
Model-Checking Timed ATL for
Durational Concurrent Game Structures?

F. Laroussinie, N. Markey, and G. Oreiby??

Lab. Spécification & Vérification
ENS de Cachan & CNRS UMR 8643

61, av. Pdt. Wilson, 94235 Cachan Cedex, France
email: {fl,markey,oreiby}@lsv.ens-cachan.fr

Abstract. We extend the framework of ATL model-checking to “simply
timed” concurrent game structures, i.e., multi-agent structures where
each transition carry an integral duration (or interval thereof). While
the case of single durations is easily handled from the semantics point of
view, intervals of durations raise several interesting questions. Moreover
subtle algorithmic problems have to be handled when dealing with model
checking. We propose a semantics for which we develop efficient (PTIME)
algorithms for timed ATL without equality constraints, while the general
case is shown to be EXPTIME-complete.

Introduction

Verification and model-checking. The development of embedded reactive systems
is impressive (both in terms of their number and of their complexity), and their
formal verification can’t be ignored. Model-checking [12, 7] is a well-established
technique for verifying that (an automaton representing) such a system satisfies a
given property. Following [21, 11, 22], temporal logics have been used for specify-
ing those properties: Linear time temporal logics (e.g. LTL) expresses properties
on each single execution of the model, while branching time temporal logics (e.g.
CTL) deal with the computation tree of the model.

The model-checking technique has been extended to also handle quantitative
measurement of time. In that framework, automata are equipped with real-
valued clocks [2], and temporal logics are extended to also express quantitative
constraints on the flow of time [1]. Again, this framework is now well understood,
but the algorithms are noticeably more complex.

In order to lower the complexity of those algorithms, less expressive mod-
els and logics have been developed [14, 9, 17]. Those models are less expressive,
but can be handled very efficiently, especially through symbolic model-checking
algorithms using BDD techniques [8, 20, 9, 19].

? This work is partly supported by ACI Sécurité & Informatique CORTOS, a program
of the French ministry of research.

?? This author is supported by a PhD grant from Région Ile-de-France.

Verification and control. In the late 80’s, a new framework has been developed
in the field of verification: control (and controller synthesis) [23]. The goal is now
to build a controller that should prevent the (model of the) system from having
unwanted behaviors.

This problem is closely related to (multi-player) games: solving such a game
amounts to compute a strategy (if it exists) for a player so that he surely reaches
a state where he is declared the winner. In that case, the underlying model is
not a simple automaton, but rather a “concurrent game structure” (CGSs) [5],
in which several agents concurrently decide on the behavior of the system. In
order to reason with strategies, a new flavor of temporal logics has been defined:
alternating time temporal logics (ATL) [4, 5]. This logic allows to express, for
instance, that a coalition of agents has a strategy in order to always reach a win-
ning location, or to always avoid reaching a bad locations. When the concurrent
game structure is defined explicitly, ATL enjoys polynomial-time model-checking
algorithms.

Our contribution. The goal of this paper is to extend the framework of ATL to
(simply) timed systems. To that aim, we introduce durational CGSs (DCGSs), in
which each transition is labeled with an interval of possible (integer) durations.
Those durations are assumed to be atomic, i.e., there are no intermediate state,
and the complete duration elapses in one step.

We propose a semantics for DCGSs where we assume that each transition is
associated with an extra agent, who is in charge of selecting the duration of that
transition within the interval it is labeled with. We believe that this semantics is
really interesting, as it allows to finely select which durations can be controlled by
a coalition. Moreover, we show that it still enjoys polynomial-time quantitative
model-checking algorithms in the case when no equality constraint is involved.

Related work. Our discrete-time extension of CGSs to DCGSs is inspired by
that of [17], where efficient quantitative model-checking algorithms are proposed.
Several other extensions of games with time have been proposed in the recent
literature, e.g. [18, 3, 6, 10]. The semantics assumed there uses dense-time where
players choose either to wait for a delay or to fire an action-transition. In [13],
another dense-time semantics is proposed, working (roughly) as follows: each
player chooses a (strictly positive) delay and a transition, and the game follows
the player with the shortest delay. With this semantics, each player can take the
others by surprise.

Those papers only deal with qualitative control objectives. In [24], Schobbens
proposes a quantitative extension of ATL over timed CGSs (with a semantics
of time similar to that of [13]). The resulting logic, ARTL∗, a mixture of ATL
and MITL, is shown decidable.

1 Definitions

1.1 Tight Durational CGS (TDCGS)

We extend the model of CGSs, see [5, 16].

Definition 1. A TDCGS is a 6-tuple A = 〈Loc,Agt,AP, Lab,Mv,Edg〉 where:

• Loc is the (finite) set of locations;
• Agt = {a1, . . . , ak} is a (finite) set of agents (or players);
• AP the set of atomic propositions;
• Lab : Loc → 2AP the labelling function;
• Mv : Loc × Agt → P(N) r {∅} gives the set of possible moves at a given

location for a given agent;
• Edg : Loc×Nk → Loc×N>0 is the transition table, that is a partial function

assigning a successor location and a duration for a move of all agents.

