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Abstract. ATL is a temporal logic geared towards the specification and
verification of properties in multi-agents systems. It allows to reason on
the existence of strategies for coalitions of agents in order to enforce a
given property. We prove that the standard definition of ATL (built on
modalities “Next”, “Always” and “Until”) has to be completed in order
to express the duals of its modalities: it is necessary to add the modality
“Release”. We then precisely characterize the complexity of ATL model-
checking when the number of agents is not fixed. We prove that it is ∆P

2-
and ∆P

3-complete, depending on the underlying multi-agent model (ATS
and CGS resp.). We also prove that ATL+ model-checking is ∆P

3-complete
over both models, even with a fixed number of agents.

1 Introduction

Model checking. Temporal logics were proposed for the specification of reactive
systems almost thirty years ago [16]. They have been widely studied and suc-
cessfully used in many situations, especially for model checking —the automatic
verification that a finite-state model of a system satisfies a temporal logic spec-
ification. Two flavors of temporal logics have mainly been studied: linear-time
temporal logics, e.g. LTL [16], which expresses properties on the possible execu-
tions of the model; and branching-time temporal logics, such as CTL [7, 17], which
can express requirements on states (which may have several possible futures) of
the model.

Alternating-time temporal logic. Over the last ten years, a new flavor of temporal
logics has been defined: alternating-time temporal logics, e.g. ATL [2, 3]. ATL is
a fundamental logic for verifying properties in synchronous multi-agent systems,
in which several agents can concurrently influence the behavior of the system.
This is particularly interesting for modeling control problems. In that setting, it
is not only interesting to know if something can arrive or will arrive, as can be
expressed in CTL or LTL, but rather if some agent(s) can control the evolution
of the system in order to enforce a given property.

The logic ATL can precisely express this kind of properties, and can for
instance state that “there is a strategy for a coalition A of agents in order to
eventually reach an accepting state, whatever the other agents do”. ATL is an
extension of CTL, its formulae are built on atomic propositions and boolean
combinators, and (following the seminal papers [2, 3]) on modalities 〈〈A〉〉Xϕ
(coalition A has a strategy to immediately enter a state satisfying ϕ), 〈〈A〉〉Gϕ
(coalition A can force the system to always satisfy ϕ) and 〈〈A〉〉ϕUψ (coalition A
has a strategy to enforce ϕUψ).



Multi-agent models. While linear- and branching-time temporal logics are inter-
preted on Kripke structure, alternating-time temporal logics are interpreted on
models that incorporate the notion of multiple agents. Two kinds of synchronous
multi-agent models have been proposed for ATL in the literature. First Alternat-
ing Transition Systems (ATSs)[2] have been defined: in any location of an ATS,
each agent chooses one move, i.e., a subset of locations (the list of possible moves
is defined explicitly in the model) in which he would like the execution to go
to. When all the agents have made their choice, the intersection of their choices
is required to contain one single location, in which the execution enters. In the
second family of models, called Concurrent Game Structures (CGSs) [3], each
of the n agents has a finite number of possible moves (numbered with integers),
and, in each location, an n-ary transition function indicates the state to which
the execution goes.

Our contributions. While in LTL and CTL, the dual of “Until” modality can be
expressed as a disjunction of “always” and “until”, we prove that it is not the
case in ATL. In other words, ATL, as defined in [2, 3], is not as expressive as one
could expect (while it is known that adding the dual of “Until” does not increase
the complexity of the verification problems [5, 10]).

We also precisely characterize the complexity of the model checking problem.
The original works about ATL provide model-checking algorithms in time O(m ·
l), where m is the number of transitions in the model, and l is the size of
the formula [2, 3], thus in PTIME. However, contrary to Kripke structures, the
number of transitions in a CGS or in an ATS is not quadratic in the number
of states [3], and might even be exponential in the number of agents. PTIME-
completeness thus only holds for ATS when the number of agents is bounded,
and it is shown in [12, 13] that the problem is strictly1 harder otherwise, namely
NP-hard on ATS and ΣP

2 -hard on CGSs where the transition function is encoded
as a boolean function. We prove that it is in fact ∆P

2 -complete and ∆P
3 -complete,

resp., correcting wrong algorithms in [12, 13] (the problem lies in the way the
algorithms handle negations). We also show that ATL+ is ∆P

3 -complete on both
ATSs and CGSs, even when the number of agents is fixed, extending a result
of [18]. Finally we study translations between ATS and CGS.

Related works. In [2, 3] ATL has been proposed and defined over ATS and CGS.
In [11] expressiveness issues are considered for ATL∗ and ATL. Complexity of
satisfiability is addressed in [10, 19]. Complexity results about model checking
(for ATL, ATL+, ATL∗) can be found in [3, 18]. Regarding control- and game
theory, many papers have focused on this wide area; we refer to [20] for a survey,
and to its numerous references for a complete overview.

Plan of the paper. Section 2 contains the necessary formal definitions needed in
the sequel. Section 3 explains our expressiveness result, and Section 4 deals with
1 We adopt the classical hypothesis that the polynomial-time hierarchy does not col-

lapse, and that PTIME 6= NP. We refer to [15] for the definitions about complexity
classes, especially about oracle Turing machines and the polynomial-time hierarchy.



the model-checking algorithms. Due to lack of space, some proofs are omitted in
this article, but can be read in the technical appendix at the end of the paper.

2 Definitions

2.1 Concurrent Game Structures and Alternating Transition
Systems

Definition 1. A Concurrent Game Structure (CGS for short) C is a 6-tuple
(Agt, Loc,AP, Lab,Mov,Edg) s.t:

– Agt = {A1, ..., Ak} is a finite set of agents (or players);
– Loc and AP are two finite sets of locations and atomic propositions, resp.;
– Lab : Loc → 2AP is a function labeling each location by the set of atomic

propositions that hold for that location;
– Mov : Loc × Agt → P(N) r {∅} defines the (finite) set of possible moves of

each agent in each location.
– Edg : Loc × Nk → Loc, where k = |Agt|, is a (partial) function defining the

transition table. With each location and each set of moves of the agents, it
associates the resulting location.

The intended behaviour is as follows [3]: in a given location `, each player Ai

chooses one possible move mAi in Mov(`, Ai) and the successor location is given
by Edg(`,mA1 , ...,mAk

). We write Next(`) for the set of all possible successor
locations from `, and Next(`, Aj ,m) for the restriction of Next(`) to locations
reachable from ` when player Aj makes the move m.

In the original works about ATL [2], the logic was interpreted on ATSs, which
are transition systems slightly different from CGSs:

Definition 2. An Alternating Transition System (ATS for short) A is a 5-tuple
(Agt, Loc,AP, Lab,Mov) where:

– Agt, Loc, AP and Lab have the same meaning as in CGSs;
– Mov : Loc×Agt→ P(P(Loc)) associate with each location ` and each agent a

the set of possible moves, each move being a subset of Loc. For each location `,
it is required that, for any Qi ∈ Mov(`, Ai),

⋂
i≤k Qi be a singleton.

