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Abstract

We study the extension of the alternating-time temporal logic (ATL) with
strategy contexts: contrary to the original semantics, in this semantics the
strategy quantifiers do not reset the previously selected strategies.

We show that our extension ATLsc is very expressive, but that its decision
problems are quite hard: model checking is k -EXPTIME-complete when the
formula has k nested strategy quantifiers; satisfiability is undecidable, but
we prove that it is decidable when restricting to turn-based games. Our
algorithms are obtained through a very convenient translation to QCTL
(the computation-tree logic CTL extended with atomic quantification), which
we show also applies to Strategy Logic, as well as when strategy quantification
ranges over memoryless strategies.

Keywords: temporal logics, games for synthesis, model checking,
satisfiability

1. Introduction

The alternating-time temporal logic (ATL) is a convenient extension of
CTL for expressing properties of multi-agent systems. For this, it includes
quantification over strategies of the agents, instead of the sole quantifiers over
paths of CTL. However, in order to retain the nice algorithmic properties
of CTL, the quantification over strategies in ATL is forgetful, in the sense
that each quantifier deletes the previously selected strategies. Under this

IThis paper is a long version of [15], whose focus was mainly on satisfiability of ATLsc
via QCTL. We added several results from [8, 9], with new proofs and a uniform presentation
using QCTL.
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semantics, ATL model checking is PTIME-complete [2], while satisfiability is
EXPTIME-complete [26].

ATL with strategy contexts (ATLsc for short) lifts this restriction, and
stores the previously selected strategies within a context. The players keep
on following their strategies until the formula says otherwise. This makes
the logic very expressive, and very convenient for expressing properties of
multi-agent systems, in setting where the agents are neither collaborative nor
completely antagonist. In a setting of a client/server interaction, ATLsc can
express the existence of a policy for the server in order to enforce mutual
exclusion to the resource, and to make each client have a way of eventually
accessing the resource. Such a property mixes collaboration between the
server and each client, and possibly antagonism between clients. Such an
expressiveness comes with a cost: ATLsc model checking was proved to be
k -EXPTIME-complete, where k is the number of nested strategy quantifiers in
the formula being checked [9]. It follows that ATLsc model-checking problem
is Tower-complete (Tower contains the classes k -EXPTIME for all k; see [22]
for more details about the complexity class Tower). Satisfiability of ATLsc is
undecidable [24].

In this paper, we revisit these problems with a uniform technique: we es-
tablish a very tight link between ATLsc and QCTL (the extension of CTL
with quantification over atomic propositions [23, 11, 10, 14]). We prove
that the model-checking problems for both logics are essentially the same
problem (there are reductions both ways). Moreover, while satisfiability is
undecidable for ATLsc, we use our translation to QCTL to prove that satisfi-
ability is decidable in restricted cases, and in particular when restricted to
turn-based games.

The convenience of QCTL is not particular to ATLsc, and we prove that
our technique also applies to Strategy Logic (SL) [7, 19], another extension
of ATL with explicit handling of strategies. Also, using a different semantics
for quantification in QCTL, we use our translation to study the variant of
ATLsc where strategy quantifiers range over memoryless strategies. In this
case, model checking is PSPACE-complete, but satisfiability is undecidable,
even for finitely branching two-player turn-based games.

Related work. Over the last decade, several formalisms have been proposed
as improvements to ATL for specifying properties of multi-agent models.
Strategy Logic (SL) [7, 19] is the most closely related to ATLsc. It builds on a
different approach, where strategies are explicited: first-order quantification
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can be used to select strategies, which can then be assigned to players. LTL is
then used to impose constraints on the resulting paths. The logic was defined
(and its model-checking problem was proved decidable) in [7] for turn-based
games. This was extended to concurrent games in [19, 16], and satisfiability
was proved undecidable. In Section 6.2, we show that our QCTL technique
also applies to SL, and prove that our results for ATLsc also hold for SL.

Other related approaches include stochastic game logic [4] and the quan-
tified decision µ-calculus [21], as well as various fragments of Strategy
Logic [17, 18] and ATLsc [1, 27].

2. Definitions

2.1. Preliminaries

Given two mappings f : A→ B and g : A′ → B′, and a subset C ⊆ A∩A′,
we say that f and g coincide on C, written f 'C g, when f(c) = g(c) for
all c ∈ C. In case A = A′ and B = 2S and B′ = 2S

′
, given T ⊆ S ∩ S ′,

we say that f and g agree in T , written f ≡T g, if for all a ∈ A, it holds
f(a) ∩ T = g(a) ∩ T . If A is a subset of a larger set A, then f is said to be a
partial function (w.r.t A), and A is called its domain (written dom(f)).

For k ∈ N, we define [k] = {i ∈ N | 0 ≤ i < k}. We also let [∞] = N.
Let Σ be a set. A word over Σ is a mapping w : [k]→ Σ, for some k ∈ N∪{∞};
for n ∈ [k], we usually write wn for w(n). The word w is finite when k ∈ N
(then k is the length of w, denoted |w|), otherwise it is infinite (then |w| = +∞).
When w is finite, we write last(w) for its last element w(|w| − 1). The (only)
word of length zero is denoted with ε. Given a finite word v and a word w,
their concatenation v ·w is the sequence u s.t. u(n) = v(n) when n < |v| and
u(n) = w(n− |v|) when n ≥ |v|. When v is a one-letter word, we sometimes
write v0 · w to denote v · w. A prefix of a word w is a finite word p such that
there exists a word s such that w = p · s. For any n ≤ |w|, w has a unique
prefix of length n, which we denote w<n (or sometimes w≤n−1).

Let D be a set. A D-tree is a non-empty set T of finite words over D such
that for any t ∈ T , all the prefixes of t are in T . The elements of T are called
nodes, and the special node ε (the empty word) is the root of T . A Σ-labeled
D-tree is a pair 〈T, `〉 where T is a D-tree and ` : T → Σ labels the nodes
of T with a letter in Σ.

2.2. Kripke structures

Let AP be a set of atomic propositions, and Σ = 2AP.
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Definition 1. A Kripke structure over AP is a 3-tuple S = 〈Q,R, `〉 where
Q is a countable set of states, R ⊆ Q2 is a binary relation and ` : Q→ Σ is a
labeling function. We always assume that the relation R be left-total, i.e., for
any q ∈ Q, there is a q′ ∈ Q such that (q, q′) ∈ R.

Let S = 〈Q,R, `〉 be a Kripke structure, and q ∈ Q. A path in S from q is
a non-empty word π over Q such that π0 = q and for all n ∈ [|π| − 1], it holds
(πn, πn+1) ∈ R. Given a finite path π and a path ρ such that last(π) = ρ0,
the join of π and ρ, denoted π : ρ is defined as the concatenation π<|π|−1 · ρ.
Notice that since each state in a Kripke structure must have at least one
successor, any finite path can be enlarged.

Given a subset I ⊆ Q, we write IQ∗S (resp. IQω
S) for the set of finite

(resp. infinite) paths in S from some q ∈ I; we write qQ∗S (resp. qQω
S) in

case I = {q}, and Q+
S (resp. Qω

S) in case I = Q. With a path π, we associate
a trace ` ◦ π : [|π|]→ Σ, which is a word over Σ.

The unwinding of S from q is the Q-tree T = {w ∈ Q∗ | q · w ∈ qQ∗S}.
The computation tree of S from q is the Σ-labeled Q-tree 〈T, l〉 such that
l(w) = `(last(q ·w)) for all w ∈ T . Notice that from our assumption that each
state in S has at least one outgoing transition, any node in the computation
tree has at least one successor. A branch in T is an infinite word w ∈ Qω
such that q · w ∈ qQω

S . Any finite prefix of a branch is a node of T .

2.3. Quantified CTL

The temporal logics CTL∗ and CTL were defined in the 1980s. Let AP be
a set of atomic propositions. The syntax of CTL∗ is as follows:

CTL∗ 3 ϕs, ψs ::=p | ¬ϕs | ϕs ∨ψs | Eϕp | Aϕp

ϕp, ψp ::=ϕs | ¬ϕp | ϕp ∨ψp | Xϕp | ϕp Uψp

where p ranges over AP. Formulas of CTL∗ are interpreted in the computation
tree (hence the name) of a given Kripke structure. Let S = 〈Q,R, `〉 be such
a structure, let ρ be an infinite path in S, and n ∈ N. That formula ϕ holds
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true at position n along ρ in S is defined inductively as follows:

S, ρ, n |= p iff p ∈ `(ρn)

S, ρ, n |= ¬ϕ iff S, ρ, n 6|= ϕ

S, ρ, n |= ϕ∨ψ iff S, ρ, n |= ϕ or S, ρ, n |= ψ

S, ρ, n |= Eϕp iff ∃ρ′ ∈ ρnQω
S . S, ρ′, 0 |= ϕp

S, ρ, n |= Aϕp iff ∀ρ′ ∈ ρnQω
S . S, ρ′, 0 |= ϕp

S, ρ, n |= Xϕp iff S, ρ′, n+ 1 |= ϕp

S, ρ, n |= ϕp Uψp iff ∃l ≥ 0. S, ρ, n+ l |= ψp and ∀0 ≤ m < l.

S, ρ, n+m |= ϕp

Several useful abbreviations can be defined: besides the classical > = p∨¬ p
(which always evaluates to true), ⊥ = ¬> and ϕ∧ψ = ¬(¬ϕ∨¬ψ), the
following modalities will be used throughout this paper:

Fϕp = >Uϕp Gϕp = ¬F ¬ϕp.

The former states that ϕp will eventually hold true along the current path,
while the latter states that it holds true at any position along that path.

An important remark about this semantics is that the evaluation of state
formulas (of the form ϕs in the grammar defining CTL∗) at position n along ρ
only depends on ρn. In other terms, for any two paths ρ and ρ′ and any two
positions n and n′ such that ρn = ρ′n′ , and for any state formula ϕs, it holds

S, ρ, n |= ϕs iff S, ρ′, n′ |= ϕs.

As a consequence, for a state formula ϕs, we often replace S, ρ, 0 |= ϕs with
S, ρ0 |= ϕs.

Another remark is that CTL∗ is invariant under bisimulation: two struc-
tures that are bisimilar satisfy the same CTL∗ formulas. In particular, evalu-
ating a CTL∗ formula over a Kripke structure and over its computation tree
are equivalent. Formally, let q ∈ Q, and w be a branch in the computation
tree T of S from q (so that q · w is an infinite path in S; we abusively see w
as a path in T starting from the root, when T is seen as an infinite-state
Kripke structure). Let n ∈ N. Then for any ϕ ∈ CTL∗, it holds

S, q · w, n |= ϕ iff TS , w, n |= ϕ.
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The fragment CTL of CTL∗ is obtained by restricting the form of path
formulas to the following grammar:

ϕp, ψp ::=¬ϕp | Xϕs | ϕs Uψs.

In other terms, the modalities X and U (and negations thereof) can only
appear in the immediate scope of a path quantifier E or A.

We now present an extension of CTL∗ with quantification over atomic
propositions, which will be our main technical tool in the sequel.

For P ⊆ AP, two Kripke structures S = 〈Q,R, `〉 and S ′ = 〈Q′, R′, `′〉
are P -equivalent (denoted S ≡P S ′) whenever Q = Q′, R = R′, and ` ≡P `′
(i.e., `(q) ∩ P = `′(q) ∩ P for any q ∈ Q). In other terms, S ≡P S ′ if S ′ can
be obtained from S by modifying the labeling function of S for propositions
not in P .

Definition 2. The syntax of QCTL∗ is defined by the following grammar:

QCTL∗ 3 ϕs, ψs ::=p | ¬ϕs | ϕs ∨ψs | Eϕp | Aϕp | ∃p. ϕs

ϕp, ψp ::=ϕs | ¬ϕp | ϕp ∨ψp | Xϕp | ϕp Uψp.

The structure semantics of QCTL∗ is derived from the semantics of CTL∗

by adding the following rule:

S, ρ, n |= ∃p. ϕs iff ∃S ′. S ′ ≡AP\{p} S and S ′, ρ, n |= ϕs.

In other terms, ∃p. ϕs means that it is possible to (re)label the Kripke structure
with p in order to make ϕs hold.