The difference with classical CGSs is that each transition of a TDCGS car-
ries a positive1 integer, representing the duration (or cost) of that transition.
Given a transition Edg(q, c1, . . . , ck) = (q′, t), we use Edg`(q, c1, . . . , ck) (resp.
Edgτ (q, c1, . . . , ck)) to denote the location q′ (resp. the duration t).

The semantics of a TDCGS is similar to that of classical CGSs: a move of
agent a in location q is an integer c such that c ∈ Mv(q, a). Once each agent
ai has selected a move ci ∈ Mv(q, ai), the transition table Edg indicates the
transition to be fired, namely Edg(q, c1, . . . , ck).

Definition 2. An execution of a TDCGS A = 〈Loc,Agt,AP, Lab,Mv,Edg〉 from
a location q0 ∈ Loc is an infinite sequence ρ = (q0, d0) . . . (qi, di) . . . such that:

• d0 = 0;
• for each i, there exists a set of moves ci1, . . . , c

i
k such that

(qi+1, di+1 − di) = Edg(qi, ci1, . . . , c
i
k).

For an execution ρ = (q0, d0) . . . (qi, di) . . ., the integer di is the date when arriv-
ing in qi.

The interesting point with ATL, compared to standard temporal logics, is
that it allows quantifications on strategies of (coalitions of) agents. A coalition
is a subset of the set of agents. Now we introduce the notions of strategy and
outcome:

Definition 3. Let A = 〈Loc,Agt,AP, Lab,Mv,Edg〉 be a TDCGS.

• Let a ∈ Agt. A strategy σa for a is a mapping that associates, with any finite
prefix (q0, d0) . . . (qi, di) of any execution, a possible move for agent a in qi,
i.e. σa((q0, d0) . . . (qi, di)) ∈ Mv(qi, a).

• Let A ⊆ Agt be a coalition. A move for A from a location q is a family
(ca)a∈A : one move for each agent in A. We write Mv(q, A) to represent the
set of all possible moves for A from q. Moreover a strategy σA for A is a
family (σa)a∈A.
We write A for Agt r A. Given a move c ∈ Mv(q, A) and c ∈ Mv(q,A), we
write Edg(q, c · c) for the transition corresponding to these choices.

1 We require in this paper that the durations be non-zero. The case of zero-durations
makes some of our algorithms slightly more difficult, and will be handled in a long
version of this paper.

• Let A ⊆ Agt be a coalition and σA be a strategy for A. An execution ρ =
(q0, d0) . . . (qi, di) . . . is an outcome of σA from q0 if, for any i, writing ci =
σA((q0, d0) . . . (qi, di)), there exists ci ∈ Mv(qi, A) s.t.

(qi+1, di+1 − di) = Edg(qi, c · c).
We denote by OutA(q, σA) the set of all outcomes of σA from q (we omit the
superscript A when it is clear from the context).

Size of a TDCGS. The size |A| of A is the sum of the sizes of Loc and Edg. The
size of Edg is defined as follows: |Edg| =

∑
q∈Loc

∑
c∈Mv(q,Agt)(1+blog(Edgτ (q, c)c).

1.2 Timed ATL (TATL)

Definition 4. The syntax of TATL is defined by the following grammar:

TATL 3 ϕs, ψs ::= > | P | ¬ϕs | ϕs ∨ ψs | 〈〈A〉〉ϕp

ϕp ::= Xϕs | ϕs U∼ζ ψs | ϕs R∼ζ ψs

with P ∈ AP, A ⊆ Agt, ∼ ∈ {<,≤,=,≥, >}, and ζ ∈ N.

We also define the usual shorthands, such as ⊥ def≡ ¬>, 〈〈A〉〉F∼ζ ϕs
def≡

〈〈A〉〉>U∼ζ ϕs, and 〈〈A〉〉G∼ζ ϕs
def≡ 〈〈A〉〉⊥R∼ζ ϕs.

TATL formulae are interpreted over states of TDCGSs. Intuitively, the state-
formula 〈〈A〉〉ϕp holds in q iff there exists a strategy for coalition A in order to
enforce the path-formula ϕp along all the outcomes. Formally:

Definition 5. The following clauses define when a location q (resp. an execu-
tion ρ = (q0, d0)(q1, d1) . . .) of a TDCGS A satisfies a TATL formula ϕs (resp. a
path-formula ϕp), written q |=A ϕs (resp. ρ |=A ϕp), by induction over the
formula (semantics of boolean operators and atomic propositions are omitted):

q |=A 〈〈A〉〉ϕp ⇔ ∃σA. ∀ρ ∈ Out(q, σA). ρ |=A ϕp

ρ |=A Xϕs ⇔ q1 |=A ϕs

ρ |=A ϕs U∼ζ ψs ⇔ ∃i ∈ N. qi |=A ψs, di ∼ ζ

and qj |=A ϕs for any 0 ≤ j < i

ρ |=A ϕs R∼ζ ψs ⇔ ρ |=A ¬(¬ϕs U∼ζ ¬ψs)

When A is clear from the context, we just write q |= ϕ. Note that, contrary
to usual definitions of ATL [4, 5], we include the “release” modality R, as we
proved in [16] that modality 〈〈A〉〉R cannot be expressed using only 〈〈A〉〉U and
〈〈A〉〉G. Intuitively, ϕs R∼ζ ψs requires that ψs must hold when the condition
“∼ ζ” is fulfilled, but this global requirement is released as soon as ϕs holds.
Formally:

ρ |=A ϕs R∼ζ ψs ⇔ ∀i ∈ N. (di ∼ ζ ⇒ qi |=A ψs)
or ∃j < i. qj |=A ϕs.