The intuition is as follows: in a location `, once all the agents have cho-
sen their moves (i.e., a subset of locations), the execution goes to the (only)
state that belongs to all the sets chosen by the players. Again Next(`) (resp.
Next(`, Aj ,m)) denotes the set of all possible successor locations (resp. the set
of possible successor locations when player Aj chooses the move m).

We prove in Section 4.2 that both models have the same expressiveness
(w.r.t. alternating bisimilarity [4]).



2.2 Strategy, outcomes of a strategy

Let S be a CGS or an ATS. A computation of S is an infinite sequence ρ =
`0`1 · · · of locations such that for any i, `i+1 ∈ Next(`i). We can use the stan-
dard notions of suffix and prefix for these computations; ρ[i] denotes the i-th
location `i. A strategy for a player Ai ∈ Agt is a function fAi

that maps any
finite prefix of a computation to a possible move for Ai

2. A strategy is state-based
(or memoryless) if it only depends on the current state (i.e., fAi(`0 · · · `m) =
fAi(`m)).

A strategy induces a set of computations from ` —called the outcomes of fAi

from ` and denoted3 OutS(`, fAi
)— that player Ai can enforce: `0`1`2 · · · ∈

OutS(`, fAi) iff ` = `0 and for any i we have `i+1 ∈ Next(`i, Ai, fAi(`0 · · · `i)).
Let A ⊆ Agt be a coalition. A strategy for A is a tuple FA containing one
strategy for every player in A: FA = {fAi

|Ai ∈ A}. The outcomes of FA from a
location ` contains the computations enforced by the strategies in FA: `0`1 · · · ∈
OutS(`, FA) s.t. ` = `0 and for any i, `i+1 ∈

⋂
Ai∈A Next(`i, Ai, fAi(`0 · · · `i)).

The set of strategies for A is denoted3 StratS(A). Finally OutS(`, ∅) represents
the set of all computations from `.

2.3 The logic ATL and some extensions

Again, we follow the definitions of [3]:

Definition 3. The syntax of ATL is defined by the following grammar:

ATL 3 ϕs, ψs ::= > | p | ¬ϕs | ϕs ∨ ψs | 〈〈A〉〉ϕp

ϕp ::= Xϕs | Gϕs | ϕs Uψs.

where p ranges over the set AP and A over the subsets of Agt.

In addition, we use standard abbreviations like >, ⊥, F , etc. ATL formulae
are interpreted over states of a game structure S. The semantics of the main
modalities is defined as follows3:

` |=S 〈〈A〉〉ϕp iff ∃FA ∈ Strat(A). ∀ρ ∈ Out(`, FA). ρ |=S ϕp,

ρ |=S Xϕs iff ρ[1] |=S ϕs,

ρ |=S Gϕs iff ∀i. ρ[i] |=S ϕs,

ρ |=S ϕs Uψs iff ∃i. ρ[i] |=S ψs and ∀0 ≤ j < i. ρ[j] |=S ϕs.

It is well-known that, for the logic ATL, it is sufficient to restrict to state-based
strategies (i.e., 〈〈A〉〉ϕp is satisfied iff there is a state-based strategy all of whose
outcomes satisfy ϕp) [3, 18].

Note that 〈〈∅〉〉ϕp corresponds to the CTL formula Aϕp (i.e., universal quan-
tification over all computations issued from the current state), while 〈〈Agt〉〉ϕp

2 I.e., fAi(`0 · · · `m) ∈ Mov(`m, Ai).
3 We might omit to mention S when it is clear from the context.



corresponds to existential quantification Eϕp. Note, however, that ¬ 〈〈A〉〉ϕp is
generally not equivalent to 〈〈Agt r A〉〉 ¬ϕp [3, 10]. Fig. 1 displays a (graphi-
cal representation of a) 2-player CGS for which, in `0, both ¬ 〈〈A1〉〉X p and
¬ 〈〈A2〉〉 ¬X p hold. In such a representation, a transition is labeled with 〈m1.m2〉
when it correspond to move m1 of player A1 and to move m2 of player A2. Fig. 2
represents an (alternating-bisimilar) ATS with the same properties.

`0

p
`1

¬p
`′1

¬p
`′2

p
`2

〈1.1〉

〈1.2〉〈2.1〉

〈2.2〉

Fig. 1. A CGS that is not determined.

Loc = {`0, `1, `2, `′1, `′2}

Mov(`0, A1) = {{`1, `′1}, {`2, `′2}}
Mov(`0, A2) = {{`1, `′2}, {`2, `′1}}

with

(
Lab(`1) = Lab(`2) = {p}
Lab(`′1) = Lab(`′2) = ∅

Fig. 2. An ATS that is not determined.

Duality is a fundamental concept in modal and temporal logics: for instance,
the dual of modality U, often denoted by R and read release, is defined by

ϕs Rψs
def≡ ¬((¬ϕs)U (¬ψs)). Dual modalities allow, for instance, to put nega-

tions inner inside the formula, which is often an important property when ma-
nipulating formulas. In LTL, modality R can be expressed using only U and G:

ϕRψ ≡ Gψ ∨ ψU (ϕ ∧ ψ). (1)

In the same way, it is well known that CTL can be defined using only modalities
EX, EG and EU, and that we have

EϕRψ ≡ EGψ ∨ EψU (ϕ ∧ ψ) AϕRψ ≡ ¬E(¬ϕ)U (¬ψ).

We prove in the sequel that modality R cannot be expressed in ATL, as
defined in Definition 3. We thus define the following two extensions of ATL:

Definition 4. We define ATLR and ATL+ with the following syntax:

ATLR 3 ϕs, ψs ::= > | p | ¬ϕs | ϕs ∨ ψs | 〈〈A〉〉ϕp

ϕp ::= Xϕs | ϕs Uψs | ϕs Rψs,

ATL+ 3 ϕs, ψs ::= > | p | ¬ϕs | ϕs ∨ ψs | 〈〈A〉〉ϕp

ϕp, ψp ::= ¬ϕp | ϕp ∨ ψp | Xϕs | ϕs Uψs | ϕs Rψs.

where p ranges over the set AP and A over the subsets of Agt.

Given a formula ϕ in one of the logics we have defined, the size of ϕ, denoted
by |ϕ|, is the size of the tree representing that formula. The DAG-size of ϕ is
the size of the directed acyclic graph representing that formula (i.e., sharing
common subformulas).



3 〈〈A〉〉 (a R b) cannot be expressed in ATL

This section is devoted to the expressiveness of ATL. We prove:

Theorem 5. There is no ATL formula equivalent to Φ = 〈〈A〉〉 (aR b).