While CTL∗ is invariant under bisimulation, it is not true for QCTL∗.
While evaluating CTL∗ on a Kripke structure and on its execution tree (seen
as an infinite-state Kripke structure) are equivalent, this is not true of QCTL∗.
As a consequence, we define another semantics for QCTL∗, called the tree
semantics of QCTL∗. This semantics is obtained by applying the structure
semantics to the execution tree of the Kripke structure. Evaluating ∃p. ϕs

then amounts to (re)labeling the execution tree with p in such a way that ϕs

holds true.
We refer to [14] for a detailed study of QCTL∗ and QCTL. Here we just

recall the following important properties of these logics. First note that QCTL
is actually as expressive as QCTL∗ (with an effective translation) [10, 9].
Secondly model checking and satisfiability are decidable but non elementary

6



More precisely the complexity depends on the number of alternations of
propositional quantifications in the formulas. In the following we will refer to
the fragments EQkCTL and QkCTL of QCTL and to EQkCTL∗ and QkCTL∗

the corresponding fragments of QCTL∗: EQkCTL contains the QCTL formulas
in prenex normal form (where quantifications are external to the CTL for-
mula), starting with an existential quantification ∃ and where the number of
alternations is k. In QkCTL formulas are not supposed to be in prenex normal
form but the alternation of quantifier is bounded by k: formally, Q1CTL is
CTL[EQ1CTL], and Qk+1CTL is Q1CTL[QkCTL]. The decision procedures for
these logics are based on automata construction: given a QCTL formula ϕ and
a (finite) set D ⊂ N, one can build a tree automaton Aϕ,D recognizing the
D-trees satisfying ϕ. This provides a decision procedure for model checking
as the Kripke structure S fixes the set D, and it remains to check whether
the execution tree of S is accepted by Aϕ,D. For satisfiability the decision
procedure is obtained by building a formula ϕ2 from ϕ such that ϕ2 is satis-
fied by some [2]-tree if, and only if, ϕ is satisfied by some finitely-branching
tree. Finally, it remains to notice that a QCTL formula is satisfiable if, and
only if, it is satisfiable in a finitely-branching tree (since QCTL is as expressive
as MSO) to get the decision procedure for QCTL satisfiability. As a conse-
quence, a QCTL formula is satisfiable if, and only if, it is satisfied by a regular
tree (corresponding to the execution tree of some finite Kripke structure).

2.4. Concurrent Game Structures

Game structures extend Kripke structures with several agents acting on
the evolution of the system.

Definition 3 ([2]). A concurrent game structure ( CGS) is a 7-tuple C =
〈Q,R, `,Agt,M,Mov,Edge〉 where: 〈Q,R, `〉 is a Kripke structure, Agt =
{a1, . . . , ap} is a finite set of agents, M is a non-empty countable set of
moves, Mov : Q × Agt → P(M) \ {∅} defines the set of available moves
of each agent in each state, and Edge : Q×MAgt → R is a transition table
associating, with each state q and each set of moves of the agents, the resulting
transition departing from q.

Let C = 〈Q,R, `,Agt,M,Mov,Edge〉 be a CGS. The notions of paths
and execution trees of C are inherited from the underlying Kripke struc-
ture 〈Q,R, `〉. The size of C, denoted |C|, is |Q| + |Edge|. Notice that for
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all q ∈ Q, Edge(q) is a |Agt|-dimensional table, whose size is then expo-
nential in |Agt| (provided that |M| > 1). A move vector in C is a map-
ping m : Agt→M. For a state q ∈ Q, we define

Next(q) = {q′ ∈ Q | ∃m ∈MAgt. ∀ai ∈ Agt. m(ai) ∈ Mov(q, ai)

and Edge(q,m) = (q, q′)}

and, for a coalition C ⊆ Agt and a partial move vector m with dom(m) = C,

Next(q, C,m) = {q′ ∈ Q | ∃m′ ∈MAgt. m′ 'C m and Edge(q,m′) = (q, q′)}.

A turn-based game structure (TBGS for short) is a CGS where each state q is
controlled by a single agent, called the owner of q (and denoted Own(q)). For-
mally, for every q ∈ Q, for any two move vectors m and m′ with m =Own(q) m

′,
it holds Edge(q,m) = Edge(q,m′).

A strategy for a player ai ∈ Agt in a CGS C is a function f : Q+
S → M

that maps any finite path to a possible move for ai, i.e., satisfying f(π) ∈
Mov(last(π), ai). A strategy f is memoryless if f(π) = f(π′) whenever
last(π) = last(π′). A strategy for a coalition A is a mapping assigning a
strategy to each agent in A. The set of strategies for A is denoted Strat(A)
(and Strat0(A) is the subset of memoryless strategies). In the sequel, when no
ambiguity arises, we subscript the strategies with their domains, writing fA
for a strategy of A ⊆ Agt and fi for a strategy of player ai (hence fi = fA(ai)
when ai ∈ A). Given a strategy fA ∈ Strat(A) and a coalition B, the strategy
(fA)|B (resp. (fA)\B) denotes the restriction of fA to the coalition A ∩ B
(resp. A\B). Given two strategies fA ∈ Strat(A) and gB ∈ Strat(B), we define
fA ◦ gB ∈ Strat(A∪B) as (fA ◦ gB)j = fj (resp. gj) if aj ∈ A (resp. aj ∈ B\A).

Let ρ be a finite path in C, and fA ∈ Strat(A) for some coalition A.
A path π is compatible with fA after ρ if it contains ρ as a prefix and,
for all n ∈ [|ρ|; |π| − 1], letting m : ai ∈ A 7→ fi(π<n), it holds πn+1 ∈
Next(πn, A,m). The set of outcomes of fA after ρ, denoted Out(ρ, fA), is the
set of infinite paths that are compatible with fA after ρ.

Example 4. Fig. 1 represents two three-state two-player CGSs. The transi-
tions are decorated with their corresponding move vectors. In C, each player
has only two allowed moves, while in C ′, they have three. One can easily check
e.g. that Next(`0, a1, 1) is {`0, `1} in C, and Next(`′0, a2, 3) is {`′0, `′1, `′2} in C ′.
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`0

a`1 b`2

`′0

a`′1 b`′2

〈1.1〉,〈2.2〉 〈1.1〉,〈2.2〉,〈3.3〉

〈1.2〉 〈1.2〉,〈1.3〉,〈3.2〉〈2.1〉 〈2.1〉,〈2.3〉,〈3.1〉

C C ′

Fig. 1: Two concurrent game structures

2.5. ATL with strategy contexts

We now introduce our logic, which extends the alternating-time tem-
poral logic of [2] with strategy contexts. We assume a fixed set of atomic
propositions AP and a fixed set of agents Agt.

Definition 5. The formulas of ATL∗sc are defined by the following grammar:

ATL∗sc 3 ϕs, ψs ::=p | ¬ϕs | ϕs ∨ψs | 〈·A·〉ϕp | 〈·A·〉ϕp | LAMϕs | LAMϕs

ϕp, ψp ::=ϕs | ¬ϕp | ϕp ∨ψp | Xϕp | ϕp Uψp

where p ranges over AP and A ranges over 2Agt.

ATL∗sc formulas are interpreted over CGSs, within a context (i.e., a pres-
elected strategy): state formulas of the form ϕs in the grammar above are
evaluated over states, while path formulas of the form ϕp are evaluated along
paths. In order to have a uniform definition, we evaluate all formulas at a
given position along a path.

The semantics is quite similar as that of CTL∗, but ATL∗sc now has strategy
quantifiers in place of path quantifiers. Informally, formula 〈·A·〉ϕp holds at
position n along ρ under the context F if it is possible to extend F with a
strategy for the coalition A such that the outcomes of the resulting strategy
after ρ≤n all satisfy ϕp. Similarly, 〈·A·〉ϕp is true when we can complete the
current context with a strategy for coalition Agt\A in such a way that ϕp

holds along every outcome. The use of complementary coalition in the syntax
is discussed in Remark 8.

We now define the semantics formally. Let C be a CGS, ρ be an infinite
path of C, and n ∈ N point to a position along ρ. Let B ⊆ Agt be a coalition,
and fB ∈ Strat(B). That a (state or path) formula ϕ holds at a position n
along ρ in C under strategy context fB, denoted C, ρ, n |=fB ϕ, is defined
inductively as follows (omitting atomic propositions and boolean operators):
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C, ρ, n |=fB LAMϕs iff C, ρ, n |=(fB)\A ϕs

C, ρ, n |=fB LAMϕs iff C, ρ, n |=(fB)|A ϕs

C, ρ, n |=fB 〈·A·〉ϕp iff ∃gA ∈ Strat(A). ∀ρ′ ∈ Out(ρ≤n, gA ◦ fB).

C, ρ′, n |=gA ◦ fB ϕp

C, ρ, n |=fB 〈·A·〉ϕp iff ∃gA ∈ Strat(Agt \ A). ∀ρ′ ∈ Out(ρ≤n, gA ◦ fB).

C, ρ′, n |=g
A
◦ fB ϕp

C, ρ, n |=fB Xϕp iff C, ρ, n+ 1 |=fB ϕp

C, ρ, n |=fB ϕp Uψp iff ∃l ≥ 0. C, ρ, n+ l |=fB ψp and ∀0 ≤ m < l.

C, ρ, n+m |=fB ϕp

Notice how the existential strategy quantifier embeds an implicit universal
quantification over the set of outcomes of the selected strategy. Also notice
that, given a state formula ϕs, two paths ρ and ρ′, a position n such that
ρ≤n = ρ′≤n, and a context fB, it holds

C, ρ, n |=fB ϕs iff C, ρ′, n |=fB ϕs

In particular, when n = 0, that C, ρ, 0 |=fB ϕs does not depend on the whole
path ρ but only on its first state ρ0. In the sequel we equivalently write
C, ρ0 |=fB ϕs in place of C, ρ, 0 |=fB ϕs.

The usual shorthands such as F and G are defined as for CTL∗. It will
also be convenient to use the constructs [·A·]ϕp as a shorthand for ¬ 〈·A·〉 ¬ϕp,
and 〈·A·〉ϕs as a shorthand for 〈·A·〉 ⊥Uϕs.

The fragment ATLsc of ATL∗sc is defined as usual, by restricting the set of
path formulas to

ϕp, ψp ::= ¬ϕp | Xϕs | ϕs Uψs.

Example 6. We consider again the CGSs of Fig. 1. One can check that
in both CGSs, player a1 has a strategy to avoid visiting `2 (resp. `′2), but
he has no strategy for leaving state `0 (resp. `0). But what distinguishes these
two CGSs is the following: in C, for any move m1 of player a1, it holds
|Next(`0, a1,m1)| = 2. On the other hand, for move 3 of a1 in C ′, we have
|Next(`′0, a1, 3)| = 3. In particular, under move 3 of a1 in `′0, player a2

still has a move to reach `′1 and another move to reach `′2, so that formula
〈·a1·〉 ( 〈·a2·〉X a∧ 〈·a2·〉X b) holds true in `′0. No such move exists in C, and
the same formula is false in `0.
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The classical semantics of ATL∗ and ATL, as defined in [2], did not involve
a strategy context. Syntactically, the logic was defined as

ATL∗ 3 ϕs, ψs ::=p | ¬ϕs | ϕs ∨ψs | 〈〈A〉〉ϕp

ϕp, ψp ::=ϕs | ¬ϕp | ϕp ∨ψp | Xϕp | ϕp Uψp.

The semantics was similar to that of ATL∗sc, but without the strategy context.
The semantics of the strategy quantifier 〈〈A〉〉ϕp is then defined as follows:

C, ρ, n |= 〈〈A〉〉ϕp iff ∃gA ∈ Strat(A). ∀ρ′ ∈ Out(ρ≤n, gA). C, ρ′, n |= ϕp.

Example 7. Consider the ATL formula 〈〈a1〉〉 ( 〈〈a2〉〉X a∧ 〈〈a2〉〉X b). The
first quantification 〈〈a1〉〉 in this formula is useless, since the selected strategy
is lost when quantifying over strategies of a2. As a consequence, this formula
is equivalent to 〈〈a2〉〉X a∧ 〈〈a2〉〉X b, which is false both in `0 and in `′0. It can
be proved that `0 and `′0 are alternating bisimilar [3], so that they cannot be
distinguished by ATL∗.

Remark 8. Previous definitions of ATL∗sc (see [5, 8]) did not allow comple-
mentary coalitions in the syntax for 〈· ·〉 and L M . We add them here for
two reasons. The first one is convenience: given a coalition A, it is sometimes
useful to consider the other players. The second is mathematical correctness:
our expressiveness result of Theorem 9, in the way we state it in this paper,
requires talking about complementary coalitions.