We use TATL≤,≥ to denote the fragment of TATL where subscripts “= ζ” are
not allowed in timing constraints for U and R.

2 Model checking TATL

The complexity of model-checking an ATL formula over a CGS has been shown
to be linear in both the size of the structure and the size of the formula [5]. On
the other hand, TCTL model checking on DKSs is PTIME-complete when timing
constraints contain no equality, while it is ∆P

2 -complete otherwise [17].
We present in this section our model-checking algorithm for TATL over TD-

CGSs. We explain how to handle modalities U∼ζ and R∼ζ . We then gather up
those algorithms in a global labeling algorithm, which is PTIME-complete when
no equality constraint is involved, and EXPTIME-complete otherwise.

2.1 Modalities U≤ζ and R≤ζ

First we consider the case of formula 〈〈A〉〉ϕ1 U≤ζ ϕ2, that is, when the coali-
tion A aims at reaching ϕ2 within ζ time units (and verifying ϕ1 in the interme-
diate states). We assume that states have already been labeled with ϕ1 and ϕ2,
which can therefore be seen as atomic propositions. We have:

Lemma 6. Let A be a TDCGS, and ϕ = 〈〈A〉〉P1 U≤ζ P2 be a TATL formula
(with P1, P2 ∈ AP). Then we can compute in time O(|Loc| · |Edg|) the set of
locations of A where ϕ holds.

Proof. For this proof, we define the extra modality U≤i

≤n, with the following
semantics:

ρ |=A P1 U≤i

≤n P2 ⇔ ∃j ≤ i. qj |=A P1, dj ≤ n,

and qk |=A P2 for any 0 ≤ k < j

This modality requires that the right-hand side formula be satisfied within at
most i steps. It is clear that, for any n ∈ N,

q |= 〈〈A〉〉P1 U≤n P2 ⇔ q |= 〈〈A〉〉P1 U≤|Loc|
≤n P2. (1)

Indeed, if all the outcomes of a strategy satisfy P1 U≤n P2, it is possible to adapt
that strategy so that each location is visited at most once along each outcome.

We now define functions vi(q), for i ∈ N and q ∈ Loc, by the following
recursive rules:{

if q |= P2 : v0(q) = 0
if q |= ¬P2 : v0(q) = +∞
if q |= P2 : vi+1(q) = 0
if q |= ¬P1 ∧ ¬P2 : vi+1(q) = +∞
otherwise : vi+1(q) = min

c∈Mv(q,A)
max

c∈Mv(q,A)

(
Edgτ (q, c · c) + vi(Edg`(q, c · c))

)
Our proof now amounts to showing the following lemma:

Lemma 7. For any i ∈ N, for any n ∈ N and any q ∈ Loc, we have:

n ≥ vi(q) ⇔ q |= 〈〈A〉〉P1 U≤i

≤n P2.

The proof is by induction on i: The base case is straightforward, as well as the
induction step when q |= P2 and when q |= ¬P1 ∧ ¬P2. We thus only focus on
the last case, when q |= P1 ∧ ¬P2: Assume the induction hypothesis holds up
to level i. If n ≥ vi+1(q), then (by definition of vi+1(q)) there exists a move
c ∈ Mv(q, A) such that, for any move c ∈ Mv(q,A), we have

n ≥ Edgτ (q, c · c) + vi(Edg`(q, c · c)).

By i.h., for any c ∈ Mv(q,A), we have

Edg`(q, c · c) |= 〈〈A〉〉P1 U≤i

≤n−Edgτ (q,c·c) P2.

The strategy σA witnessing that property, combined with the move c ∈ Mv(q, A),
yields a strategy for enforcing P1 U≤i+1

≤n P2 from q, as required.
The converse implication follows the same lines: given a strategy σA enforcing

P1 U≤i+1
≤n P2 from q, we let c = σA(q), and deduce that n satisfies the same

inequalities as above.
From Equation (1), it suffices to compute v|Loc|(q), for each q ∈ Loc, to

deduce the set of locations where ϕ holds. This algorithm thus runs in time
O(|Loc| · |Edg|). ut

The release modality is handled similarly: we define v′i(q) as follows:{
if q |= ¬P2 : v′0(q) = 0
if q |= P2 : v′0(q) = +∞
if q |= ¬P2 : v′i+1(q) = 0
if q |= P1 ∧ P2 : v′i+1(q) = +∞
otherwise : v′i+1(q) = max

c∈Mv(q,A)
min

c∈Mv(q,A)

(
Edgτ (q, c · c) + v′i(Edg`(q, c · c))

)
and R≤i

≤n as the dual of U≤i

≤n. Then an equivalence similar to Equation (1) holds,
and we have the following lemma (proof omitted):

Lemma 8. For any i ∈ N, for any n ∈ N and any q ∈ Loc, we have:

n < v′i(q) ⇔ q |= 〈〈A〉〉P1 R≤i

≤n P2.