The proof of Theorem 5 is based on techniques similar to those used for
proving expressiveness results for temporal logics like CTL or ECTL [9]: we build
two families of models (si)i∈N and (s′i)i∈N s.t. (1) si 6|= Φ, (2) s′i |= Φ for any i,
and (3) si and s′i satisfy the same ATL formula of size less than i. Theorem 5 is a
direct consequence of the existence of such families of models. In order to simplify
the presentation, the theorem is proved for formula4 Φ = 〈〈A〉〉 (bR (a ∨ b)).

The models are described by one single inductive CGS 5 C, involving two
players. It is depicted on Fig. 3. A label 〈α.β〉 on a transition indicates that this

a
ai

a
si−1

a
ai−1

a
s1

a
a1

bbi bb1

a
si

a
s′i

a
s′i−1

a
s′1

¬a,¬b

s0〈3.1〉 〈3.1〉 〈3.1〉

〈3.1〉,〈4.2〉 〈3.1〉,〈4.2〉 〈3.1〉,〈4.2〉

〈2.2〉
〈2.3〉

〈2.2〉
〈2.3〉

〈2.2〉
〈2.3〉

〈2.2〉
〈2.3〉
〈4.3〉

〈2.2〉
〈2.3〉
〈4.3〉

〈2.2〉
〈2.3〉
〈4.3〉

〈1.1〉 〈1.1〉

〈1.1〉

〈4.1〉

〈1.1〉

〈4.1〉

〈1.2〉,〈1.3〉
〈2.1〉,〈3.2〉,〈3.3〉

〈1.2〉,〈1.3〉
〈2.1〉,〈3.2〉,〈3.3〉

〈1.2〉,〈1.3〉,〈2.1〉,〈3.2〉,〈3.3〉

〈1.2〉,〈1.3〉,〈2.1〉,〈3.2〉,〈3.3〉

Fig. 3. The CGS C, with states si and s′i on the left

transition corresponds to move α of player A1 and to move β of player A2. In
that CGS, states si and s′i only differ in that player A1 has a fourth possible
move in s′i. This ensures that, from state s′i (for any i), player A1 has a strategy
(namely, he should always play 4) for enforcing aW b. But this is not the case
from state si: by induction on i, one can prove si 6|= 〈〈A1〉〉 aW b. The base case
is trivial. Now assume the property holds for i: from si+1, any strategy for A1

starts with a move in {1, 2, 3} and for any of these choices, player A2 can choose
a move (2, 1 and 2 resp.) that enforce the next state to be si where by i.h. A1

has no strategy for aW b.
We now prove that si and s′i satisfy the same “small” formulae. First, we

have the following equivalences:
4 This formula can also be written 〈〈A〉〉 aW b, where W is the “weak until” modality.
5 Given the translation from CGS to ATS (see Section 4.2), the result also holds

for ATSs.



Lemma 6. For any i > 0, for any ψ ∈ ATL with |ψ| ≤ i:

bi |= ψ iff bi+1 |= ψ si |= ψ iff si+1 |= ψ s′i |= ψ iff s′i+1 |= ψ

The proof may be found in Appendix A.

Lemma 7. ∀i > 0, ∀ψ ∈ ATL with |ψ| ≤ i: si |= ψ iff s′i |= ψ.

Proof. The proof proceeds by induction on i, and on the structure of the for-
mula ψ. The case i = 1 is trivial, since s1 and s′1 carry the same atomic proposi-
tions. For the induction step, dealing with CTL modalities (〈〈∅〉〉 and 〈〈A1, A2〉〉)
is also straightforward, then we just consider 〈〈A1〉〉- and 〈〈A2〉〉 modalities.

First we consider 〈〈A1〉〉-modalities. It is well-known that we can restrict to
state-based strategies in this setting. If player A1 has a strategy in si to enforce
something, then he can follow the same strategy from s′i. Conversely, if player A1

has a strategy in s′i to enforce some property, two cases may arise: either the
strategy consists in playing move 1, 2 or 3, and it can be mimicked from si. Or
the strategy consists in playing move 4 and we distinguish three cases:

– ψ = 〈〈A1〉〉Xψ1: that move 4 is a winning strategy entails that s′i, ai and bi
must satisfy ψ1. Then si (by i.h. on the formula) and si−1 (by Lemma 6)
both satisfy ψ1. Playing move 1 (or 3) in si ensures that the next state will
satisfy ψ1.

– ψ = 〈〈A1〉〉Gψ1: by playing move 4, the game could end up in si−1 (via bi),
and in ai and s′i. Thus si−1 |= ψ, and in particular ψ1. By i.h., si |= ψ1,
and playing move 1 (or 3) in si, and then mimicking the original strategy
(from s′i), enforces Gψ1.

– ψ = 〈〈A1〉〉ψ1 Uψ2: a strategy starting with move 4 implies s′i |= ψ2 (the
game could stay in s′i for ever). Then si |= ψ2 by i.h., and the result follows.

We now turn to 〈〈A2〉〉 -modalities: clearly if 〈〈A2〉〉ψ1 holds in s′i, it also
holds in si. Conversely, if player A2 has a (state-based) strategy to enforce some
property in si: If it consists in playing moves 1 or 3, then the same strategy also
works in s′i. Now if the strategy starts with move 2, then playing move 3 in s′i
has the same effect, and thus enforces the same property. �

Remark 1. ATL and ATLR have the same distinguishing power as the fragment
of ATL involving only the 〈〈 · 〉〉X modality (see [4, proof of Th. 6]). This means
that we cannot exhibit two models M and M ′ s.t. (1) M |= Φ, (2) M ′ 6|= Φ, and
(3) M and M ′ satisfy the same ATL formula.

Even if ATL+ would not contain the “release” modality in its syntax, it can
express it, and it is thus strictly more expressive than ATL. However, as for CTL
and CTL+, it is possible to translate ATL+ into ATLR [11]. Of course, such a
translation induces at least an exponential blow-up in the size of the formulae
since it is already the case when translating CTL+ into CTL [21, 1]. Finally note
that the standard model-checking algorithm for ATL easily extends to ATLR (and
that Mocha [5] handles ATLR formulae). In the same way, the axiomatization
and satisfiability results of [10] can be extended to ATLR (as mentioned in the
conclusion of [10]).



Turn-based games. In [3], a restriction of CGS —the turn-based CGSs— is
considered. In any location of these models (named TB-CGS hereafter), only
one player has several moves (the other players have only one possible choice).
Such models have the property of determinedness: given a set of players A, either
there is a strategy for A to win some objective Φ, or there is a strategy for other
players (Agt\A) to enforce ¬Φ. In such systems, modality R can be expressed
as follows: 〈〈A〉〉ϕRψ ≡TB-CGS ¬ 〈〈Agt\A〉〉 (¬ϕ)U (¬ψ).

4 Complexity of ATL model-checking

In this section, we establish the precise complexity of ATL model-checking. All
the complexity results below are stated for ATL but they are also true for ATLR.