3. Expressiveness of ATLsc and ATL∗
sc

We devote this section to expressiveness issues. We begin with some
examples of ATLsc formulas, witnessing how useful our new formalism can be.
We then give some theoretical results about the expressiveness of ATLsc,
showing for instance that ATLsc and ATL∗sc have the same expressive power.
We finish the section with a comparison (w.r.t. expressiveness) to plain ATL.
Comparisons with other formalisms are deferred to Section 6, where we review
several logics related to ATLsc.

3.1. Examples of formulas

For the reader to get acquainted with ATLsc, we give in this section several
examples of ATLsc formulas. This will also witness the expressive power and
usefulness of our logic.
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Client-server interactions. Consider a situation where a server S controls
the access to a resource shared among several clients a1 to an. The server has
a double role: it has to ensure that at most one client uses the resource at any
point in time (mutual exclusion), but also to provide a way for each client
to be able to access the resource; the latter mixes collaboration between the
server and individual agents, and antagonism between agents. In ATL∗sc, we
can express this requirement as follows:

〈·S·〉G
ïÅ ∧

i,j∈[1,n]i 6=j
¬(accessi ∧ accessj)

ã
∧
Å ∧

i∈[1,n]

〈·ai·〉F accessi

ãò

Nash equilibria. In n-player games (with n > 2), players will usually have
non-zero-sum objectives, and the notion of winning strategy is not relevant
anymore. Instead, equilibria positions are sought, in which all players has
optimal outcome. Here optimal may have many different meanings. One of
them, corresponding to Nash equilibria [20], is related to the other players
strategies: a Nash equilibrium is a strategy profile in which each individual
strategy is the best response to the others’ strategies.

ATLsc can express the existence of a Nash equilibrium (here in a setting
where the individual objectives of the players are boolean, and only considering
pure strategies): this would be written as

〈·Agt·〉
ï ∧
a∈Agt

(¬ϕa⇒¬〈·a·〉ϕa)
ò

In this formula, we write that there is a strategy profile (the one witnessing
the outermost quantifier) such that no player can improve their payoff (i.e., if
they are not winning in the equilibrium, they don’t have a way of achieving
their goal in this situation).

In ATLsc, we can additionally impose extra requirements to Nash equilibria.
Indeed, several Nash equilibria might coexist, and some might be better than
others (for instance, Nash equilibria where all the players fail to achieve their
objectives might coexist with Nash equilibria where all the objectives are met).
In ATLsc we can additionally impose constraints on the equilibria strategies.

Winning secure equilibria. A winning secure equilibrium [6] is a winning
(for all players) Nash equilibria with the additional requirement that if a
player deviates and worsens the payoff of some player, then she also worsens
her own payoff. In other terms, no player can harm another player without
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harming herself. The existence of a winning secure equilibrium can be written
as

〈·Agt·〉
ï ∧
a∈Agt

ϕa ∧
∧

a,b∈Agt
[·a·] (¬ϕb⇒¬ϕa)

ò

Dominant strategy. A strategy is said dominant if it is a best response
to any strategies of the other players. The existence of a dominant strategy
for player ai can be expressed as

〈·ai·〉 [·ai·] ( 〈·ai·〉ϕi⇒ϕi).

3.2. ATLsc vs ATL∗sc
From ATL∗sc to ATLsc. Surprisingly, strategy contexts bring ATLsc to the
same expressiveness as ATL∗sc: any ATL∗sc formula can be translated into
an equivalent ATLsc formula. The main idea is to replace the (implicit)
universal quantification over outcomes with explicit universal quantification
over strategies. This way, all players are assigned a strategy in the context.
In that case, there is only one outcome (because our CGSs are deterministic),
so that we can insert empty strategy quantifier 〈·∅·〉 in front of any temporal
modality.

Given an ATL∗sc formula Φ and two coalitions (B,B′) ∈ 2Agt(Φ)× (2Agt(Φ) ∪
AgtC) (with the intuitive idea that B ∪ (AgtC \B′) is the set of players that
have been artificially assigned a strategy in the context); here AgtC should be
seen as a symbol representing all the agents appearing in the underlying CGS.
Notice that our resulting formula should not depend on the set AgtC, as our
translation will hold for any CGS C), we define “Φ[B,B′] inductively as follows:

“P [B,B′] = P

‘¬ϕ[B,B′]
= ¬ ϕ̂[B,B′] ÷ϕ∧ψ[B,B′]

= ϕ̂[B,B′] ∧ “ψ[B,B′]

‘Xϕ
[B,B′]

= 〈·∅·〉X ϕ̂[B,B′] ◊�ϕUψ
[B,B′]

= 〈·∅·〉 (ϕ̂[B,B′]
U “ψ[B,B′])

÷LAMϕ
[B,B′]

= ϕ̂[B∪A,B′] ÷LAMϕ
[B,B′]

= ϕ̂[B,B′∩A]

◊�〈·A·〉ϕ
[B,B′]

= 〈·A·〉 [·B \ A·] [·B′ ∪ A·] ϕ̂[B\A,B′∪A]

◊�〈·A·〉ϕ
[B,B′]

= 〈·A·〉 [·(B ∩ A) ∪ (A \B′)·] ϕ̂[(B∩A)∪(A\B′),AgtC ]

Clearly, “Φ[B,B′] is an ATLsc formula, thanks to the 〈·∅·〉 inserted in front of the
temporal modalities. Notice that the resulting formula only involves coalitions
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that appear in the original formula, and does not depend on AgtC (because
AgtC ∪ A = AgtC, A \ AgtC = ∅, AgtC ∩ A = A, and [·AgtC·]ψ is equivalent
to [·∅·]ψ). This transformation achieves the following result (whose full proof
is rather technical, so that we moved it to Appendix Appendix A).

Theorem 9. Given a formula ϕ ∈ ATL∗sc and a coalition B′, there exists
an ATLsc formula ϕ̂[∅,B′], involving only players in Agtϕ ∪ B′, such that for

any strategy context f with dom(f) = B′, ϕ and ϕ̂[∅,B′] are equivalent under
context f .

Remark 10. One can notice that the resulting formula does not make use
of L M , even when applied to an ATLsc formula. Hence, as a side result, we
obtain that the L M operator does not increase the expressive power of ATLsc.

3.3. Comparison with ATL

Clearly enough, ATL∗ properties can be expressed in ATL∗sc: indeed, the
ATL strategy quantifier 〈〈A〉〉 is equivalent to L∅M 〈·A·〉 . Notice that following
Examples 6 and 7, ATLsc is actually strictly more expressive than ATL∗.

Similarly, CTL∗ is translated in ATL∗sc by rewriting Eϕ as 〈·∅·〉ϕ and Aϕ
as L∅M 〈·∅·〉ϕ. Notice that these transformations do not preserve the strategy
context, and that they are different from the path quantifiers used in Game
Logic (GL) [2]. There, the path quantifiers range over the set of outcomes of
the strategies already in use. More precisely, in GL, we have

C, ρ, i |=f EGLϕp iff ∃ρ′ ∈ Out(ρ≤i, f). C, ρ′, i |=f ϕp

The universal path quantifier is dual. Both path quantifiers can be expressed
in ATL∗sc as follows:

EGLϕp ≡ ¬〈·∅·〉 ¬ϕp AGLϕp ≡ 〈·∅·〉ϕp

4. Model checking

In this section, we present an algorithm for model checking ATLsc and
ATL∗sc, and study its complexity. Our algorithm is based on a translation
of the model-checking problem from ATL∗sc into the model-checking problem
for QCTL∗. Using a translation in the other direction, we prove that ATL∗sc
model checking is complete for k -EXPTIME (where k is the quantifier height
of the formula).
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4.1. From ATL∗sc to QCTL∗

Let C = 〈Q,R, `,Agt,M,Mov,Edge〉 be a finite-state CGS, with a finite
set of moves M = {m1, . . . ,mk} and Agt = {a1, . . . , an}. We consider the
following sets of fresh atomic propositions: PQ = {pq | q ∈ Q}, PjM =
{mj

1, . . . ,m
j
k} for every aj ∈ Agt, and write PM =

⋃
aj∈Agt P

j
M. Let SC be the

Kripke structure 〈Q,R, `+〉 where for any state q, we have: `+(q) = `(q)∪{pq}.
A strategy for an agent aj can be seen as a function fj : qQ∗S → PjM labeling
the execution tree of SC with propositions in PjM.

Let C be a coalition in Agt, fC ∈ Strat(C) be a strategy context, and
Φ ∈ ATL∗sc. We transform the question whether C, q |=fC Φ into an instance
of QCTL∗ model checking over SC (assuming the tree semantics). For this,

we define a QCTL∗ formula Φ
C

inductively. Except for strategy quantifiers,
the translation is straightforward:

ϕ∧ψC = ϕ
C ∧ψC ¬ϕC = ¬ϕC pC = p

LAMϕs

C
= ϕs

C\A
ϕp Uψp

C
= ϕp

C
Uψp

C
Xϕp

C
= Xϕp

C

For a formula 〈·A·〉ϕp with A = {aj1 , . . . , ajl}, we let:

〈·A·〉ϕp

C
= ∃maj1

1 . . .m
aj1
k . . .m

ajl
1 . . .m

ajl
k .pout.Å

Φstrat(A)∧Φout(A ∪ C)∧ A
Å
G pout ⇒ ϕp

C∪A
ãã

where:

Φstrat(A) =
∧

a∈A

∧

q∈Q
AG

Å
pq⇒

∨

mi∈Mov(q,a)

(ma
i ∧

∧

j 6=i
¬ma

j )
ã

Φout(A) = pout ∧ AG
ï
¬ pout⇒ AX ¬ pout

ò
∧ AG

ï
pout⇒

∨

q∈Q

Å
pq ∧

∨

m∈Mov(q,A)

Ä
pm ∧ AX

Ä
(

∨

q′∈Next(q,A,m)

pq′)⇔ pout
ääãò

where m is a move (mj)a∈A ∈ Mov(q, A) for A and pm is the propositional
formula

∧
a∈Ama

j characterizing m. Formula Φstrat(A) ensures that the labeling
of propositions m

aj
i describes a feasible strategy for A, while formula Φout(A)

ensures that the outcomes of the strategy for A combined with the strategy
context for C are labeled by the atomic proposition pout. Note that Φout(A)
is based on the transition table Edge of C (via Next(q, A,m)) and its size in
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O(|Q|2 · |M||A|) (i.e., in O(|Q| · |Edge|)). For LAMϕC and 〈·A·〉ϕp

C
, we simply

replace A with Agt \ A and apply the same definitions as above.
Each strategy quantifier in the original ATL∗sc formula induces a strategy

quantifier in the QCTL∗ formula. There are two exceptions to this rule, in
which the translation can be adapted to not involve quantification:

• the first one is for formulas of the form 〈·∅·〉ϕp

∅
. For such formulas,

the translation can be changed to Aϕp
∅;

• the second case is for formulas of the form 〈·∅·〉ϕp

C
for which the

labelling with pout does not have to be recomputed. This is the case if
this formula is in the scope of another strategy quantifier with no L M
operator inbetween. Then 〈·∅·〉ϕp

C
can be defined as A(G pout⇒ϕp

C).

Such occurrences of modality 〈·∅·〉 are said to be trivial.
Let TC = 〈T, `〉 be the execution tree of the Kripke structure SC, ρ be a path

in SC, n be a position along ρ, and fA be a strategy for some coalition A. Let `′

be a labelling extending ` with propositions (ma
i )a∈A,1≤i≤k and pout. We say

that `′ is an fA-labeling after ρ≤n if, for every finite path π containing ρ≤n as
a prefix, it holds ma

i ∈ `′(π) if, and only if, fA(a)(π) = mi, and pout ∈ `′(π) if,
and only if, π is compatible with fA after ρ≤n.

For such an fA-labeling `′, we clearly have 〈T, `′〉, ρ, n |= Φstrat(A)∧Φout(A).
The converse is also true: if 〈T, `′〉, ρ, n |= Φstrat(A)∧Φout(A), then `′ is
an fA-labeling after ρ≤n. Indeed, consider a path π from ρ≤n and a posi-
tion i ≥ n. Then formula Φstrat(A) enforces that node π≤i is labeled with
some m ∈ Mov(q, A). Now, by induction, one easily shows that the node
corresponding to finite paths that are compatible with fA after ρ≤n are labeled
with pout, while the other nodes are not labeled with pout.