Example 1. Consider the example depicted on Figure 1. On that TDCGS, the
duration is the integer written in the middle of each transition. The tuples that
are written close to the source location indicates the choices of the agents for
firing that transition (for instance, 〈2, 1〉 means that player a1 chooses move 2
and player a2 chooses move 1). They are omitted when each agent has a single
choice.

The valuations of atomic propositions are given in the table on the right of
the figure. This table shows the computation of vi(q), for each location. This
computation converges in three steps. For instance, that v3(A) = 21 indicates
that A |= 〈〈a1〉〉P1 U≤21 P2 holds, but A 6|= 〈〈a1〉〉P1 U≤20 P2.

A B

C DE

1

1

1〈1,1〉

101

〈1,2〉

1

〈2,1〉
1

〈2,2〉

1
〈1,1〉

20
〈1,2〉

vi(q) 0 1 2 3

A (P1, ¬P2) +∞ +∞ 21 21

B (P1, P2) 0 0 0 0

C (P1, ¬P2) +∞ 20 20 20

D (¬P1, P2) 0 0 0 0

E (P1, ¬P2) +∞ +∞ +∞ +∞

Fig. 1. The algorithm for U≤ζ .

2.2 Modalities U≥ζ and R≥ζ

We now consider formula 〈〈A〉〉ϕ1 U≥ζ ϕ2 expressing that coalition A has a strat-
egy for staying at least ζ time units in ϕ1-states before reaching ϕ2. We have:

Lemma 9. Let A be a TDCGS, and ϕ = 〈〈A〉〉P1 U≥ζ P2 be a TATL formula
(with P1, P2 ∈ AP). Then we can compute in time O(|Loc| · |Edg|) the set of
locations of A where ϕ holds.

Proof. The idea is similar to that of the proof of Lemma 6. We introduce the
following modality:

ρ |=A pU≥i q ⇔ ∃j ≥ i. qj |=A q

and qk |=A p for any 0 ≤ k < j

We then compute a sequence of values, defined by the following recursive
rules: if q |= ¬ 〈〈A〉〉P1 UP2 : v0(q) = −∞

if q |= 〈〈A〉〉P1 UP2 ∧ ¬ 〈〈A〉〉P1 U≥1 P2 : v0(q) = 0
if q |= 〈〈A〉〉P1 U≥1 P2 : v0(q) = +∞
if q |= ¬ 〈〈A〉〉P1 UP2 : vi+1(q) = −∞
if q |= 〈〈A〉〉P1 UP2 ∧ ¬ 〈〈A〉〉P1 U≥1 P2 : vi+1(q) = 0
if q |= 〈〈A〉〉P1 U≥1 P2 :

vi+1(q) = max
c∈Mv(q,A)

min
c∈Mv(q,A)

(
Edgτ (q, c · c) + vi(Edg`(q, c · c))

)
This computation requires that we first compute the set of locations satisfy-

ing 〈〈A〉〉P1 UP2 and those satisfying 〈〈A〉〉P1 U≥1 P2. This can be done in time
O(|Edg|) using standard ATL model-checking algorithms. Thus, computing vi(q)
for each q ∈ Loc and each i ≤ |Loc| can be achieved in time O(|Loc| · |Edg|).

Those values satisfy the following lemma:

Lemma 10. For any i ∈ N, for any n ∈ N and q ∈ Loc, we have

n ≤ vi(q) ⇔ q |= 〈〈A〉〉
[
(P1 U≥n P2) ∨ (P1 U≥i+1 P2)

]
.

This will conclude the proof of Lemma 9, thanks to the following equivalence:

q |= 〈〈A〉〉P1 U≥n P2 ⇔ q |= 〈〈A〉〉
[
(P1 U≥n P2) ∨ (P1 U≥|Loc|+1 P2)

]
.

This equivalence relies on the fact that all durations are strictly positive: if some
outcome of the strategy satisfies P1 U≥|Loc|+1 P2, then one location is visited twice,
and it is possible to adapt the strategy so that it is visited n times (thus with
total duration larger than n) before visiting P2.

We now prove Lemma 10: we omit the easy cases, and only focus on the
inductive step in the case when q |= 〈〈A〉〉P1 U≥1 P2. In particular, we have
q |= P1. First, pick some n ≤ vi+1(q), assuming the result holds up to step i. By
definition of vi+1(q), there exists c ∈ Mv(q, A) such that, for any c ∈ Mv(q,A),
we have

n ≤ Edgτ (q, c · c) + vi(Edg`(q, c · c)).

From the induction hypothesis, this means that

Edg`(q, c · c) |= 〈〈A〉〉
[
(P1 U≥n−Edgτ (q,c·c) P2) ∨ (P1 U≥i+1 P2)

]
.

The strategy witnessing that property, combined with move c ∈ Mv(q, A), yields
a strategy witnessing that

q |= 〈〈A〉〉
[
(P1 U≥n P2) ∨ (P1 U≥i+2 P2)

]
.

The converse implication follows the same (reversed) steps. ut

We omit the case of the release modality, which is very similar.

