel Baier, Tomáš Brázdil, Marcus Größer, and Antonín Kučera. Stochastic
game logic. In Proceedings of the 4th International Conference on Quantitative
Evaluation of Systems (QEST’07), pages 227–236. IEEE Comp. Soc. Press, 2007.

[9] Thomas Brihaye, Arnaud Da Costa, François Laroussinie, and Nicolas Markey.
ATL with strategy contexts and bounded memory. In Proceedings of the Symposium
on Logical Foundations of Computer Science (LFCS’09), volume 5407 of LNCS,
pages 92–106, Deerfield Beach, FL, USA, January 2009. Springer.

[10] Thomas Brihaye, François Laroussinie, Nicolas Markey, and Ghassan Oreiby.
Timed concurrent game structures. In Proceedings of the 18th International Con-
ference on Concurrency Theory (CONCUR’07), volume 4703 of LNCS, pages 445–
459, Lisbon, Portugal, September 2007. Springer.

[11] F. Cassez, A. David, E. Fleury, K.G. Larsen, and D. Lime. Efficient on-the-fly
algorithms for the analysis of timed games. In CONCUR’05, volume 3653 of LNCS,
pages 66–80. Springer, 2005.

[12] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Strategy logic. In
Proceedings of the 18th International Conference on Concurrency Theory (CON-
CUR’07), LNCS, pages 59–73. Springer-Verlag, September 2007.

[13] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions on
Programming Languages and Systems, 8(2):244–263, 1986.

[14] L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, and M. Stoelinga. The
element of surprise in timed games. In CONCUR’03, volume 2761 of LNCS, pages
144–158. Springer, 2003.

[15] E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B, chapter 16, pages 995–1072. El-
sevier, 1990.

[16] Valentin Goranko and Govert van Drimmelen. Complete axiomatization and de-
cidability of alternating-time temporal logic. Theoretical Computer Science, 353(1-
3):93–117, March 2006.

[17] T.A. Henzinger and V. Prabhu. Timed alternating-time temporal logic. In FOR-
MATS’06, volume 4202 of LNCS, pages 1–17. Springer, 2006.

[18] Wojciech Jamroga and Jürgen Dix. Do agents make model checking explode (com-
putationally)? In Proceedings of the 4th International Central and Eastern Euro-
pean Conference on Multi-Agent Systems (CEEMAS’05), volume 3690 of LNCS.
Springer, 2005.

[19] Marcin Jurdzinski, François Laroussinie, and Jeremy Sproston. Model checking
probabilistic timed automata with one or two clocks. Logical Methods in Computer
Science, 4(3:11), September 2008.

[20] François Laroussinie, Nicolas Markey, and Ghassan Oreiby. Model checking timed
ATL for durational concurrent game structures. In Proceedings of the 4th Inter-
national Conference on Formal Modelling and Analysis of Timed Systems (FOR-
MATS’06), volume 4202 of LNCS, pages 245–259, Paris, France, September 2006.
Springer.

[21] François Laroussinie, Nicolas Markey, and Ghassan Oreiby. On the expressiveness
and complexity of ATL. Logical Methods in Computer Science, 4(2:7), May 2008.

[22] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for timed
systems. In STACS’95, volume 900 of LNCS, pages 229–242. Springer, 1995.

[23] René Mazala. Infinite games. In Automata, Logics, and Infinite Games, volume
2500 of LNCS, pages 23–42. Springer-Verlag, 2002.

[24] Sophie Pinchinat. A generic constructive solution for concurrent games with ex-
pressive constraints on strategies. In 5th International Symposium on Automated
Technology for Verification and Analysis (ATVA’07), volume 4762 of LNCS, pages
253–267. Springer, 2007.

[25] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science (FOCS’77), pages 46–57. IEEE
Comp. Soc. Press, 1977.

[26] J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proc. 5th Int. Symp. on Programming, Turin, Italy, Apr. 1982, volume
137 of LNCS, pages 337–351. Springer, 1982.

[27] Sven Schewe. ATL* satisfiability is 2exptime-complete. In Proc. 35th Int. Coll.
Automata, Languages and Programming (ICALP 2008), Reykjavik, Iceland, July
2008, volume 5126 of LNCS, pages 373–385. Springer, 2008.

[28] Pierre-Yves Schobbens. Alternating-time logic with imperfect recall. In Proceed-
ings of the 1st Workshop on Logic and Communication in Multi-Agent Systems
(LCMAS’03), volume 85 of ENTCS. Elsevier, 2004.

[29] Wolfgang Thomas. On the synthesis of strategies in infinite games. In Proceedings
of the 12th Symposium on Theoretical Aspects of Computer Science (STACS’95),
volume 900 of LNCS, pages 1–13. Springer-Verlag, March 1995.

[30] Dirk Walther, Carsten Lutz, Frank Wolter, and Michael Wooldridge. ATL satisfiabil-
ity is indeed EXPTIME-complete. Journal of Logic and Computation, 16(6):765–
787, 2006.

	Introduction
	Concurrent Game Structures
	Temporal logics for games
	Model checking
	Extension with strategy contexts
	Timed extensions
	Timed ATL
	Discrete time
	Dense time