The following result is a direct consequence of the above:

Theorem 11. Let ρ be an infinite path in a CGS C, and n be a position along ρ.
Let Φ be an ATL∗sc formula, and fC be a strategy context for some coalition C.
Let TC(ρ(0)) = 〈T, `〉 be the execution tree SC from ρ(0), and `′ be an fC-

labeling extending `. Then C, ρ, n |=fC Φ if, and only if, 〈T, `fC 〉, ρ, n |= Φ
C

.

Combined with the (non-elementary) decision procedure for QCTL∗ model
checking, we get a model-checking algorithm for model checking ATL∗sc.
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We now consider complexity issues more precisely. We have

|Φ∅| = O(|Φ| · |Q|(|Agt| · |M|2 + |Q| · |M||Agt|))
= O(|Φ| · |Q|(|Agt| · |M|2 + |Edge|)).

which is polynomial in |Φ| and |C|. Moreover, Φ
∅

belongs to QkCTL∗, where
k is the depth of 〈· ·〉 in Φ (which we define as the maximal number of
nested non-trivial 〈· ·〉 quantifiers). Given an ATL∗sc formula Φ of depth k
and a CGS C, the reduction yields a model checking algorithm running in
(k + 1 )-EXPTIME [14].

Finally note that when starting from an ATLsc formula, the QCTL∗ formula
we obtain can easily be translated into QCTL: it contains the CTL+ formula
A(G pout⇒ϕp), which can be succinctly written in CTL (for instance, when
ϕp = ϕs Uψs, A(G pout⇒ϕp) is equivalent to A(ϕs ∧ pout) U (ψs ∨¬ pout)).
Thus it provides a QkCTL formula whose size is in O(|Φ| · |Q|(|Agt| · |M|2 +
|Edge|)) if Φ is an ATLsc formula of 〈· ·〉-depth k. This yields a model-checking
algorithm in k -EXPTIME.

4.2. From QCTL∗ back to ATL∗sc
We now propose a reduction in the converse direction, from an instance

of the QCTL∗ model-checking problem into an instance of the ATL∗sc model-
checking problem. Intuitively, strategies in the resulting game will correspond
to labeling with atomic propositions in the original Kripke structure.

Let Φ be a QCTL formula and S = 〈Q,R, `〉 be a Kripke structure. W.l.o.g.,
we assume that every atomic proposition in Φ is quantified at most once.
We write APf(Φ) for the set of free atomic propositions in Φ (which are
intended to already label the Kripke structure), and APQ(Φ) = {P1, . . . , Pk}
for the set of atomic propositions that are quantified in Φ. We build a TBGS CS
and an ATLsc formula ‹Φ such that S, q |=t Φ if, and only if, CS , q |= ‹Φ.

The game CS = 〈Q′, R′, `′,Agt,M,Mov,Edge〉 is defined as follows. The
set of agents is Agt = {a0, . . . , ak}: Player a0 is in charge of selecting the
transitions in S, while Player ai (for i ≥ 1) has to decide the truth value of Pi.
The set of states Q′ is Q∪{cq,i | i = 1, . . . , k}∪{pi | i = 0, . . . , k}: states q ∈ Q
are controlled by a0, while states cq,i are controlled by ai. States pi only carry
a self-loop, and are not explicitly controlled. The transition set R′ contains
every transition (q, q′) ∈ R, and also transitions (q, cq,i), (cq,i, pi), and (cq,i, p0)
for i = 1, ..., k and q ∈ Q. The labeling `′ is as follows: `′(q) = `(q) ∪ {PQ} if
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q ∈ Q (PQ is a fresh atomic proposition), `′(cq,i) = `′(p0) = ∅, and `′(pi) = Pi
for i ≥ 1.

In a state q ∈ Q, a0 can choose either a successor state q′ (i.e., an S-
transition (q, q′)) or some cq,i, the latter choice being used to check whether Pi
holds true in q. Indeed in cq,i, ai has two available moves: move m1 goes
to Pi, and while mode m0 goes to P0. Thus as soon as ai has selected a
strategy, cq,i has a unique successor; this encodes the labeling for atomic
proposition Pi ∈ APQ(Φ). Note also that for any path in CS of the form ρ · cq,i,
ρ is a path in S ending in q. Finally note that as CS is a TBGS, its size is in
O(|Q| · |Φ|+ |R|), i.e. in O(|S| · |Φ|).

Following the ideas above, we define ‹Φ inductively:

fi¬ψ = ¬ ϕ̃ ‡ϕ∧ψ = ϕ̃∧ ‹ψ ‡∃Pi.ϕ = 〈·ai·〉 ϕ̃
fiXϕ = X ϕ̃ ·�ϕUψ = ϕ̃U ‹ψ Ẽϕ = 〈·a0·〉 (GPQ ∧ ϕ̃)

P̃i=




〈·a0·〉X 〈·a0·〉XP if P ∈ APQ(Φ)

P otherwise

The size of ‹Φ is in O(|Φ|). We state the correctness of the reduction as follows:

Proposition 12. Let Φ be a QCTL∗ formula with APQ(Φ) = {P1, . . . , Pk} and
ψ be a Φ-subformula. Let I be the indices of propositions in APf (ψ)∩APQ(Φ).
Let S = 〈Q,R, `〉 be a KS, ρ a path in S and n a position along ρ. Let
TS(ρ(0)) = 〈T, `I〉 be the execution tree from ρ(0) with a labeling function `I
that extends ` for {Pi | i ∈ I}. Let f be the strategy context for {ai}i∈I such
that: f(ai)(ρ

′ · cq,i) = m1 iff `T (ρ′) 3 Pi for every T -node ρ′. Then we have:

〈T, `I〉, ρ, n |=s ψ iff CS , ρ, n |=f
‹ψ

Proof. The proof is based on the fact that any strategy for agent ai in CS
corresponds to a (unique) Pi labeling of T . Indeed such a strategy is a
mapping from paths of the form ρ′ · cq,i with ρ′ ∈ Q+ and as noticed above, we
have: for any such a CS path ρ′ ·cq,i, ρ′ is a path in S ending in q which implies
that ρ is a state of T . Using this observation, the proof is straightforward.

A complexity lower bound for ATLsc model checking. Now consider
a model checking instance C |= Φ with Φ ∈ EQkCTL. This problem is
k -EXPTIME-complete [14]. Now we can adapt the previous reduction from
QCTL to ATLsc in order to obtain a formula with 〈· ·〉 -depth equals to k:
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• First we can replace all occurrences of the quantifier 〈·a0·〉 in ‹Φ with
¬ 〈·∅·〉 ¬, because every such subformula is interpreted in a context
where every agent in {a1, . . . , ak} has a fixed strategy, so that quantifying
on the ability of the last agent (a0) to select a path in the structure
is equivalent to looking for a path in the outcomes of the context
(and Ec ≡ ¬〈·∅·〉 ¬). Notice that such 〈·∅·〉 correspond to trivial
quantification, because no L M is used in the formula.

• Second, formula fiEϕ is in ATL∗sc, as it involves a conjunction of path
formulas in the scope of a strategy quantifier. However, this is easily
overcome in pretty much the same way as we did at the end of Section 4.1.

From this reduction, we get a k -EXPTIME-hardness lower bound for ATLsc
model checking (notice that this already holds for TBGSs). The same ap-
proach can be followed for EQkCTL∗ and ATL∗sc, yielding a (k + 1 )-EXPTIME-
hardness bound. As a result:

Theorem 13. Model checking the fragment of ATLsc (resp. ATL∗sc) with
at most k non-trivial nested strategy quantifiers is k-EXPTIME-hard (resp.
(k + 1 )-EXPTIME-hard), even for TBGS.

To sum up our results about model checking, we have:

Corollary 14. Model checking ATLsc and ATL∗sc is Tower-complete. More
precisely, model checking the fragment of ATLsc (resp. ATL∗sc) with k non-trivial
nested strategy quantifiers is k-EXPTIME-complete (resp. (k + 1 )-EXPTIME-
complete).

5. Satisfiability

The above translation to QCTL∗ works for model checking, but does
not extend to satisfiability: the QCTL∗ formula we build depends both on
the formula and on the structure. Actually, as was proved recently in [24],
satisfiability is undecidable for ATLsc, both when looking for infinite or
finite CGS. For the sake of completeness, and because it has interesting
consequences, we sketch a (modified) proof of this result in this section.

We then establish decidability of satisfiability in two different settings:
first when restricting to turn-based games, and then in the case where the set
of actions allowed to the players is fixed. A consequence of our decidability
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proofs (based on automata constructions) is that in both settings, ATLsc does
have the finite-model property (thanks to Rabin’s regularity theorem).

Before we proceed to the algorithms for satisfiability, we prove a generic
result about the number of players needed in a game in order to satisfy a
formula involving a given set of agents. This result has already been proved
for ATL (e.g. in [26]). Given a formula Φ ∈ ATL∗sc, we use Agt(Φ) to denote
the set of all agents involved in the strategy quantifiers of Φ.

Proposition 15. An ATL∗sc formula Φ is satisfiable if, and only if, it is
satisfiable in a CGS with |Agt(Φ)|+ 1 agents.

Proof. Assume that Φ is satisfied in a CGS C = 〈Q,R, `,Agt,M,Mov,Edge〉.
If |Agt| ≤ |Agt(Φ)|, it suffices to add extra idle players in C. Otherwise, if
|Agt| > |Agt(Φ)|+ 1, we can replace the agents {b1, ..., bk} in Agt that do not
belong to Agt(Φ) by a unique agent a mimicking the actions of the removed
players. Notice that this requires extending the set of moves for Player a
to Mk.

5.1. General case

In [24], Troquard and Whalther show that satisfiability of ATLsc is un-
decidable. The proof consists in reducing the satisfiability problem for the
modal logic S5n to the satisfiability problem for ATLsc. The construction
is elegant and induces several important result, which is the reason why we
include it here (with a few changes).

The multi-modal logic S5n. The logic S5n is a multidimensional modal
logic [13], whose formulas are built from boolean operators, atomic propo-
sitions P ∈ AP and modalities ♦i. These formulas are interpreted over
models M = 〈F ,V〉 where F is a product frame W1 × . . . ×Wn, and V is
a valuation for atomic propositions over F . The (implicit) transition rela-
tion over Wi is universal: for any world w = (w1, ..., wn) and any w′i ∈ Wi,
there is an i-transition to (w1, ..., wi−1, w

′
i, wi+1, . . . , wn). This provides the

semantics of ♦iϕ: M, w |= ♦iϕ if, and only if, there exists w′i ∈ Wi such that
M, w[wi → w′i] |= ϕ. Satisfiability (both over finite and infinite models) is
undecidable for S5n [25]. Additionally, S5n does not have the finite-model
property [12].

Let Φ be an S5n formula. From Φ, we build an ATLsc formula ÙΦ inductively
as follows:

ϕ̇∧ψ = Ûϕ∧ Ùψ ¬̄ψ = ¬ Ùψ ÙP = 〈·∅·〉XP ♦̄iψ = 〈·ai·〉 Ùψ
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The following result connects both satisfiability problems:

Proposition 16 ([24]). Let Φ be an S5n formula and ÙΦ be the resulting ATLsc
formula, obtained as above. Then Φ is satisfiable in a finite (resp. infinite)
S5n model if, and only if, 〈·∅·〉 ÙΦ is satisfiable in a finite (resp. infinite) CGS.

Proof. First assume that there exists a model M = (F ,V) for Φ, with F =
W1× . . .×Wn. Take w such thatM, w |= Φ. For every i, the states in Wi are
denoted wi1, wi2, ... We define a CGS CM = 〈Q,R, `,Agt,M,Mov,Edge〉 with
M as its underlying transition system: Q = F , R = Q×Q, and `(w) = V(w).
We let Agt = {a1, . . . , an}. The action alphabet M is {1, . . . ,max1≤i≤n |Wi|}
if M is finite, and N>0 otherwise. In every world w ∈ Q, Player ai can
choose the next position in Wi: in other terms, Mov(w, ai) = {1, . . . , |Wi|} if
Wi is finite, or N>0 otherwise, and Edge(w,m) = wm with wm = 〈w1

m1
, w2

m2
,

. . . , wnmn〉 when m is 〈m1, . . . ,mn〉. Note that asM is universal, the transition
table does not depend on the current state w. As a world w in M is also a
state in CM and also corresponds to a move in the game structure, we might
abusively write Edge(w,m) = m or Edge(w,w′) = w′ in the sequel.