Example 2. In Figure 2, we apply that algorithm to the same TDCGS as be-
fore. This table shows the computation of vi(q), for each location. This com-

A B

C DE

1

1

1〈1,1〉

101

〈1,2〉

1

〈2,1〉
1

〈2,2〉

1
〈1,1〉

20
〈1,2〉

vi(q) 0 1 2 3

A (P1, ¬P2) +∞ +∞ 2 2

B (P1, P2) +∞ 10 10 10

C (P1, ¬P2) +∞ 1 1 1

D (¬P1, P2) 0 0 0 0

E (P1, ¬P2) −∞ −∞ −∞ −∞

Fig. 2. The algorithm for U≥ζ .

putation converges in three steps. For instance, that v3(A) = 2 indicates that
A |= 〈〈a1〉〉P1 U≥2 P2 holds, but A 6|= 〈〈a1〉〉P1 U≥3 P2.

2.3 Modalities U=ζ and R=ζ

Lemma 11. Let A be a TDCGS, and ϕ = 〈〈A〉〉P1 U=ζ P2 be a TATL formula.
We can compute in time O(ζ · |Edg|) the set of locations of A where ϕ holds.

Since ζ is encoded in binary, this algorithm runs in time exponential in the
size of the formula.

Proof. We use dynamical programming, and recursively build a table T : Loc×
{0, . . . , ζ} → {>,⊥} such that

T (q, i) = > ⇔ q |=A 〈〈A〉〉ϕ1 U=i ϕ2. (2)

When i = 0, letting T (q, 0) = > if, and only if, q |= P2 clearly fulfills
equation (2) (since all durations are non-zero). Now, pick i < ζ, and assume all
the T (q, j) have been computed for j ≤ i. Then

T (q, i+ 1) = > ⇔ q |= P1 and ∃c ∈ Mv(q, A). ∀c ∈ Mv(q,A).
Edg(q, c · c) = (q′, t) with T (q′, i− t) = >.

This computation can be done since all durations are non-zero. It is achieved
by running through the transition table, and is thus in time linear in the size
of Edg. It is clear that equation (2) is preserved by this construction, so that in
the end, q |= ϕ iff T (q, ζ) = >. This algorithm runs in time O(ζ × |Edg|). ut

A similar algorithm can be defined for handling 〈〈A〉〉ϕ1 R=ζ ϕ2: the table
T ′(q, i) is initialized in the same way (i.e., T ′(q, 0) = > ⇔ q |= P2), and each
step is computed according to the following rule:

T ′(q, i) = > ⇔ q |= P1 ∨ ∃c ∈ Mv(q, A). ∀c ∈ Mv(q,A).
Edg(q, c · c) = (q′, t) with T ′(q′, i− t) = >.

2.4 Results for TATL and TATL≤,≥

From Lemmas 6, 9 and 11, we can deduce procedures to handle all modalities
and this gives the following result:

Theorem 12. Model checking a TATL formula ϕ over a TDCGS A can be
achieved in time O(|A|2 · |ϕ| · ζmax), where ζmax is the maximal constant ap-
pearing in ϕ. It is thus in EXPTIME.

Note that this algorithm is polynomial in the size of the TDCGS, and is
exponential only because of the binary encoding of the constants that appear in
the formula. This complexity blow-up cannot be avoided:

Theorem 13. Model-checking TATL over TDCGSs is EXPTIME-complete.

Proof. This result is based on the fact that deciding the countdown games is
EXPTIME-hard [15]. A countdown game is a two-player game. It consists of a
weighted graph (V,E) where V is the set of vertices and E ⊆ V × N× V is the
weighted transition relation. A configuration of a countdown game (V,E) is a
pair (v, C) ∈ V × N. At every turn, Player 1 chooses, from the current config-
uration (v, C), a duration 1 ≤ d ≤ C s.t. (1) 0 < d ≤ C and (2) there exist
at least one transition (v, d, v′) ∈ E. Then Player 2 chooses one of these tran-
sitions (issued from v and whose duration is d) and then the new configuration
is (v′, C−d). Any configuration (v, 0) is terminal and it is a winning configuration
for Player 1. Any configuration (v, C) s.t. (1) C > 0 and (2) there is no transition
(v, d,−) with d ≤ C is terminal and it is a winning configuration for Player 2.
Deciding whether Player 1 has a wining strategy for a configuration (v, C) is an
EXPTIME-hard problem [15].

We can easily build a TDCGSA = 〈Loc,Agt,AP, Lab,Mv,Edg〉 corresponding
to the countdown game (V,E). We let Agt = {a1, a2}. The set of locations
Loc ⊆ V ∪ V × N is defined as follows: v ∈ Loc if v ∈ V , and (v, t) ∈ Loc if
there exists a transition (v, t,−) in E. This is a turn-based game: agent a1 plays
(i.e., has several possible moves) in locations v, and agent a2 plays in locations
(v, t). From v, the moves of agent a1 are the weights t s.t. there exist some
transitions (v, t,−) in E, and the moves of agent a2 from (v, t) are the possible
successors v′ s.t. (v, t, v′) ∈ E. The transition table is defined in a natural way
and the duration associated with transitions leading from v to (v, t) or from (v, t)
to v′ is t. Then deciding whether the configuration (v, C) with C ∈ N is winning
for Player 1 reduces to a model checking problem: v |=A 〈〈a1〉〉F=2C >. ut

Still, we can have efficient algorithm if we restrict to the fragment TATL≤,≥:

Theorem 14. Model-checking a TATL≤,≥ formula ϕ over a TDCGS A can be
achieved in time O(|A|2 · |ϕ|), and is thus in PTIME.