Model-checking issues have been addressed in the seminal papers about ATL,
on both ATSs [2] and CGSs [3]. The time complexity is shown to be in O(m · l),
where m is the size of the transition table and l is the size of the formula. The
authors then claim that the model-checking problem is in PTIME (and obviously,
PTIME-complete). However, it is well-known (and already explained in [2, 3])
that the size m of the transition table may be exponential in the number of
agents. Thus, when the transition table is not given explicitly (as is the case for
ATS), the algorithm requires in fact exponential time.

Before proving that this problem is indeed not in PTIME, we define the model
of implicit CGSs, with a succinct representation of the transition table [12].
Besides the theoretical aspect, it may be quite useful in practice since it allows
to not explicitly describe the full transition table.

4.1 Explicit- and implicit CGSs

We distinguish between two classes of CGSs:

Definition 8. • An explicit CGS is a CGS where the transition table is defined
explicitly.
• An implicit CGS is a CGS where, in each location `, the transition function is
defined by a finite sequence ((ϕ0, `0), ..., (ϕn, `n)), where `i ∈ Loc is a location,
and ϕi is a boolean combination of propositions Aj = c that evaluate to true
iff agent Ai chooses move c. The transition table is then defined as follows:
Edg(`,mA1 , ...,mAk

) = `j iff j is the lowest index s.t. ϕj evaluates to true when
players A1 to Ak choose moves mA1 to mAk

. We require that the last boolean
formula ϕi be >, so that no agent can enforce a deadlock.

The size |C| of a CGS C is defined as |Loc|+ |Edg|. For explicit CGSs, |Edg| is
the size of the transition table. For implicit CGSs, |Edg| is the sum

∑
|ϕ| used

for the definition of Edg. See Appendix B for a discussion on the succinctness of
the different models.

The size of an ATS is |Loc|+ |Mov| where |Mov| is the sum of the number of
locations in each possible move of each agent in each location.



4.2 Expressiveness of CGSs and ATSs

We prove in this section that CGSs and ATSs are closely related: they can model
the same concurrent games. In order to make this statement formal, we use the
following definition:

Definition 9 ([4]). Let A and B be two models of concurrent games (either
ATSs or CGSs) over the same set Agt of agents. Let R ⊆ LocA × LocB be a
(non-empty) relation between states of A and states of B. That relation is an
alternating bisimulation when, for any (`, `′) ∈ R, the following conditions hold:

– LabA(`) = LabB(`′);
– for any coalition A ⊆ Agt, we have

∀m : A→ MovA(`, A). ∃m′ : A→ MovB(`′, A).
∀q′ ∈ Next(`′, A,m′). ∃q ∈ Next(`, A,m). (q, q′) ∈ R.

– symmetrically, for any coalition A ⊆ Agt, we have

∀m′ : A→ MovB(`′, A). ∃m : A→ MovA(`, A).
∀q ∈ Next(`, A,m). ∃q′ ∈ Next(`′, A,m′). (q, q′) ∈ R.

where Next(`, A,m) is the set of locations that are reachable from ` when each
player Ai ∈ A plays m(Ai).

Two models are said to be alternating-bisimilar if there exists an alternating
bisimulation involving all of their locations.

With this equivalence in mind, ATSs and CGSs (both implicit and explicit
ones) have the same expressive power:

Theorem 10. 1. Any explicit CGS can be translated into an alternating-bisimilar
implicit one in linear time; 2. Any implicit CGS can be translated into an
alternating-bisimilar explicit one in exponential time; 3. Any explicit CGS can
be translated into an alternating-bisimilar ATS in cubic time; 4. Any ATS can
be translated into an alternating-bisimilar explicit CGS in exponential time;
5. Any implicit CGS can be translated into an alternating-bisimilar ATS in expo-
nential time; 6. Any ATS can be translated into an alternating-bisimilar implicit
CGS in quadratic time;

Figure 4 summarizes those results. From our complexity results (and the as-
sumption that the polynomial-time hierarchy does not collapse), the costs of the
above translations is optimal. Those translations are detailled in Appendix B.

4.3 Model checking ATL on implicit CGSs.

Basically, the algorithm for model-checking ATL [2, 3] is similar to that for CTL:
it consists in recursively computing fixpoints, based e.g. on the following equiv-
alence:

〈〈A〉〉 pU q ≡ µZ.(q ∨ (p ∧ 〈〈A〉〉XZ))
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Fig. 4. Costs of translations between the three models

The difference with CTL is that we have to compute the pre-image of a set of
states for some coalition.

It has been remarked in [12] that computing the pre-images is not in PTIME
anymore when considering implicit CGSs: the algorithm has to non-deterministi-
cally guess the moves of players in A in each location, and for each pre-image, to
solve the resulting SATqueries derived from those choices and from the transition
table. As a consequence, model-checking ATL on implicit CGSs is ΣP

2 -hard [12].
However (see below), the ΣP

2 -hardness proof can very easily be adapted to prove
ΠP

2 -hardness. It follows that the ΣP
2 algorithm proposed in [12] cannot be correct.

The flaw is in the way it handles negation: games played on CGSs (and ATSs) are
generally not determined, and the fact that a player has no strategy to enforce ϕ
does not imply that the other players have a strategy to enforce ¬ϕ. It rather
means that the other players have a co-strategy to enforce ¬ϕ (see [10] for precise
explanations about co-strategies).

Still, the ΣP
2 -algorithm is correct for formulas whose main operator is not a

negation. As a consequence:

Proposition 11. Model checking ATL on implicit CGSs is in ∆P
3 .

Since the algorithm consists in labeling the locations with the subformulae it
satisfies, that complexity holds even if we consider the DAG-size of the formula.

Before proving optimality, we briefly recall the ΣP
2 -hardness proof of [12]. It

relies on the following ΣP
2 -complete problem:

EQSAT2:

Input: two families of variables X = {x1, ..., xn} and Y = {y1, ..., yn}, a
boolean formula ϕ on the set of variables X ∪ Y .

Output: True iff ∃X. ∀Y. ϕ.

This problem can be encoded in an ATL model-checking problem on an im-
plicit CGS: the CGS has three states q1, q> and q⊥, and 2n agents A1, ..., An,
B1, ..., Bn, each having two possible choices in q1 and only one choice in q>
and q⊥. The transitions out of q> and q⊥ are self loops. The transitions from q1

are given by: δ(q1) = ((ϕ[xj ← (Aj ?= 1), yj ← (Bj ?= 1)], q>)(>, q⊥)).



Then clearly, the coalition A1, ..., An has a strategy for reaching q>, i.e.,
q1 |= 〈〈A1, ..., An〉〉X q>, iff there exists a valuation for variables in X s.t. ϕ is
true whatever B-agents choose for Y .