In our reduction, formula ÙΦ only involves non-nested occurrences of the
X modality. Hence we are only interested in the first move proposed by
strategies. Given a world w in F , we write Fw for the class of all strategies
for Agt such that Fw(∅) = w. In other terms, any strategy in Fw enforces
the first transition to go to w. Now we can easily see that, for every S5n

formula ϕ and for any two worlds w and w′:

M, w |= ϕ ⇔ CM, w′ |=Fw Ûϕ

The proof is by structural induction over ϕ. The cases of boolean operators
are direct. We only consider ♦i and propositions P :

• when ϕ = P : M, w |= P is equivalent to P ∈ V(w), which in turn is
equivalent to CM, w′ |=Fw 〈·∅·〉XP because the strategy Fw ensures a
first transition to w, where P holds true.

• when ϕ = ♦iψ: if M, w |= ♦iψ, then there exists w′′ such that
w′′j = wj for j 6= i and M, w′′ |= ψ. By induction hypothesis, we get

CM, w′ |=Fw′′
Ùψ, which implies CM, w′ |=Fw 〈·ai·〉 Ùψ because Fw′′ is clearly

equivalent (when considering only the first transition) to Fw modified
by a new move for Player ai.

21



Now consider any state w′ in Q. Since M, w |= Φ, we have CM, w′ |=
〈·∅·〉 ÙΦ, since the strategy quantifier 〈·∅·〉 (i.e. 〈·Agt·〉 ) allows us to select a
strategy in Fw to ensure CM, w′ |=Fw

ÙΦ. Thus 〈·∅·〉 ÙΦ is satisfiable.

Now assume that there exists C = 〈Q,R, `,Agt,M,Mov,Edge〉 and q ∈ Q
such that C, q |= 〈·∅·〉 ÙΦ. We first show that there is such a structure involving
n agents. We then deduce that the S5n formula Φ is satisfiable.

Assume that C involves n+ 1 players {a0, a1, . . . , an} (following Proposi-
tion 15). As C, q |= 〈·∅·〉 ÙΦ, there exists a strategy F for {a0, a1, . . . , an} such
that C, q |=F

ÙΦ. Pick such an F . In ÙΦ, the strategy quantifiers only deal with
Players a1 to an. The strategy (and in particular the first move) for a0 is fixed
by F , and is not updated by ÙΦ. Now, consider the structure C ′ = 〈Q,R′,
`, {a1, . . . , an},M,Mov′,Edge′〉, in which Edge′(q, 〈m1, ...,mn〉) is defined as
Edge(q, 〈m0,m1, ...,mn〉), where m0 is the first move proposed by Fa0 . Then
C ′, q |= 〈·∅·〉 ÙΦ.

We now pick an n-player CGS C such that C, q |= 〈·∅·〉 ÙΦ. We define
MC = (F ,V) as follows: F = W1 × . . . ×Wn with Wi = Mov(q, ai), and
V(m) = `(Edge(q,m)). In other terms, the states ofMC are the move vectors
of C, and they are labeled with the atomic propositions of the state they
lead to. Associated with a universal relation, this defined an S5n model. We
now show that it is a model for Φ.

Given a strategy F in C for every player, F (q) defines a unique move
vector mF (q) from q; it also correspond to some world wF (q) inMC. We clearly
have:

C, q |=F Ûϕ ⇔ MC, wF (q) |= ϕ

The proof works exactly as in the previous case. Finally we have C, q |= 〈·∅·〉 ÙΦ,
and then there exists a complete strategy F such that C, q |=F

ÙΦ. From the
previous result, we get MC, wF (q) |= Φ, and then Φ is satisfiable.

Finally note that M is infinite if, and only if, CM has an infinite action
alphabet. Conversely, C has an infinite action alphabet if, and only if, MC is
infinite. Therefore Φ is finitely (resp. infinitely) satisfiable if, and only if,
〈·∅·〉 ÙΦ is satisfiable in a finite (resp. infinite) CGS1

Proposition 16 and its proof entail the following results:

1Notice that finiteness refers here to the total size of the CGS, not only its number of
states.
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Corollary 17. • Satisfiability of ATLsc is undecidable for finite or infinite
CGS [24].

• ATLsc does not have the finite-model property.

• ATLsc does not have the finite-branching property.

5.2. Turn-based games

In this section, we consider the restriction of satisfiability to turn-based
games: given an ATLsc formula, we look for a turn-based game structure
satisfying Φ. As we now explain, this problem turn out to be decidable.

Let Φ be an ATLsc formula. Write Agt(Φ) = {a1, . . . , an} for the set of
players involved in Φ. Following Prop. 15, let Agt be the set Agt(Φ) ∪ {a0},
where a0 is an additional player. Pick a TBGS C, and consider its execution
tree TC = 〈T, `〉. Since C is turn-based, we may assume that ` labels each
node of the tree with the owner of the corresponding state. Formally, for
each node π ∈ T , we have `(π) 3 turnj if, and only if, aj = Own(last(π)).
A strategy for an agent aj is then encoded using an atomic proposition movj :
indeed, a strategy for aj precisely corresponds to a selection of one successor
of every turnj-state (notice that this is a crucial difference with CGSs). The
outcomes of a strategy of Player aj are the runs in which every turnj-state is
followed by a movj-state; The decidability proof now consists in using this
encoding of strategies together with the translation from ATL∗sc into QCTL∗.

We again consider the execution tree TC = 〈T, `〉 of C. Given a coali-
tion B ⊆ Agt and a strategy fB for coalition B, a labeling function `′

extending ` is an fB-tb-labeling if `′ labels T with propositions movj for
all aj ∈ B as dictated by fB, and with proposition pout in order to mark
outcomes. More precisely, (1) for any node π labeled with turnj ∈ B, we have
`′(π · q) = movj if, and only if, fB(j)(π) = q, and (2) when a state is labeled
with pout and turnj for some aj ∈ B, then only its movj-successor is labeled
with pout; states labeled with pout and turnk with ak /∈ B, then all its successors
are labeled with pout; finally, all the successors of nodes not labeled with pout
are not labeled with pout.

Given a coalition C (which we intend to represent the agents that have
a strategy in the current context), we translate an ATL∗sc formula Φ into a
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QCTL∗ formula “ΦC inductively as follows:

÷LAMϕ
C

= ϕ̂
C\A ÷ϕ∧ψC = ϕ̂

C ∧“ψC ‘¬ψC = ¬ ϕ̂C

◊�ϕUψ
C

= ϕ̂C U “ψC ‘Xϕ
C

= X ϕ̂C “PC = P

For formulas of the form 〈·A·〉ϕ with A = {aj1 , . . . , ajl}, we let:

◊�〈·A·〉ϕ
C

= ∃movj1 . . .movjl .pout.Å
Φtb

strat(A)∧Φtb
out(A ∪ C)∧ A

Å
G pout ⇒ ϕ̂p

C∪A
ãã

with:

Φtb
strat(A) = AG

∧

aj∈A
(turnj⇒ EX1 movj)

Φtb
out(A) = pout ∧ AG

î
¬ pout⇒ AX ¬ pout

ó
∧

AG
ï
pout⇒

Å ∧

aj∈A

Ä
turnj⇒ AX (movj ⇔ pout)

äãò

where EX1 α is a shorthand for EXα∧∀p.
Å

EX (α∧ p)⇒ AX (α⇒ p)
ã

,

specifying the existence of a unique successor satisfying α.
Now we have the following proposition, whose proof is done by structural

induction over the formula:

Proposition 18. Let Φ ∈ ATL∗sc, and Agt = Agt(Φ)∪{a0} as above. Let C be
a TBGS, ρ be a path of C, n be a position along ρ, and fB be a strategy context
whose domain is B ⊆ Agt. Let TC(ρ(0)) = 〈T, `fB〉 be the execution tree of the
Kripke structure underlying C from ρ(0), labeled with an fB-tb-labeling `fB .
Then we have:

C, ρ, n |=fB Φ iff 〈T, `fB〉, ρ, n |= “ΦB

Proof. The proof is by structural induction over Φ. The cases of atomic
propositions, boolean operators and temporal modalities are straightforward.

• If Φ = 〈·A·〉ϕp: assume C, ρ, n |=fB Φ. Then there exists gA ∈ Strat(A)
such that for any ρ′ ∈ Out(ρ≤n, gA ◦ fB), we have C, ρ′, n |=(gA ◦ fB) ϕ.
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Let `gA ◦ fB be some (gA ◦ fB)-tb-labeling built from `fB by updating
the labeling for propositions (movj)aj∈A and pout. By induction hy-
pothesis, for any ρ′ ∈ Out(ρ≤n, gA ◦ fB), we have 〈T, `(gA ◦ fB)〉, ρ′, n |=
ϕ̂p

A∪B. Then, by definition of `gA ◦ fB , the outcomes generated by
gA ◦ fB are exactly the run satisfying G pout, and then we clearly
have 〈T, `(gA ◦ fB)〉, ρ, n |= A(G pout⇒ ϕ̂p

A∪B). Moreover Φtb
strat(A) and

Φtb
out(A ∪ B) also hold true for 〈T, `(gA ◦ fB)〉, ρ, n. Therefore we have

〈T, `fB〉, ρ, n |= ÿ�〈·A·〉ϕp

B

, since it suffices to extend `fB in order to
encode the strategy gA and update the truth value of pout accordingly.

Conversely, assume 〈T, `fB〉, ρ, n |= ÿ�〈·A·〉ϕp

B

. Then there exists a la-
beling `′ for (movj)aj∈A and for pout so that (1) Φtb

strat(A) holds true,
which ensures that the labeling with (movj)aj∈A corresponds to a strat-
egy gA for A from ρ≤n, and (2) Φtb

out(A ∪ B) also holds true, which
ensures that pout marks the outcomes from ρ≤n induced by gA ◦ fB.
This implies that `′ is a (gA ◦ fB)-tb-labeling. Finally we also know
that A(G pout⇒ ϕ̂p

A∪B) holds for 〈T, `fB〉, ρ, n, which entails that every
outcome of gA ◦ fB satisfies ϕ̂p

A∪B). The induction hypothesis entails
the expected result.

• If Φ = LAMϕs: assume C, ρ, n |=fB Φ. Then C, ρ, n |=fB\A ϕs. Applying

the induction hypothesis, we get 〈T, `fB\A〉, ρ, n |= ϕ̂s
B\A. It follows that

〈T, `fB〉, ρ, n |= ϕ̂s
B\A, because the labeling of strategies for coalition A

in fB is not used for evaluating ϕ̂s
B\A, and the labeling with proposi-

tion pout will be updated at the next occurrence of a 〈· ·〉 quantifier.

Conversely, assume that 〈T, `fB〉, ρ, n |= ϕ̂s
B\A. For the same reason

as above, we have 〈T, `fB\A〉, ρ, n |= ϕ̂s
B\A. Applying the induction

hypothesis, we get C, ρ, |=fB\A ϕs, and then C, ρ, n |=fB Φ.

Finally, it remains to enforce that the Kripke structure satisfying “Φ∅

corresponds to a turn-based game structure. This is achieved by also requiring

Φtb = AG
ï ∨

aj∈Agt

Å
turnj ∧

∧

al 6=aj
¬ turnl

ãò
.

Finally, we let “Φ be the formula Φtb ∧ “Φ∅.

25



Proposition 19. Let Φ be an ATL∗sc formula and “Φ be the QCTL∗ formula
defined as above. Then Φ is satisfiable in a TBGS if, and only if, “Φ is
satisfiable (in the tree semantics).

Proof. If Φ is satisfiable in a TBGS, then there exists such a structure C with
|Agt(Φ)|+1 agents. Pick such a structure C, and a path ρ such that C, ρ, 0 |= Φ.
Now consider the execution tree TC(ρ(0)) = 〈T, `〉 From Proposition 18, we
have 〈T, `〉, ρ, 0 |= “Φ∅. Thus clearly 〈T, `〉, ρ, 0 |= “Φ.

Conversely assume T |= “Φ. Thus T |= Φtb ∧ “Φ∅: the first part of the
formula ensures that every state of the Kripke structure can be assigned to a
unique agent, hence defining a TBGS. The second part ensures that Φ holds
in the corresponding game, thanks to Proposition 18.

The above translation from ATL∗sc into QCTL∗ transforms a formula with k
strategy quantifiers into a formula with at most k + 1 nested blocks of

quantifiers. By slightly modifying the definition of ÿ�〈·A·〉ϕp

C

, we can obtain
a translation from ATLsc into QCTL with the same property. Satisfiability
of a QCTL∗ (resp. QCTL) formula with k + 1 blocks of quantifiers is in
(k + 3 )-EXPTIME (resp. (k + 2 )-EXPTIME) [14]. Hence the algorithm is in
Tower.