This is an immediate consequence of Lemmas 6 and 9. PTIME-hardness fol-
lows from that of CTL model-checking over Kripke structures. Thus:

Corollary 15. Model checking TATL≤,≥ over TDCGSs is PTIME-complete.

2.5 Unitary TDCGSs

Unitary TDCGSs are TDCGSs where all durations equal 1. Intuitively, unitary
TDCGSs are easier to handle because it is possible to verify ϕ = 〈〈A〉〉ϕ1 U=c ϕ2

by dichotomy, i.e., by verifying 〈〈A〉〉ϕ1 U=bc/2c (〈〈A〉〉ϕ1 U=c−bc/2c ϕ2), and so
on [14]. That way, model-checking an U=ζ formula can be achieved in time
O(log(ζ) · |A|). In the end:

Theorem 16. Model checking a TATL formula ϕ over a unitary TDCGS A can
be achieved in time O(|A|2 · |ϕ|), and is thus PTIME-complete.

3 Durational CGSs

We now propose an extension of the models above that now allows transitions
labeled with intervals (instead of a single integer). That way, agents don’t know in
advance the duration of the transitions. Special agents, one per transition, decide
for the durations. This gives a very expressive framework, in which coalitions
can mix “classical” agents with “time” agents.

3.1 Definition

We write I for the set of intervals with bounds in N>0 ∪ {+∞}.

Definition 17. A durational CGS (DCGS) is a 6-tuple S = 〈Loc,Agt,AP, Lab,
Mv,Edg〉 such that:

• Loc, Agt, AP, Lab and Mv have the same characteristics as in Definition 1;
• Edg : Loc×Nk → Loc× I is the transition table, associating with each tran-

sition an interval containing its possible durations.

The size of the transition table is again the space needed to write it in binary
notation, and the size of a DCGS is |Loc| + |Edg|. Again, we use Edgτ (q, c) to
denote the interval of durations of the transition Edg(q, c), and Edg`(q, c) to
denote its location.

While the syntax is not very different to that of TDCGSs, the semantics
is rather more involved: the crucial point is that the agents must select the
transition the system will fire, but they must also choose the duration of that
transition within the interval it’s labeled with. This last part is achieved by
special “time-agents”: we consider one time-agent taq,c per location q and move
c in Mv(q,Agt). Formally the semantics of S is defined as a TDCGS A[S] =
〈Loc,Agt′,AP, Lab,Mv′,Edg′〉 with:

• Agt′ = Agt ∪ {taq,c | q ∈ Loc and c ∈ Mv(q,Agt)},
• Mv′(q, a) = Mv(q, a) for any a ∈ Agt; Mv′(q, taq,c) = Edgτ (q, c) for any

taq,c ∈ Agt′, and Mv′(q, taq′,c) = {0} for any taq,c ∈ Agt′ with q′ 6= q,
• Edg′(q, c, tq0,c0 , . . . , tqn,cm) = (q′, t) iff c ∈ Mv′(q,Agt) for any i, t = tq,c and
tq,c ∈ Mv′(q, taq,c), and tq′,c′ = 0 when q′ 6= q or c 6= c′.

As for TDCGSs, we use the notions of coalition of agents (including the
time-agents), strategy and outcome.

Note that the transition table of the corresponding TDCGS A[S] is infinite
when there exist infinite intervals in the definition of S. And when it is finite,
|Edg′| is bounded by |Edg| · bM where bM is the maximal constant occurring in
the intervals of durations in S: in Edg′, we replace each entry (q, c) of Edg by
(b − a) + 1 entries when Edgτ (q, c) = [a; b]. Thus the size of A[S] is potentially
exponential in |S| (due to the binary encoding). Note that in every entry of Edg′,
only one time-agent may have more than one possible move.

Moreover time agents can be used in TATL modalities in order to express the
existence of strategies for coalitions that may control the duration of a subset

S: A

B

[1, 3]

〈1,1〉

[1, 3]

〈1,1〉

A[S]: A B

1
〈1,1,1,0〉

2
〈1,1,2,0〉

3〈1,1,3,0〉

1
〈1,1,0,1〉2 〈1,1,0,2〉

3 〈1,1,0,3〉

Fig. 3. A DCGS for the simplified Nim game, and its associated TDCGS.

of transitions. Given a DCGS S, a location q, and a TATL formula ϕ, we write
q |=S ϕ when q |=A[S] ϕ. We might omit the subscript if it raises no ambiguity.

Example 3. We illustrate our models by a simple example: the simplified Nim
game. In that game, a set of N matches are aligned on a table, and each player,
in turn, picks between 1 and 3 matches. The players who takes the last match
is declared the winner. This game can easily be encoded as the DCGS (where
“durations” are in fact the number of matches taken by the players) depicted on
the left of Figure 3. Player A wins iff formula 〈〈A, tA〉〉F=N B holds.

Time agents. The motivation for using time-agents is that the time elapsing
should not be controlled by the same player along an execution. Depending on
the state or the transition, it is convenient to be able to specify who decides
the duration of an event. Note that assigning one time-agent per transition is
more general than assigning one time-agent per location: indeed, in the former
approach, a time-agent taq (for controlling the duration of all the transitions
issued from q) can be easily simulated by the coalition {taq,c1 , . . . , taq,cm} con-
taining all the time-agents of the transitions leaving q.