Now, this encoding can easily be adapted to the dual (thus ΠP
2 -complete)

problem AQSAT2, in which, with the same input, the output is the value of
∀X. ∃Y. ϕ. It suffices to consider the same implicit CGS, and the formula
¬ 〈〈A1, ..., An〉〉X¬q>. It states that there is no strategy for players A1 to An

to avoid q>: whatever their choice, players B1 to Bn can enforce ϕ.
Following the same idea, we prove the following result:

Proposition 12. Model checking ATL on implicit CGSs is ∆P
3 -hard.

Proof. We consider the following ∆P
3 -complete problem[14, 18].

SNSAT2:

Input: m families of variables Xi = {x1
i , ..., x

n
i }, m families of variables Yi =

{y1
i , ..., y

n
i }, m variables zi, m boolean formulae ϕi, with ϕi involving

variables in Xi ∪ Yi ∪ {z1, ..., zi−1}.
Output: The value of zm, defined by

z1
def= ∃X1. ∀Y1. ϕ1(X1, Y1)

z2
def= ∃X2. ∀Y2. ϕ2(z1, X2, Y2)

. . .

zm
def= ∃Xm. ∀Ym. ϕm(z1, ..., zm−1, Xm, Ym)

We pick an instance I of this problem, and reduce it to an instance of the ATL
model-checking problem. Note that such an instance uniquely defines the values
of variables zi. We write vI : {z1, ..., zm} → {>,⊥} for this valuation. Also, when
vI(zi) = >, there exists a witnessing valuation for variables in Xi. We extend vI
to {z1, ..., zm} ∪

⋃
iXi, with vI(xj

i ) being a witnessing valuation if vI(zi) = >.
We now define an implicit CGS C as follows: it contains mn agents Aj

i (one
for each xj

i ), mn agents Bj
i (one for each yj

i ), m agents Ci (one for each zi), and
one extra agent D. The structure is made of m states qi, m states qi, m states si,
and two states q> and q⊥. There are three atomic propositions: s> and s⊥, that
label the states q> and q⊥ resp., and an atomic proposition s labeling states si.
The other states carry no label.

Except for D, the agents represent booleans, and thus always have two possi-
ble choices (0 and 1). Agent D always has m choices (0 to m−1). The transition
relation is defined as follows: for each i,

δ(qi) = ((>, si));
δ(si) = ((>, qi));
δ(q>) = ((>, q>));
δ(q⊥) = ((>, q⊥));

δ(qi) =



((D ?= 0) ∧ ϕi[x
j
i ← (Aj

i
?= 1),

yj
i ← (Bj

i
?= 1), zk ← (Ck

?= 1)], q>)
((D ?= 0), q⊥)
((D ?= k) ∧ (Ck

?= 1), qk) for each k < i

((D ?= k) ∧ (Ck
?= 0), qk) for each k < i

(>, q>)





Intuitively, from state qi, the boolean agents chose a valuation for the variable
they represent, and agent D can either choose to check if the valuation really
witnesses ϕi (by choosing move 0), or “challenge” player Ck, with move k < i.

The ATL formula is built recursively by ψ0 = > and, writing AC for the coali-
tion {A1

1, ..., A
n
m, C1, ..., Cm}: ψk+1

def= 〈〈AC〉〉 (¬s)U (q> ∨ EX (s ∧ EX¬ψk)).
Let fI(A) be the state-based strategy for agent A ∈ AC that consists in

playing according to the valuation vI (i.e. move 0 if the variable associated
with A evaluates to 0 in vI , and move 1 otherwise). The following lemma (proved
in Appendix C) completes the proof of Proposition 12:

Lemma 13. For any i ≤ m and k ≥ i, the following three statements are
equivalent: (a) C, qi |= ψk; (b) the strategies fI witness the fact that C, qi |= ψk;
(c) variable zi evaluates to > in vI . �

With Proposition 11, this implies:

Theorem 14. Model checking ATL on implicit CGSs is ∆P
3 -complete.

4.4 Model checking ATL on ATSs.

For ATSs also, the PTIME upper bound only holds when the number of agents
is fixed. As in the previous section, the NP algorithm proposed in [12] for ATL
model-checking on ATSs does not handle negation correctly. Again, the algo-
rithm consists in computing fixpoints with pre-images, and the pre-images are
now computed in NP [12]. This yields a ∆P

2 algorithm for full ATL.

Proposition 15. Model checking ATL over ATSs is in ∆P
2 .

The NP-hardness proof of [12] can be adapted in order to give a direct re-
duction of 3SAT, and then extended to SNSAT:

Proposition 16. Model checking ATL on ATSs is ∆P
2 -hard.

Proof. Let us first recall the definition of the SNSAT problem [14]:

SNSAT:

Input: p families of variables Xr = {x1
r, ..., x

m
r }, p variables zr, p boolean

formulae ϕr in 3-CNF, with ϕr involving variables in Xr ∪ {z1, ..., zr−1}.
Output: The value of zp, defined by

z1
def= ∃X1. ϕ1(X1)

z2
def= ∃X2. ϕ2(z1, X2)

z3
def= ∃X3. ϕ3(z1, , z2, X3)

. . .

zp
def= ∃Xp. ϕp(z1, ..., zp−1, Xp)

Let I be an instance of SNSAT, where we assume that each ϕr is made of n
clauses S1

r to Sn
r , with Sj

r = αj,1
r sj,1

r ∨αj,2
r sj,2

r ∨αj,3
r sj,3

r . Again, such an instance



uniquely defines a valuation vI for variables z1 to zr, that can be extended to
the whole set of variables by choosing a witnessing valuation for x1

r to xn
r when

zr evaluates to true.
We now describe the ATS A: it contains (8n + 3)p states: p states qr and p

states qr, p states sr, and for each formula ϕr, for each clause Sj
r of ϕr, eight

states qj,0
r , ..., qj,7

r , as in the previous reduction.
States sr are labelled with the atomic proposition s, and states qj,k

r that do
not correspond to clause Sj

r are labeled with α.
There is one player Aj

r for each variable xj
r, one player Cr for each zr, plus

one extra player D. As regards transitions, there are self-loops on each state qj,k
r ,

single transitions from each qr to the corresponding sr, and from each sr to the
corresponding qr. From state qr,

– player Aj
r will choose the value of variable xj

r, by selecting one of the following
two sets of states:

{qg,k
r | ∀l ≤ 3. sg,l

r 6= xj
r or αg,l

r = 0} ∪ {qt, qt | t < r} if xj
r = >

{qg,k
r | ∀l ≤ 3. sg,l

r 6= xj
r or αg,l

r = 1} ∪ {qt, qt | t < r} if xj
r = ⊥

Both choices also allow to go to one of the states qt or qt. In qr, players Aj
t

with t 6= r have one single choice, which is the whole set of states.
– player Ct also chooses for the value of the variable it represents. As for

players Aj
r, this choice will be expressed by choosing between two sets of

states corresponding to clauses that are not made true. But as in the proof
of Prop. 12, players Ct will also offer the possibility to “verify” their choice,
by going either to state qt or qt. Formally, this yields two sets of states:

{qg,k
r | ∀l ≤ 3. sg,l

r 6= zt or αg,l
r = 0} ∪ {qu, qu | u 6= t} ∪ {qt} if zt = >

{qg,k
r | ∀l ≤ 3. sg,l

r 6= zt or αg,l
r = 1} ∪ {qu, qu | u 6= t} ∪ {qt} if zt = ⊥

– Last, player D chooses either to challenge a player Ct, with t < r, by choos-
ing the set {qt, qt}, or to check that a clause Sj

r is fulfilled, by choosing
{qj,0

r , ..., qj,7
r }.