We now prove that this high complexity cannot be avoided:

Proposition 20. Satisfiability of ATLsc and ATL∗sc formulas over TBGSs is
Tower-hard (i.e., it is k-EXPTIME-hard, for all k).

Proof (sketch). Model checking ATLsc over turn-based games is Tower-hard
(Theorem 13), and it can easily be encoded as a satisfiability problem. Indeed,
let C = 〈Q,R, `,Agt,M,Mov,Edge〉 be a TBGS, and Φ be an ATLsc formula.
Let (pq)q∈Q be fresh atomic propositions. We define an ATLsc formula ΨC to
describe the game C as follows:

ΨC = AG
Å∨
q∈Q

(pq ∧
∧

q′ 6=q
¬ pq′ ∧

∧

P∈`(q)
P ∧

∧

P ′ 6∈`(q)
¬P ′)

ã
∧

AG
ï∧
q∈Q

Å
pq⇒(

∧

q→q′
〈〈Own(q)〉〉X pq′ ∧

∧

q′. q 6→q′
¬ 〈〈Own(q)〉〉X pq′)

ãò

where q → q′ denotes the existence of a transition from q to q′ in C. Any TBGS
C ′ satisfying ΨC corresponds to a kind of unfolding of C with possibly du-
plications of transitions (and of the corresponding moves). First note that
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duplicating transitions does not change the truth value of ATLsc formula: in a
turn-based structure, duplicating a transition consists in adding a new move
for the owner of the source state and this move is completely equivalent to the
previous move. Thus we can assume that C ′ corresponds to some unfolding
of C (with extra labeling for propositions pq), thus it yields the same execution
tree as C; this ensures that both structures satisfy the same ATLsc formulas
when the extra propositions are not used. In particular, C ′ satisfies Φ if, and
only if, C does.

Finally we clearly have that C, q |= Φ if, and only if, ΨC ∧ pq ∧Φ is
satisfiable in a turn-based structure.

Theorem 21. Satisfiability for ATLsc and ATL∗sc over TBGSs is Tower-
complete.

We conclude this section with proving that in TBGS, ATL∗sc has the
finite-model property:

Proposition 22. If an ATL∗sc formula Φ is satisfiable in a TBGS, then there
exists a finite TBGS satisfying Φ.

Proof. Assume Φ is satisfiable, then the QCTL∗ formula “Φ is satisfiable and
there exists a tree satisfying “Φ. Such a tree T can be chosen to be regular
(QCTL∗ models can be characterized by alternating parity tree automata [14]);
we can consider the underlying finite Kripke structure KT , and apply the
same construction as we did for proving Proposition 19, obtaining a finite
TBGS satisfying Φ.

5.3. Games with a bounded action alphabet

We now consider another setting where the reduction to QCTL∗ can be
used to solve the satisfiability for ATL∗sc: we look for CGSs involving a given
set of moves, and a given set of players2. Formally, the problem is defined as
follows:

Problem: (Agt,M)-satisfiability
Input: a finite set of movesM, a set of agents Agt, and an ATL∗sc

formula Φ involving the agents in Agt;
Question: does there exist a CGS C = 〈Q,R, `,Agt,M,Mov,Edge〉

and a state q ∈ Q such that C, q |= Φ.

2Notice that when the set of moves is fixed, we cannot apply Prop. 15.
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We fix M = {m1, . . . ,mk} and Agt = {a1, . . . , an}. Moreover we as-
sume w.l.o.g. that every agent may choose all k moves from every state
(i.e., Mov(q, a) = M for any q ∈ Q and a ∈ Agt). Therefore we know that
we are looking for a CGS whose execution tree is a [kn]-tree. We encode the
transition table of the CGS in its execution tree as follows: for every agent ai
and move mj in M, we label a node with an atomic proposition afteraimj to
specify that agent ai has played move mj in the parent node. The resulting
execution tree satisfies formula

ΦEdge = AG
Å ∧

m∈Mn

EX 1afterm

ã

where afterm stands for
∧

ai∈Agt
afteraimj .

From an ATL∗sc formula Φ, we now define a QCTL∗ formula ÁΦC in a

similar way as we defined formula Φ
C

in Section 4 (when reducing the ATL∗sc
model-checking problem to the QCTL model-checking problem). Here, the sub-
formulas Φstrat and Φout are defined using propositions after instead of the
transition table (which is not known here). We let

Ô�〈·A·〉ϕp

C

= ∃maj1
1 . . .m

aj1
k . . .m

ajl
1 . . .m

ajl
k .pout.Å

Φba
strat(A)∧Φba

out(A ∪ C)∧ A
Å
G pout ⇒ Ëϕp

C∪A
ãã

with:

Φba
strat(A) =

∧

a∈A
AG

Å ∨

mi∈M
(ma

i ∧
∧

j 6=i
¬ma

j )
ã

Φba
out(A) = pout ∧ AG

Ä
¬ pout⇒ AX ¬ pout

ä
∧

AG
ï
pout⇒

∨

m∈MA

Å
pm ∧ AX (afterm ⇔ pout)

ãò

where, given m = (mai
j )ai∈A, pm stands for

∧
ai∈Am

ai
j . This yields a formula

whose size is in O(|Φ| · |Agt| · |M||Agt|).
In the following, we consider execution trees whose labeling functions

include propositions afteram. As for the turn-based case, given a strategy
fB, we say that a labeling function ` is an fB-ba-labeling when proposi-
tions (m

aj
i )1≤i≤k,aj∈B describe the moves proposed by fB, and when pout labels

the outcomes of fB. Our translation has the expected property (we omit the
proof as it follows exactly the same lines as for Proposition 18):
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Proposition 23. Let Φ ∈ ATL∗sc. Fix a finite set M = {m1, . . . ,mk} of
actions, and a finite set Agt = {a1, . . . , an} of agents (containing Agt(Φ)).
Let C be a CGS based on M and Agt. Let ρ be a path of C, n be a position
along ρ, and fB be a strategy context whose domain is B ⊆ Agt. Let TC(ρ(0)) =
〈T, `fB〉 be an execution tree of the Kripke structure underlying C from ρ(0),
labeled with an fB-ba-labeling `fB . Then we have:

C, ρ, n |=fB Φ iff 〈T, `fB〉, ρ, n |= “ΦB

We can then relate the truth values of Φ and of ÁΦ = ΦEdge ∧ ÁΦ∅:

Proposition 24. Let Φ be an ATL∗sc formula, Agt = {a1, . . . , an} be a finite
set of agents, M = {m1, . . . ,mk} be a finite set of moves, and ÁΦ be the
formula defined above. Then Φ is (Agt,M)-satisfiable in a CGS if, and
only if, the QCTL∗ formula ÁΦ is satisfiable (in the tree semantics).

Sketch of proof. If Φ is (Agt,M)-satisfiable, then we can derive a tree
satisfying ÁΦ (thanks to Proposition 23). Conversely if ÁΦ is satisfied in some
tree T , then this tree corresponds to some CGS based on Agt andM: indeed,
formula ΦEdge ensures that for every node, the labeling of the successor nodes
with (afteraimj)mj∈M,ai∈Agt defines a transition table. The end of the proof is
similar to proof for the turn-based case.

Notice that if Φ has k ≥ 1 nested quantifiers, then so does ÁΦ. However, the
size of ÁΦ is exponential in |Agt|. Satisfiability of QkCTL∗ (resp. QkCTL) for-
mula being (k + 2 )-EXPTIME-complete (resp. (k + 1 )-EXPTIME-complete),
we end up with an algorithm in (k + 3 )-EXPTIME (resp. (k + 2 )-EXPTIME)
for ATL∗sc (resp. ATLsc) formulas involving at most k ≥ 1 nested quantifiers.

Proposition 25. The (Agt,M)-satisfiability problem for ATLsc and ATL∗sc is
Tower-hard.

Proof. The proof uses similar ideas as for the case of TBGSs. Since the
reduction is from the model-checking problem, we already know the set of
agents and actions. The main difficulty is to require that the satisfying CGS
be turn-based. This can be achieved using the following formula:

AG


∧

q∈Q

∨

a∈Agt

Ñ
pq⇒

ï
(
∧

q→q′
〈〈a〉〉X pq′) ∧ ( JaK

∨

q→q′
〈·∅·〉X pq′)

òé


The rest of the proof is similar to the proof of Proposition 20.

Theorem 26. (Agt,M)-satisfiability for ATLsc and ATL∗sc is Tower-complete.

29



6. Extensions of ATLsc

In this section, we explain how our technique of using QCTL∗ applies in
two other settings: first, for the variant of ATL∗sc where strategy quantifiers are
restricted to range over memoryless strategies; second, for strategy logic (SL),
a different formalism for expressing properties of multi-agent systems.

6.1. ATLsc with memoryless strategy quantifiers

In this section, we consider the logic obtained from ATLsc by restricting
strategy quantifiers to range over memoryless strategies. Notice that the
memoryless requirement only applies to explicitly quantified strategies: for in-
stance, 〈·A·〉0 ϕ states that coalition A has a memoryless strategy to enforce ϕ,
whatever the other players do, even if they have memory:

C, π, n |=f 〈·A·〉0 ϕ ⇔
∃fA ∈ Strat0(A). ∀π′ ∈ Out(π≤n, fA ◦ f). C, π′, n |=fA ◦ f ϕ.

Enforcing memoryless strategies for the opponent coalition can be achieved by
expliciting the strategy quantification: we would then write 〈·A·〉0 [·B·]0 〈·∅·〉0 ϕ
to force players in B to play memoryless. Notice that because of this differ-
ence between implicit and explicit strategy quantification, our translation
from ATL∗sc to ATLsc does not apply for memoryless strategies.

It is well-known that the strategies witnessing an ATL property can
be chosen memoryless: in other terms, 〈〈A〉〉ϕ and 〈〈A〉〉0 ϕ are equivalent
(when 〈〈A〉〉ϕ is interpreted with the classical semantics of ATL). More-
over, 〈·a1·〉0 ( 〈·a2·〉0 X a∧ 〈·a2·〉0 X b) is true on only one of the two CGSs of
Fig. 1. It follows that ATLsc,0 is strictly more expressive than ATL. Actually,
ATLsc,0 can even distinguish CGSs that ATLsc cannot: consider the two one-
player CGSs S and S ′ of Figure 2; they involve only one player, and can be
seen as Kripke structure; as Kripke structures, they are bisimilar, so that they
satisfy the same CTL∗ formulas, and consequently also the same ATLsc formu-
las (any ATLsc formula is easily translated into an equivalent CTL∗ formula
for these one-player models). But the ATLsc,0 formula 〈·a·〉0 (X ¬ a∧X X a)
holds true in state `′0 of S ′, while it fails to hold in `0 in S.

We now turn to model checking and satisfiability. The number of memo-
ryless strategies for one player being bounded (with |M||Q|), we can easily
enumerate all of them, and store each strategy within polynomial space.
Hence:
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Fig. 2: Two CGS that can be distinguished by ATLsc,0, but not by ATLsc

Theorem 27. Model checking ATLsc,0 and ATL∗sc,0 is PSPACE-complete.

Proof. We again rely on our translation to QCTL∗, but this time in the
structure semantics [14]: instead of ranging over labellings of the execution
tree, propositional quantification then ranges over labellings of the Kripke
structure. Indeed, a memoryless strategy is simply a function mapping each
state of the game to an available move.

However, we cannot directly reuse the translation of Section 4.1: indeed,
in this translation, we quantify over atomic proposition pout to mark the
outcomes of the selected strategies. This is not correct in the structure
semantics of QCTL∗, since this would only range over ultimately-periodic
outcomes.

To overcome this problem, we propose a slightly different translation:
instead of quantifying over pout, we use a CTL∗ formula to characterize the
outcomes: the translation of 〈·A·〉0 ϕ in a context with domain C now reads
as follows (reusing the notations of Section 4.1):

〈·A·〉0 ϕp

C
= ∃maj1

1 . . .m
aj1
k . . .m

ajl
1 . . .m

ajl
k .Å

Φstrat(A)∧ A
ï
(Φ′out(A ∪ C)) ⇒ ϕp

C∪A
ãò

where

Φ′out(C) = G

Ñ
∧

q∈Q

∧

m∈Mov(q,C)


(pq ∧ pm)⇒

∨

q′∈Next(q,C,m)

X pq′



é
.