3.2 Model checking TATL≤,≥

When verifying TATL formulae containing modalities with timing constraints of
the form “≤ c” or “≥ c”, we do not need to consider all the transitions of A[S].
We can restrict the analysis to an abstraction of A[S]:

Definition 18. Let S = 〈Loc,Agt,AP, Lab,Mv,Edg〉 be a DCGS and let A[S] =
〈Loc,Agt′,AP, Lab,Mv′,Edg′〉 be the TDCGS corresponding to the semantics of S.
Given an integer C, we define the C-abstraction of S as the TDCGS A[S]C =
〈Loc,Agt′,AP, Lab,Mv′′,Edg′′〉 with:

• Mv′′(q, taq,c) is {a, b} (resp. {a;C+1}) if Edgτ (q, c) = [a, b] (resp. Edgτ (q, c) =
[a,+∞)); and Mv′′ coincides with Mv′ for other cases (a ∈ Agt or taq′,c with
q′ 6= q).

• Edg′′ is defined as Edg′ but with Mv′′ instead of Mv′.

In the TDCGS A[S]C , we replace the set of transitions corresponding to all
durations in an interval λ by two transitions: a short one —the left-end value

of λ— and a long one: either the right-end value of λ if λ is finite, or C + 1 (or
the left-end of λ if C + 1 /∈ λ). Indeed, an open interval is interesting for the
truth value of some properties because it may allow arbitrary long durations.
But delaying for C+1 t.u. is always enough when considering TATL≤,≥ formulae
with constants less than C:

Lemma 19. Let S be the DCGS and C be an integer. For any ζ ≤ C and
q ∈ Loc, we have:

q |=A[S] 〈〈A〉〉P1 U≤ζ P2 ⇔ q |=A[S]C 〈〈A〉〉P1 U≤ζ P2 (3)
q |=A[S] 〈〈A〉〉P1 U≥ζ P2 ⇔ q |=A[S]C 〈〈A〉〉P1 U≥ζ P2 (4)
q |=A[S] 〈〈A〉〉P1 R≤ζ P2 ⇔ q |=A[S]C 〈〈A〉〉P1 R≤ζ P2 (5)
q |=A[S] 〈〈A〉〉P1 R≥ζ P2 ⇔ q |=A[S]C 〈〈A〉〉P1 R≥ζ P2 (6)

Proof (sketch). There are more behaviors in A[S] than in A[S]C , but these
additional executions do not change the truth value of TATL≤,≥ formulae.

Indeed let ρ = (q0, d0) . . . (qi, di) . . . be an execution in A[S] and let cai
(resp. cti) be the i+1-st move of the agents Agt (resp. the time-agents) along ρ 2.
We can change the move of the agent taqi,ci and obtain another run ρ′ with the
same prefix and the same suffix as ρ: the duration spent in qi has changed (and
thus the global dates of actions) but not the time spent in other locations. This
property allows to make local changes on delays without changing the sequence
of visited states.

Consider a strategy σA for the coalition A in A[S] to ensure ψ = P1 U≤ζ P2.
From σA, we can build a strategy σ′A ensuring ψ in A[S]C . Indeed the only
changes we have to make are for the moves of time-agents when, in q with a
move c for Agt, σA requires to wait for tq,c while tq,c is not in the restricted
set of moves of A[S]C (i.e. tq,c 6∈ Mv′′(q, taq,c)). In that case, the strategy σ′A
can propose the minimal duration in Mv′′(q, taq,c): the ending state satisfying ψ
will be reached sooner than along ρ and then ψ will be true. If the formula to
be verified was U≥c then the maximal duration will be enough to ensure the
formula. The same holds for the release operators.

Now consider a strategy σ′A for the coalition A in A[S]C to ensure ψ =
P1 U≤ζ P2. This strategy can be completed for ensuring ψ in the full TDCGS.
Consider a finite execution ρ in A[S], we can define a corresponding execution
ρ̄ in A[S]C where any move of time-agent taq,c from the location q is either
left unchanged if taq,c ∈ A —this is an “A-controllable” time-agent and having
applied σA from the beginning of the execution ensures that its move is in
A[S]C—, or replaced by the maximal duration in Mv′′(q, taq,c) if taq,c is not an
A-controllable time-agent. Then it is sufficient to define σA(ρ) as σ′A(ρ̄).

Of course, if we consider ψ = P1 U≤ζ P2, we build ρ̄ differently and consider
minimal durations. ut

Note that the size of A[S]C is bounded by 2 · |S|. Thus:

Theorem 20. Model checking TATL≤,≥ over DCGSs is PTIME-complete.
2 i.e. (qi+1, ti+1 − ti) = Edg′(qi, c

a
i · ct

i) with ca
i · ct

i ∈ Mv(qi, Agt′).