Let us first prove that any choices of all the players yields exactly one state.
It is obvious except for states qr. For a state qr, let us first restrict to the choices
of all the players Aj

r and Cr, then:

– if we only consider states q1,0
r to qn,7

r , the same argument as in the previous
proof ensures that precisely on state per clause is chosen,

– if we consider states qt and qt, the choices of players Bt ensure that exactly
one state has been chosen in each pair {qt, qt}, for each t < r.

Clearly, the choice of player D will select exactly one of the remaining states.
Now, we build the ATL formula. It is a recursive formula (very similar to the

one used in the proof of Prop. 12), defined by ψ0 = > and (again writing AC for
the set of players {A1

1, ..., A
m
p , C1, ..., Cp}):

ψr+1
def= 〈〈AC〉〉 (¬s)U (α ∨ EX (s ∧ EX¬ψr)).



Then, writing fI for the state-based strategy associated to vI :

Lemma 17. For any r ≤ p and t ≥ r, the following statements are equivalent:
(a) qr |= ψt; (b) the strategies fI witness the fact that qr |= ψt; (c) variable zr

evaluates to true in vI .

The technical proof of this lemma is given in Appendix D. In the end:

Theorem 18. Model checking ATL on ATSs is ∆P
2 -complete.

4.5 Model checking ATL+

The complexity of model checking ATL+ over ATSs has been settled ∆P
3 -complete

in [18]. But ∆P
3 -hardness proof of [18] is in LOGSPACE only w.r.t. the DAG-size

of the formula. We prove (in Appendix E) that model checking ATL+ is in fact
∆P

3 -complete (with the standard definition of the size of a formula) for our three
kinds of game structures.

Theorem 19. Model checking ATL+ is ∆P
3 -complete on ATSs as well as on

explicit CGSs and implicit CGSs.

5 Conclusion

In this paper, we considered the basic questions of expressiveness and complexity
of ATL. We showed that ATL, as originaly defined in [2, 3], is not as expressive
as it could be expected, and we argue that the modality “Release” should be
added in its definition [13].

We also precisely characterized the complexity of ATL and ATL+ model-
checking, on both ATSs and CGSs, when the number of agents is not fixed.
These results complete the previously known results about these formalisms and
it is interesting to see that their complexity classes (∆P

2 or ∆P
3 ) are unusual in

the model-checking area.
As future works, we plan to focus on the extensions EATL (extending ATL

with a modality 〈〈 · 〉〉
∞
F , and for which state-based strategies are still sufficient)

and EATL+ (the obvious association of both extensions, but for which state-
based strategies are not sufficient anymore).

Acknowledgement. We thank Wojtek Jamroga for pointing out that formulas
in SNSAT2 cannot be restricted to CNF [6].
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A Proof of Lemma 6

Lemma 6. Consider the CGS C displayed at Fig. 3. For any i > 0, for any
ψ ∈ ATL with |ψ| ≤ i,

bi |= ψ iff bi+1 |= ψ (2)
si |= ψ iff si+1 |= ψ (3)
s′i |= ψ iff s′i+1 |= ψ (4)

Proof. The proof proceeds by induction on i, and on the structure of the for-
mula ψ.

Base case: i = 1. Since we require that |ψ| ≤ i, ψ can only be an atomic
proposition. The result is then obvious.

Induction step. We assume the result holds up to some i − 1 ≥ 1, and prove
that it then still holds for i. Let ψ s.t. |ψ| ≤ i. We now proceed by structural
induction on ψ:

– The result is again obvious for atomic propositions, as well as for boolean
combinations of subformulae.

– Otherwise, the “root” combinator of ψ is a modality. If it is a CTL modality,
the results are quite straightforward. Also, since there is only one transition
from bi, any ATL modality can be expressed as a CTL modality in that state,
and (2) follows.

– If ψ = 〈〈A1〉〉Xψ1: Assume si |= ψ. Then, depending on the strategy, ei-
ther bi and si−1, or ai and si−1, or si and si−1, should satisfy ψ1. By i.h.,
this propagates to the next level, and the same strategy can be mimicked
from si+1.
The converse is similar (hence (3)), as well as the proof for (4).

– If ψ = 〈〈A1〉〉Gψ1: If si |= ψ, then si, thus si+1, satisfy ψ1. Playing move 3
is a strategy for player A1 to enforce Gψ1 from si+1, since the game will
either stay in si+1 or go to si, where player A has a winning strategy.
The converse is immediate, since player A1 cannot avoid si when playing
from si+1. Hence (3) for 〈〈A1〉〉G -formulae.

If s′i |= ψ, then both s′i and s′i+1 satisfy ψ1. Also, player A1 cannot avoid
the play to go in location si−1. Thus, si−1 |= ψ1 —and by i.h., so does si—
and si |= ψ, as above. Now, following the same strategy in s′i+1 as the win-
ning strategy of s′i clearly enforces Gψ1. The converse is similar: it suffices
to mimic, from s′i, the strategy witnessing the fact that s′i+1 |= ψ. This
proves (4), and concludes this case.

– If ψ = 〈〈A1〉〉ψ1 Uψ2: If si |= ψ, then either ψ2 or ψ1 holds in si, thus
in si+1. The former case is trivial. In the latter, player A1 can mimic the
winning strategy in si+1: the game will end up in si, with intermediary states
satisfying ψ1 (or ψ2), and he can then apply the original strategy.



The converse is obvious, since from si+1, player A1 cannot avoid location si,
from which he must also have a winning strategy.

If s′i |= ψ, omitting the trivial case where s′i satisfies ψ2, we have that si−1 |=
ψ. Also, a (state-based) strategy in s′i witnessing ψ necessary consists in
playing move 1 or 2. Thus ai and bi satisfy ψ, and the same strategy (move 1
or 2, resp.) enforces Gψ1 from si. It is now easy to see that the same strategy
is correct from s′i+1.
Conversely, apart from trivial cases, the strategy can again only consists in
playing moves 1 or 2. In both cases, the game could end up in si, and then
in si−1. Thus si−1 |= ψ, and the same strategy as in s′i+1 can be applied
in s′i to witness ψ.