Formula Φ′out(C) characterizes the outcomes of the strategies in use for coali-

tion C. In the end, the QCTL∗ formula Φ
∅

has size O(|Φ| · |Q| · (|Agt| · |M|2 +
|Q| · |Edge|)). Using the PSPACE algorithm for model checking QCTL∗ in
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the structure semantics, we obtain a PSPACE algorithm for model check-
ing ATL∗sc,0.

Finally, hardness in PSPACE is obtained for ATLsc,0 by a straightforward
encoding of QBF.

While restricting to memoryless strategies makes model checking easier,
it actually makes satisfiability harder:

Theorem 28. Satisfiability of ATLsc,0 (with memoryless-strategy quantifica-
tion) is undecidable, even when restricting to turn-based games or when the
set of agents and actions is fixed.

The proof of this result being long and technical, we postponed it to Ap-
pendix Appendix B. While this result may look surprising given our previous
results, it is the natural counterpart of the fact that QCTL satisfiability is
undecidable over finite graphs. The proof of Theorem 28 uses the same ideas
as for the undecidability of QCTL satisfiability over graphs [14].

6.2. Strategy Logic

Strategy Logic (SL) [7, 19] extends LTL with explicit quantification and
use of strategies. SL allows first-order quantification over strategies, and those
strategies are then assigned to players.

Formula 〈〈x〉〉ϕ expresses the existence of a strategy enforcing ϕ; the
strategy is stored in variable x for later use in ϕ: the agent binding operator
(a, x) can be used to assign strategy x to agent a. An assignment χ is a
partial function from Agt ∪Var to Strat. An SL formula ϕ is interpreted over
pairs (χ, q) where q is a state of some CGS and χ is an assignment such that
any free3 strategy variable or agent occurring in ϕ belongs to dom(χ). Note
that we must have Agt ⊆ dom(χ) when temporal modalities X and U are
interpreted: this implies that the set of outcomes is restricted to a single
execution generated by all the strategies assigned to players in Agt, and the
temporal modalities are therefore interpreted along this execution. We refer
to [19] for a complete definition of SL.

In the following we assume w.l.o.g. that every quantifier 〈〈x〉〉 introduces
a fresh strategy variable x: this allows us to permanently use variable x to

3We use the standard notion of freeness for strategy variables, with the hypothesis that
〈〈x〉〉 binds x, and for the agents with the hypothesis that (a, x) binds a and that every
agent in Agt is free in temporal subformula (i.e., with U or X as root).
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denote the selected strategy for a. Moreover, we require that every player
may play any move in any state (Mov(q, a) =M): this rules out the problem
whether a selected strategy can be assigned to a player when evaluating a
formula. We omit the formal proofs of the results stated in this part, as the
closely follow the same arguments as for ATL∗sc.

Model checking. Following the ideas developed for ATL∗sc model checking,
we reduce the model-checking problem for SL to the model-checking problem
for QCTL∗. Consider a CGS C = 〈Q,R, `,Agt,M,Mov,Edge〉 with M =
{m1, . . . ,mk} and Agt = {a1, . . . , an}, and where Mov constantly returns M.
Let Φ ∈ SL and V a partial function V : Agt ⇁ Var assigning strategy
variables to some of the agents. We build a QCTL∗ formula ΦV as follows:

ϕ∧ψV = ϕ
V ∧ψV ¬ϕV = ¬ϕV ϕUψ

V
= A

Å
Φout(V )⇒ϕp

V
Uψ

V
ã

(a, x)ϕ
V

= ϕ
V [a7→x]

pV = p Xϕp

V
= A

Å
Φout(V )⇒Xϕp

V
ã

Strategy quantification is handled as follows:

〈〈x〉〉ϕV = ∃mx
1 . . .m

x
k.
Å

Φstrat(x)∧ϕ
ã

with:

Φstrat(x) = AG
Å ∨

mi∈M
(mx

i ∧
∧

j 6=i
¬mx

j )
ã

Φout(V ) = G
ï ∨
q∈Q

Å
pq ∧

∨

m∈MAgt

Ä
pVm ∧X pEdge(q,m)

äãò

where pVm stands for
∧

a∈Agt
mV (a)
αi

when m = (mα1 , . . . ,mαn).

We then have C, q |= Φ if, and only if, 〈T, `〉, q |= Φ
V∅

, where 〈T, `〉 is
the execution tree of C with each state q being labeled with a corresponding
atomic proposition pq.

Theorem 29. Let C be a CGS = 〈Q,R, `,Agt,M,Edge〉 and let 〈T, `〉 be the
execution tree of C such that ` includes a labeling for propositions pq. Let Φ

be an SL formula and Φ
V∅

be the QCTL∗ formula defined as above. Then

C, q |= Φ if, and only if, 〈T, `〉q |= Φ
V∅
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Satisfiability for turn-based case. One easily sees that ATL∗sc can be
expressed in SL. It follows that satisfiability is undecidable for SL. We thus
restrict to our two decidable cases (turn-based games and bounded set of
moves and players), and prove decidability of satisfiability for SL in both
cases.

Given an SL formula Φ and a partial function V : Agt⇁ Var, we define a
QCTL∗ formula “ΦV inductively as follows (boolean cases omitted):

◊�〈〈x〉〉ϕ
V

= ∃movx.
ï
AG

Å
EX 1movx

ã
∧ ϕ̂V

ò
ÿ�(a, x)ϕ

V

= ϕ̂V [a7→x]

Note that in this case we require that every reachable state has a (unique)
successor labeled with movx: indeed when one quantifies over a strategy x,
the agent(s) who will use this strategy are not known a priori. However, in the
turn-based case, a given strategy should be dedicated to a single agent: there
is no natural way to share a strategy between two different agents (or the
other way around, any two strategies for two different agents can be seen
as a single strategy), as they are not playing in the same states. When the
strategy x is assigned to some agent a, only the choices made in the a-states
are considered.

The temporal modalities are treated as follows:

◊�ϕUψ
V

= A
ï
G
Å ∧

aj∈Agt
(turnj⇒XmovV (aj))

ã
⇒ ϕ̂V U “ψV

ò

‘Xϕ
V

= A
ï
G
Å ∧

aj∈Agt
(turnj⇒XmovV (aj))

ã
⇒X ϕ̂V

ò

Finally, we let “Φ be the formula Φtb ∧ “ΦV∅ . Then we have the following
theorem:

Theorem 30. Let Φ be an SL formula and ‹Φ be the QCTL∗ formula defined
as above. Then Φ is satisfiable in a TBGS if, and only if, ‹Φ is satisfiable
(in the tree semantics).

Satisfiability for bounded action alphabet Let M be {m1, . . . ,mk}
and Agt = {a1, . . . , an}. The reduction carried out for ATLsc can also be
adapted for SL in this case. Given an SL formula Φ and a partial function
V : Agt⇁ Var, we define the QCTL∗ formula ÁΦV inductively as follows:

Ó�〈〈x〉〉ϕ
V

= ∃mx
1 . . . ∃mx

k.Φstrat(x)∧ ÊϕV Ô�(a, x)ϕ
V

= ÊϕV [a7→x]
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The temporal modalities are handled as follows:

Ó�ϕUψ
V

= A
ïÅ

G
∧

m∈MAgt

Ä
pVm⇒X afterm

äã
⇒
Å
ÊϕV U ÁψV

ãò

ÎXϕ
C

= A
ïÅ

G
∧

m∈MAgt

Ä
pVm⇒X afterm

äã
⇒
Å
X ÊϕV

ãò

where mV
m stands for

∧

a∈Agt
mV (a)
αi

when m = (mα1 , . . . ,mαn).

Finally, let ÁΦ be the formula ΦEdge ∧ ÁΦV
∅ . We have:

Theorem 31. Let Φ be an SL formula based on the set Agt = {a1, . . . , an},
let M = {m1, . . . ,mk} be a finite set of moves, and ÁΦ be the QCTL∗ formula
defined as above. Then Φ is (Agt,M)-satisfiable if, and only if, ÁΦ is satisfiable
(in the tree semantics).

7. Conclusion

We developed a tight link between the extension of ATL with strategy
contexts and the logic QCTL. We believe that our logic ATLsc (and similar
formalisms such as SL) is very well-suited for reasoning about complex, multi-
agent systems: it can express useful properties in non-zero-sum games, and
provide much better granularity than Nash equilibria and similar solution
concepts. But the technical formalism of games blurs the setting, and we be-
lieve that QCTL is the formalism of choice for fully understanding ATLsc and
related logics.

Our translation to QCTL provides us with a uniform presentation of
verification algorithms for ATLsc—when such algorithms exist. In view of
this, we will keep on developing our knowledge and understanding of QCTL,
for instance in terms of the behavioral equivalence it characterizes.
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Appendix A. Proof of Theorem 9

Theorem 9. Given a formula ϕ ∈ ATL∗sc and a coalition B′, there exists
an ATLsc formula ϕ̂[∅,B′], involving only players in Agtϕ ∪ B′, such that for

any strategy context f with dom(f) = B′, ϕ and ϕ̂[∅,B′] are equivalent under
context f .

This result is proved through the following two lemmas.

Lemma 32. Let C be a CGS with set of agents AgtC, ρ be a path and n
be a position along ρ. For any state-formula ϕ ∈ ATL∗sc, for any strategy
contexts f , g and g′ such that dom(g) ⊆ dom(g′), g′|dom(g) = g (in other terms,
g′ extends g), and dom(f) ∩ dom(g′) = ∅, for any coalitions B and B′ s.t.
dom(f) = (AgtC \B)∩B′, and for any outcome π ∈ Out(ρ≤n, g′ ◦ f), we have:

C, π, n |=g ◦ f ϕ̂
[B,B′] ⇔ C, π, n |=g′ ◦ f ϕ̂

[B,B′].

Proof. We prove this result by structural induction, omitting the easy cases
of atomic propositions and boolean operators.

For the case where ϕ = 〈·A·〉ψ, assume C, π, n |=g ◦ f
◊�〈·A·〉ψ

[B,B′]
Then

by definition, C, π, n |=g ◦ f 〈·A·〉 [·B \ A·] [·B′ ∪ A·] “ψ[B\A,B′∪A]. Thus there
exists fA ∈ Strat(A) such that for any f ′ ∈ Strat((B \ A) ∪ (B′ ∪ A)),

it holds C, π′, n |=f ′ ◦ fA ◦ g ◦ f
“ψ[B\A,B′∪A], where π′ is the unique path in

Out(ρ≤n, f ′ ◦ fA ◦ g ◦ f). Equivalently, with the above fA and for any f ′ ∈
Strat((B \ A) ∪ (B′ ∪ A)), C, π′, n |=f ′ ◦ fA ◦ g′ ◦ f

“ψ[B\A,B′∪A] because dom(g) ⊆
dom(g′) ⊆ dom(f) ⊆ dom(f ′)∪A. In the end, we get C, π, n |=g′ ◦ f ϕ̂[B,B′], as
expected. The converse implication is proven similarly, as well as the case
where ϕ = 〈·A·〉ψ.

Now assume ϕ = LAMψ. If C, π, n |=g ◦ f ϕ̂[B,B′], then C, π, n |=g ◦ f
“ψ[B∪A,B′], so that C, π, n |=g′ ◦ f “ψ[B∪A,B′] by induction hypothesis (as ψ is
a state-formula). Thus C, π, n |=g′ ◦ f ϕ̂[B,B′]. The converse direction follows
the same lines. The proof for ϕ = LAMψ is similar.

Lemma 33. Let C be a CGS with set of agents AgtC, ρ be a path and n be a
position along ρ, and f be a strategy context with dom(f) ⊆ AgtΦ. Then for
any ATL∗sc formula ϕ, for any strategy context g s.t. dom(g) = AgtC \ dom(f),
for any outcome π ∈ Out(ρ≤n, g ◦ f), and for any coalitions B and B′ s.t.
dom(f) = (AgtC \ B) ∩ B′, it holds: C, π, n |=f ϕ ⇔ C, π, n |=g ◦ f ϕ̂[B,B′].
Moreover, if ϕ is a state-formula, this result extends to any strategy context g
s.t. dom(g) ∩ dom(f) = ∅.
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Proof. We prove the result by induction on the structure of ϕ. The cases of
atomic propositions and boolean connectives are straightforward.

• If ϕ = Xψ, then C, π, n |=f ϕ is equivalent to C, π, n+1 |=f ψ. Applying

the induction hypothesis, this is equivalent to C, π, n+ 1 |=g ◦ f “ψ[B,B′].