3.3 Model checking TATL

For full TATL, we also reduce the problem to that of finite TDCGSs. Given a
DCGS S and a formula ϕ = 〈〈A〉〉P1 U=ζ P2, we explicitly add one extra agent
per transition, with moves in [a, b] if the corresponding transition is labeled
with [a, b], and moves in [a,max(a, ζ + 1)] if it is labeled with [a,+∞). This
restriction makes the corresponding TDCGS to be finite, its size is in O(|S| ·
max(bM , ζ)) where bM is the maximal integer appearing as a bound of an interval
in S. And applying the algorithm of Theorem 12 to that TDCGS, we get an
EXPTIME algorithm for model-checking ϕ on our DCGS S. The algorithm is
similar for the release modality. This must be repeated a polynomial number of
times for verifying a TATL formula, yielding an algorithm in time O(|S|2 · bM ·
ζmax · |ϕ|) (where ζmax is the largest constant in the formula ϕ), that is, in time
exponential in both the structure and the formula. Note that the blow-up is only
due to the binary notation for the integers. Combined to Theorem 13, this gives:

Theorem 21. Model-checking TATL over DCGSs is EXPTIME-complete.

Conclusion

We have introduced a new family of models of concurrent game structures, in
which transitions carry a (set of) durations. The semantics of those models
involve “time-agents”, i.e., agents that decide the duration of the transition that
will be fired. This allows to break the symmetry in time games, allowing some
coalition to decide the duration of some of the transitions.

We proved that those models enjoy efficient quantitative model-checking al-
gorithms, as soon as no timing constraint = ζ is involved. Equality constraints
yield an exponential blow-up, which we saw cannot be avoided.

As future work, we plan to extend this “time agent”-semantics to concurrent
game structures with clocks, similar to timed automata [2]. As a first step, it
would be nice if we could extend the algorithms presented here to the “contin-
uous” semantics (as defined in [17]) of DCGSs.

References

1. R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time.
Information & Computation, 104(1):2–34, 1993.

2. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. R. Alur and T. A. Henzinger. Modularity for timed and hybrid systems. In Proc.
8th Intl Conf. on Concurrency Theory (CONCUR’97), volume 1243 of LNCS, pages
74–88. Springer, 1997.

4. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
Proc 38th Annual Symp. on Foundations of Computer Science (FOCS’97), pages
100–109. IEEE Comp. Soc. Press, 1997.

5. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49(5):672–713, 2002.

6. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed
automata. In Proc IFAC Symp. on System Structure and Control. Elsevier, 1998.

7. B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and Ph. Sch-
noebelen. Systems and Software Verification. Model-Checking Techniques and
Tools. Springer, 2001.

8. R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys, 24(3):293–318, 1992.

9. S. Campos and E. M. Clarke. Real-time symbolic model checking for discrete time
models. In Theories and Experiences for Real-Time System Development, volume 2
of AMAST Series in Computing, pages 129–145. World Scientific, 1995.

10. F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-
fly algorithms for the analysis of timed games. In M. Abadi and L. de Alfaro,
editors, Proc. 16th Intl Conf. on Concurrency Theory (CONCUR’05), volume 3653
of LNCS, pages 66–80. Springer, Aug. 2005.

11. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic. In Proc. Workshop Logics of Programs 1981,
volume 131 of LNCS, pages 52–71. Springer, 1981.

12. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
13. L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. The

element of surprise in timed games. In R. Amadio and D. Lugiez, editors, Proc.
14th Intl Conf. on Concurrency Theory (CONCUR’03), volume 2761 of LNCS,
pages 142–156. Springer, Aug. 2003.

14. E. A. Emerson, A. K.-L. Mok, A. P. Sistla, and J. Srinivasan. Quantitative tem-
poral reasoning. Real-Time Systems, 4:331–352, 1992.

15. M. Jurdziński. Countdown games, Mar. 2006. Personal communication.
16. F. Laroussinie, N. Markey, and G. Oreiby. Expressiveness and complexity

of ATL. Research Report LSV-06-03, Laboratoire Spécification et Vérification,
ENS Cachan, France, Feb. 2006.

17. F. Laroussinie, N. Markey, and Ph. Schnoebelen. Efficient timed model checking
for discrete-time systems. Theoretical Computer Science, 353(1-3):249–271, 2006.

18. O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers for
timed systems. In Proc. 12th Annual Symp. on Theoretical Aspects of Computer
Science (STACS’95), volume 900 of LNCS, pages 229–242. Springer, 1995.

19. N. Markey and Ph. Schnoebelen. Symbolic model checking of simply-timed sys-
tems. In Y. Lakhnech and S. Yovine, editors, Proc. Joint Conf. Formal Modelling
and Analysis of Timed Systems (FORMATS’04) and Formal Techniques in Real-
Time and Fault-Tolerant Systems (FTRTFT’04), volume 3253 of Lecture Notes in
Computer Science, pages 102–117, Grenoble, France, Sept. 2004. Springer.

20. K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1992.

21. A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp. Foundations
of Computer Science (FOCS’77), pages 46–57. IEEE Comp. Soc. Press, 1977.

22. J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems
in CESAR. In Proc. 5th Intl Symp. on Programming, volume 137 of LNCS, pages
337–351. Springer, 1982.

23. P. J. Ramadge and W. M. Wonham. The control of discrete event systems. Pro-
ceedings of the IEEE, 77(1):81–98, 1989.

24. P.-Y. Schobbens and Y. Bontemps. Real-time concurrent game structures, Dec.
2005. Personal communication.