– The proofs for 〈〈A2〉〉Xψ1, 〈〈A2〉〉Xψ1, and 〈〈A2〉〉ψ1 Uψ2 are very similar
to the previous ones. �

B From ATSs to CGSs

Theorem 10. 1. An explicit CGS can be translated into an alternating-bisimilar
implicit one in linear time;

2. An implicit CGS can be translated into an alternating-bisimilar explicit one
in exponential time;

3. An explicit CGS can be translated into an alternating-bisimilar ATS in cubic
time;

4. An ATS can be translated into an alternating-bisimilar explicit CGS in ex-
ponential time;

5. An implicit CGS can be translated into an alternating-bisimilar ATS in ex-
ponential time;

6. An ATS can be translated into an alternating-bisimilar implicit CGS in
quadratic time;

Proof. Points 1, 2, and 4 are reasonnably easy.
For point 6, it suffices to write, for each possible next location, the conjunction

(on each agent) of the disjunction of the choices that contain that next location.
For instance, if we have MovA(`0, A1) = {{`1, `2}, {`1, `3}} and MovA(`0, A2) =
{{`2, `3}, {`1}} in the ATS A, then each player will have two choices in the
associated CGS B, and

EdgB(`0) =

 (A1 = 1 ∨A1 = 2) ∧ (A2 = 2), `1
(A1 = 1) ∧ (A2 = 1), `2
(A1 = 2) ∧ (A2 = 1), `3


Formally, let A = (Agt, LocA,AP, LabA,MovA) be an ATS. We then de-

fine B = (Agt, LocB,AP, LabB,MovB,EdgB) as follows:

– LocB = LocA, LabB = LabA;
– MovB : `×Ai → [1, |MovA(`, Ai)|];



– EdgB is a function mapping each location ` to the sequence ((ϕ`′ , `
′))`′∈LocA

(the order is not important here, as the formulas will be mutually exclusive)
with

ϕ`′ =
∧

Ai∈Agt

( ∨
`′ appears in the j-th

set of MovA(`,Ai)

Ai
?= j

)

Computing EdgB requires quadratic time (more precisely O(|LocA| × |MovA|)).
It is now easy to prove that the identity Id ⊆ LocA × LocB is an alternating
bisimulation, since there is a direct correspondance between the choices in both
structures.

We now explain how to transform an explicit CGS into an ATS, showing
point 3. Let A = (Agt, LocA,AP, LabA,MovA,EdgA) be an explicit CGS. We
define the ATS B = (Agt, LocB,AP, LabB,MovB) as follows (see Figure 5 for
more intuition on the construction):

– LocB ⊆ LocA×LocA×Nk, where k = |Agt|, with (`, `′,mA1 , . . . ,mAk
) ∈ LocB

iff ` = EdgA(`′,mA1 , . . . ,mAk
);

– LabB(`, `′,mA1 , . . . ,mAk
) = LabA(`);

– From a location q = (`, `′,mA1 , . . . ,mAk
), player Aj has |MovA(`, Aj)| pos-

sible moves:

MovB(q, Aj) =
{{

(`′′, `,m′
A1
, . . . ,m′

Aj
= i, . . . ,m′

Ak
) | m′

An
∈ MovA(`, An)

and `′′ = EdgA(`,mA1 , . . . ,mAj = i, . . . ,mAk
)
}
| i ∈ MovA(`, Aj)

}
This ATS is built in time O(|LocA|2 · |EdgA|). It remains to show alternating
bisimilarity between those structures. We define the relation

R = {(`, (`, `′,mA1 , . . . ,mAk
)) | ` ∈ LocA, (`, `′,mA1 , . . . ,mAk

)) ∈ LocB}.

It is now only a matter of bravery to prove that R is an alternating bisimulation
between A and B.

Point 5 is now immediate (through explicit CGSs), but it could also be proved
in a similar way as point 3. �

Let us mention that our translations are optimal (up to a polynomial): our
exponential translations cannot be achieved in polynomial time because of our
complexity results for ATL model-checking. Note that it does not mean that the
resulting structures must have exponential size.

C Proof of Lemma 13

Lemma 13. For any i ≤ m and k ≥ i, the following three statements are
equivalent:



b

a

d

c

〈3.1〉

〈2.2〉,〈2.3〉

〈1.1〉

〈1.2〉
〈1.3〉
〈2.1〉

〈3.2〉
〈3.3〉

Moves from location A:

Player 1

move 1: {ba,1,1, da,1,2, da,1,3}
move 2: {ca,2,2, ca,2,3, da,2,1}
move 3: {aa,3,1, da,3,2, da,3,3}

Player 2

move 1: {aa,3,1, ba,1,1, da,2,1}
move 2: {ca,2,2, da,1,2, da,3,2}
move 3: {ca,2,3, da,1,3, da,3,3}

Fig. 5. Converting an explicit CGS into an ATS

(a) C, qi |= ψk;
(b) the strategies fI witness the fact that C, qi |= ψk;
(c) variable zi evaluates to true in vI .

Proof. Clearly, (b) implies (a). We prove that (a) implies (c) and that (c) im-
plies (b) by induction on i.

First assume that q1 |= ψj , for some j ≥ 1. Since only q> and q⊥ are reachable
from q1, we have q1 |= 〈〈AC〉〉X q>. We are (almost) in the same case as in the
ΣP

2 reduction of [12]: there is a valuation of the variables x1
1 to xn

1 s.t., whatever
playersD andB1

1 toBn
m decide, the run will end up in q>. This holds in particular

if player D chooses move 0: for any valuation of the variables y1
1 to yn

1 , ψ1(X1, Y1)
holds true, and z1 evaluates to true in vI .

Secondly, if z1 evaluates to true, then vI(x1
1), ..., vI(xn

1 ) are such that, what-
ever the value of y1

1 to yn
1 , ψ1 holds true. If players A1

1 to An
1 play according to fI ,

then players D and B1
1 to Bn

1 cannot avoid state q>, and q1 |= 〈〈AC〉〉X q>, thus
also ψk when k ≥ 1.

We now assume the result holds up to index i ≥ 1, and prove that it also
holds at step i + 1. Assume qi+1 |= ψk+1, with k ≥ i. There exists a strat-
egy witnessing ψk+1, i.e., s.t. all the outcomes following this strategy satisfy
(¬s)U (q>∨EX (s∧EX¬ψk)). Depending on the move of playerD in state qi+1,
we get several informations: first, if player D plays move l, with 1 ≤ l ≤ i, the
play goes to state ql or ql, depending on the choice of player Cl.

– if player Cl chose move 0, the run ends up in ql. Since the only way out of that
state is to enter state sl, labeled by s, we get that ql |= EX (s ∧ EX¬ψk),
i.e., that ql |= ¬ψk. By i.h., we get that zl evaluates to false in our instance
of SNSAT2.

– if player Cl chose move 1, the run goes to ql. In that state, players in AC can
keep on applying their strategy, which ensures that ql |= ψk+1, and, by i.h.,
that zl evaluates to true in I.