This means that C, π, n |=g ◦ f X “ψ[B,B′], which in turn is equivalent to

C, π, n |=g ◦ f 〈·∅·〉X “ψ[B,B′] because Out∞(`,G ◦F ) = {π}.

• If ϕ = ψ1 Uψ2: this case can be handled in a similar way as for the
previous case, and we omit it.

• If ϕ = 〈·A·〉ψ: as this is a state formula, we prove the second, more
general statement. Let g be a strategy context with dom(g)∩ dom(f) =
∅, and π be an outcome of g ◦ f from ρ≤n. Finally, fix B and B′ such
that dom(f) = (AgtC \B) ∩B′.

C, π, n |=f 〈·A·〉ψ
⇔ ∃fA ∈ Strat(A). ∀π′ ∈ Out(π≤n, fA ◦ f). C, π′, n |=fA ◦ f ψ

⇔ ∃fA ∈ Strat(A). ∀f ′ ∈ Strat(AgtC \ dom(fA ◦ f)).

∀π′ ∈ Out(π≤n, f ′ ◦ fA ◦ f). C, π′, n |=fA ◦ f ψ

⇔ ∃fA ∈ Strat(A). ∀f ′ ∈ Strat(AgtC \ dom(fA ◦ f)).

∀π′ ∈ Out(π≤n, f ′ ◦ fA ◦ f). C, π′, n |=f ′ ◦ fA ◦ f
“ψ[B\A,B′∪A]

(by i.h., because dom(fA ◦ f) = (AgtC \ (B \ A)) ∩ (B′ ∪ A))

⇔ ∃fA ∈ Strat(A). ∀f ′ ∈ Strat(AgtC \ dom(fA ◦ f)).

∀π′ ∈ Out(π≤n, f ′ ◦ fA ◦ f). C, π′, n |=f ′ ◦ fA ◦ g ◦ f
“ψ[B\A,B′∪A]

(because f ′ ◦ fA ◦ g ◦ f = f ′ ◦ fA ◦ f)

⇔ ∃fA ∈ Strat(A). ∀f ′ ∈ Strat(AgtC \ dom(fA ◦ f)).

∃π′ ∈ Out(π≤n, f ′ ◦ fA ◦ f). C, π′, n |=f ′ ◦ fA ◦ g ◦ f
“ψ[B\A,B′∪A]

(because |Out(π≤n, f ′ ◦ fA ◦ g ◦ f)| = 1)

⇔ ∃fA ∈ Strat(A). C, π, n |=fA ◦ g ◦ f [·B \ A·] [·B′ ∪ A·] “ψ[B\A,B′∪A]

(because dom(f ′) = (B \ A) ∪ (AgtC \ (B′ ∪ A)))

⇔ C, π, n |=g ◦ f 〈·A·〉 [·B \ A·] [·B′ ∪ A·] “ψ[B\A,B′∪A]

⇔ C, π, n |=g ◦ f ϕ̂
[B,B′]
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• If ϕ = 〈·A·〉ψ: a similar sequence of equivalences applies, but now
dom(fA ◦ f) = AgtC \ [(B ∩ A) ∪ (A \B′)].

• If ϕ = LAMψ: again, we prove the second statement. Let g be a strategy
context with dom(g) ∩ dom(f) = ∅, and π be an outcome of g ◦ f
after ρ≤n. Let B and B′ such that dom(f) = (AgtC \B) ∩B′. We have:

C, π, n |=f LAMψ ⇔ C, π, n |=f\A ψ

⇔ C, π, n |=g ◦ f\A
“ψ[B∪A,B′]

(by i.h., because dom(f\A) = (AgtC \ (B ∪ A)) ∩B′)
⇔ C, π, n |=g ◦ f|A ◦ f\A

“ψ[B∪A,B′] (by Lemma 32)

⇔ C, π, n |=g ◦ f “ψ[B∪A,B′]

• If ϕ = LAMψ, a similar sequence of equivalences applies.

Appendix B. Proof of Theorem 28

Theorem 28. Satisfiability of ATLsc,0 (with memoryless-strategy quantifica-
tion) is undecidable, even when restricting to turn-based games or when the
set of agents and actions is fixed.

Proof. We prove the result for infinite-state turn-based games, by adapting the
corresponding proof for QCTL under the structure semantics [10], which con-
sists in encoding the problem of tiling a quadrant. The result for finite-state
turn-based games can be obtained using similar (but more involved) ideas, by
encoding the problem of tiling all finite grids (see [14] for the corresponding
proof for QCTL).

We consider a finite set T of tiles, and two binary relations H and V
indicating which tile(s) may appear on the right and above (respectively) a
given tile. Our proof consists in writing a formula that is satisfiable only
on a grid-shaped (turn-based) game structure representing a tiling of the
quadrant (i.e., of N × N). The reduction involves two players: Player 1
controls square states (which are labeled with ), while Player 2 controls
circle states (labeled with ). Each state of the grid is intended to represent
one cell of the quadrant to be tiled. For technical reasons, the reduction
is not that simple, and our game structure will have three kinds of states
(see Fig. B.3):
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• the “main” states (controlled by Player 2), which form the grid. Each
state in this main part has a right neighbour and a top neighbour, which
we assume we can identify: more precisely, we make use of two atomic
propositions v1 and v2 which alternate along the horizontal lines of the
grid. The right successor of a v1-state is labeled with v2, while its top
successor is labeled with v1;

• the “tile” states, labeled with one item of T (seen as atomic propositions).
Each tile state only has outgoing transition(s) to a tile state labeled
with the same tile;

• the “choice” states, which appear between “main” states and “tile”
states: there is one choice state associated with each main state, and
each choice state has a transition to each tile state. Choice states are
controlled by Player 1.

m
m

m

m
m

m

m
m

m

m

c

m

c

m

c
m

c

m

c

m

c
m

c

m

c

m

c

Fig. B.3: The turn-based game encoding the tiling problem

Assuming that we have such a structure, a tiling of the grid corresponds to a
memoryless strategy of Player 1 (who only plays in the “choice” states). Once
such a memoryless strategy for Player 1 has been selected, that it corresponds
to a valid tiling can be expressed easily: for instance, in any cell of the grid
(assumed to be labeled with v1), there must exist a pair of tiles (t1, t2) ∈ H
such that v1 ∧ 〈·2·〉0 X X t1 ∧ 〈·2·〉0 X (v2 ∧X X t2). This would be written as
follows:

〈·1·〉0 G




v1⇒
∨

(t1,t2)∈H
〈·2·〉0 X X t1 ∧ 〈·2·〉0 X (v2 ∧X X t2)

∧
v2⇒

∨

(t1,t2)∈H
〈·2·〉0 X X t1 ∧ 〈·2·〉0 X (v1 ∧X X t2)



.

42



The same can be imposed for vertical constraints, and for imposing a fairness
constraint on the base line (under the same memoryless strategy for Player 1).

α

β

to c-state

Fig. B.4: The cell gadget

v1 α

β

v1 α

β

v2 α

β

v2 α

β

v1 α

β

v1 α

β

Fig. B.5: Several cells forming (part of)
a grid

It remains to build a formula characterising an infinite grid. This requires
a slight departure from the above description of the grid: each main state
will in fact be a gadget composed of four states, as depicted on Fig. B.4.
The first state of each gadget will give the opportunity to Player 1 to color
the state with either α or β. This will be used to enforce “confluence” of
several transitions to the same state (which we need to express that the two
successors of any cell of the grid share a common successor).

We now start writing our formula, which we present as a conjunction of
several subformulas. We require that the main states be labeled with m, the
choice states be labeled with c, and the tile states be labeled with the names
of the tiles. We let AP′ = {m, c}∪ T and AP = AP′ ∪{v1, v2, α, β, , }. The
first part of the formula reads a follows (where universal path quantification
can be encoded, as long as the context is empty, using 〈·∅·〉0 ):

A(mW c)∧ AG


 ∨

p∈AP′
p∧

∧

p′∈AP′\{p}
¬ p′


∧ AG ( ⇔¬ )∧

AG




c⇒
(
∧
∧

t∈T
〈·1·〉0 X t∧ AX

(∨

t∈T
AG t

))

∧
⇒
Ñ
∧

p∈AP
( EX p⇔〈·1·〉0 X p)

é

∧
⇒
Ñ
∧

p∈AP
( EX p⇔〈·2·〉0 X p)

é




(B.1)
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This formula enforces that each state is labeled with exactly one proposition
from AP′. It also enforces that any path will wander through the main part
until it possibly goes to a choice state (this is expressed as A(mW c), where
mW c means Gm∨mU c, and can be expressed a negated-until formula).
Finally, the second part of the formula enforces the witnessing structures to
be turn-based.

Now we have to impose that the m-part has the shape of a grid: intuitively,
each cell has three successors: one “to the right” and one “to the top” in the
main part of the grid, and one c-state which we will use for associating a tile
with this cell. For technical reasons, the situation is not that simple, and each
cell is actually represented by the gadget depicted on Fig. B.4. Each state of
the gadget is labeled with m. We constrain the form of the cells as follows:

AG




m⇒((�∧¬α∧¬ β)∨( ∧¬(α∧ β)))
∧ Ä

(m∧ )⇒(v1⇔¬ v2)
ä
∧
Ä
(v1 ∨ v2)⇒(m∧ )

ä
∧

(m∧ )⇒
î
AX

Ä
m∧ ∧(α∨ β)∧ AX (m∧ ∧¬α∧¬ β)

ä
∧

〈·1·〉0 Xα∧ 〈·1·〉0 X β
ó




(B.2)
This says that there are four types of states in each cell, and specifies the
possible transitions within such cells. We now express constraints on the
transitions leaving a cell:

AG
ï
( EX c∨ EX v1 ∨ EX v2)⇒(m∧ ∧¬α∧¬ β)

ò
∧

AG
ï
(m∧ ∧¬α∧¬ β)⇒( EX c∧ EX v1 ∧ EX v2 ∧ AX (c∨ v1 ∨ v2)

ò

(B.3)

It remains to enforce that the successor of the α and β states are the same.
This is obtained by the following formula:

AG
î
(m∧ )⇒ [·2·]0

Ä
〈·∅·〉0 X 3(c∨ v1)∨ 〈·∅·〉0 X 3(c∨ v2)

äó
(B.4)

Indeed, assume that some cell has two different “final” states; then there
would exist a strategy for Player 2 (consisting in playing differently in those
two final states) that would violate Formula (B.4). Hence each cell as a single
final state.

We now impose that each cell in the main part has exactly two m-
successors, and these two m-successors have an m-successor in common. For
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the former property, Formula (B.3) already imposes that each cell has at least
two m-successors (one labeled with v1 and one with v2). We enforce that
there cannot be more than two:

AG
ï
(m∧ )⇒ [·1·]0

îÄ
〈·2·〉0 X 3(v1 ∧Xα)∧ 〈·2·〉0 X 3(v2 ∧Xα)

ä
⇒

[·2·]0 〈·∅·〉0 X 3Xα
óò
. (B.5)

Notice that [·2·]0 〈·∅·〉0 ϕ means that ϕ has to hold along any outcome of any
memoryless strategy of Player 2. Assume that a cell has three (or more)
successor cells. Then at least one is labeled with v1 and at least one is labeled
with v2. There is a strategy for Player 1 to color one v1-successor cell and
one v2-successor cell with α, and a third successor cell with β, thus violating
Formula (B.5) (as Player 2 has a strategy to reach a successor cell colored
with β)

For the latter property (the two successors have a common successor),
we add the following formula (as well as its v2-counterpart):

[·1·]0 〈·∅·〉0 G
ï
(m∧ ∧ v1)⇒

Åî
〈·2·〉0 X 3(v1 ∧ [·2·]0 X 3Xα)

ó
⇒

î
〈·2·〉0 X 3(¬ v1 ∧X 3(¬ v1 ∧Xα))

óãò
(B.6)

In this formula, the initial (universal) quantification over strategies of Player 1
fixes a color for each cell. The formula claims that whatever this choice, if we
are in some v1-cell and can move to another v1-cell whose two successors have
color α, then also we can move to a v2-cell having one α successor (which we
require to be a v2-cell). As this must hold for any coloring, both successors
of the original v1-cell share a common successor. Notice that this does not
prevent the grid to be collapsed: this would just indicate that there is a
regular infinite tiling.

We conclude by requiring that the initial state be in a square state of a
cell in the main part.
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