Thus, the strategy for AC to enforce ψk+1 in qi+1 requires players C1 to Ci to
play according to vI and the validity of these choices can be verified by the
“opponent” D.



Now, if player D chooses move 0, all the possible outcomes will necessarily
immediately go to q> (since ψk+1 holds, and since q⊥ 6|= EX (s∧ EX¬ψk)). We
immediately get that players B1

i+1 to Bn
i+1 cannot make ψi+1 false, hence that

zi+1 evaluates to true in I.
Secondly, if zi+1 evaluates to true, assume players in AC play according to fI ,

and consider the possible moves of player D:

– if player D chooses move 0, since zi+1 evaluates to true and since play-
ers C1 to Ci and A1

i+1 to An
i+1 have played according vI , there is no way for

player B1
i+1 to Bn

i+1 to avoid state q>.
– if player D chooses some move l between 1 and i, the execution will go into

state ql or ql, depending on the move of Cl.
• if Cl played move 0, i.e., if zl evaluates to false in vI , the execution goes to

state ql, and we know by i.h. that ql |= ¬ψk. Thus ql |= EX (s∧EX¬ψk),
and the strategy still fulfills the requirement.

• if Cl played move 1, i.e., if zl evaluates to true, then the execution ends
up in state ql, in which, by i.h., the strategy fI enforces ψk+1.

– if player D plays some move l with l > i, the execution goes directly to q>,
and the formula is fulfilled. �

D Proof of Lemma 17

Lemma 17. For any r ≤ p and t ≥ r, the following statements are equivalent:

(a) qr |= ψt;
(b) the strategies fI witness the fact that qr |= ψt;
(c) variable zr evaluates to true in vI .

Proof. We prove by induction on r that (a) implies (c) and that (c) implies (b),
the last implication being obvious. For r = 1, since no s-state is reachable, it
amounts to the previous proof of NP-hardness.

Assume the result holds up to index r. Then, if qr+1 |= ψt+1 for some t ≥ r,
we pick a strategy for coalition AC witnessing this property. Again, we consider
the different possible choices available to player D:

– if player D chooses to go to one of qu and qu, with u < r + 1: the execu-
tion ends up in qu if player Cu chose to set zu to true. But in that case,
formula ψt+1 still holds in qu, which yields by i.h. that zu really evaluates
to true in vI . Conversely, the execution ends up in qu if player Cu set zu to
false. In that case, we get that qu |= ¬ψt, with t ≥ u, which entails by i.h.
that zu evaluates to false.
This first case entails that player C1 to Cr chose the correct value for vari-
ables z1 to zr.

– if player D chooses a set of eight states corresponding to a clause Sj
r+1,

then the strategy of other players ensures that the execution will reach a
state labeled with α. As in the previous reduction, this indicates that the
corresponding clause has been made true by the choices of the other players.



Putting all together, this proves that variable zr+1 evaluates to true.
Now, if variable zr+1 evaluates to true, Assume the players in AC play ac-

cording to valuation fI . Then

– if playerD chooses to go to a set of states that correspond to a clause of ϕr+1,
he will necessarily end up in a state that is labeled with α, since the clause
is made true by the valuation we selected.

– if player D chooses to go to one of qu or qu, for some u, then he will challenge
player Bu to prove that his choice was correct. By i.h., and since player Bu

played according to fI , formula (¬s)U (α ∨ EX (s ∧ EX¬ψt+1)) will be
satisfied, for any t ≥ u. �

E Complexity of model checking ATL+

Proposition 20. Model checking ATL+ can be achieved in ∆P
3 on implicit CGSs.

Proof. A ∆P
3 algorithm is given in [18] for explicit CGSs. We extend it to han-

dle implicit CGSs: for each subformula of the form 〈〈A〉〉ϕ, guess (state-based)
strategies for players in A. In each state, the choices of each player in A can
be replaced in the transition functions. We then want to compute the set of
states where the CTL+ formula Aϕ holds. This can be achieved in ∆P

2 [8, 14],
but requires to first compute the possible transitions in the remaining structure,
i.e., to check which of the transition formulae are satisfiable. This is done by
a polynomial number of independent calls to an NP oracle, and thus does not
increase the complexity of the algorithm. �

Proposition 21. Model checking ATL+ on turn-based two-player explicit CGSs
is ∆P

3 -hard.

Proof. This reduction is a quite straightforward extension of the one presented
in [14] for CTL+. In particular, it is quite different from the previous reductions,
since the boolean formulae are now encoded in the ATL+ formula, and not in
the model.

We encode an instance I of SNSAT2, keeping the notations used in the proofs
of Prop. 12 (for the SNSAT2 problem) and 16 (for clause numbering). Fig. 6 de-
picts the turn-based two-player CGS C associated to I. States s1 to sm are
labeled by atomic proposition s, states z1 to zm are labeled by atomic proposi-
tion z, and the other states are labeled by their name as shown on Fig. 6.

The ATL+ formula is built recursively, with ψ0 = > and

ψk+1 = 〈〈A〉〉 [G¬s ∧G (z→ EX (s ∧ EX¬ψk)) ∧
∧

w≤p

[(F zw)→
∧
j≤n

∨
k≤3

F lj,kw ]]

where lj,kw = v when sj,k
w = v and αj,k

w = 1, and lj,kw = v when sj,k
w = v and

αj,k
w = 0. We then have:

Lemma 22. For any r ≤ p and t ≥ r, the following statements are equivalent:
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Fig. 6. The CGS C

(a) zr |= ψt;
(b) the strategies fI witness the fact that qr |= ψt;
(c) variable zr evaluates to true in vI .

When r = 1, since no s- or z-state is reachable from z1, the fact that z1 |= ψt,
with t ≥ 1, is equivalent to z1 |= 〈〈A〉〉

∧
j

∨
k F lj,k1 . This in turn is equivalent to

the fact that z1 evaluates to true in I.
We now turn to the inductive case. If zr+1 |= ψt+1 with t ≥ r, consider a

strategy for A s.t. all the outcomes satisfy the property, and pick one of those
outcomes, say ρ. Since it cannot run into any s-state, it defines a valuation vρ

for variables z1 to zr+1 and x1
1 to xn

m in the obvious way. Each time the outcome
runs in some zu-state, it satisfies EX (s∧ EXψt). Each time it runs in some zu-
state, the suffix of the outcome witnesses formula ψt+1 in zu. Both cases entail,
thanks to the i.h., that vρ(zu) = vI(zu) for any u < r + 1. Now, the subformula∧

w[(F zw)→
∧

j≤n

∨
k≤3 F lj,kw , when w = r + 1, entails that ϕr+1 is indeed

satisfied whatever the values of the yj
r+1’s, i.e., that zr+1 evaluates to true in I.

Conversely, if zr evaluates to true, then strategy fI clearly witnesses the fact
that ψt holds in state zr. �


