
Counting LTL

François Laroussinie1 Antoine Meyer2

Eudes Petonnet1

1 LIAFA, Université Paris Diderot – Paris 7 & CNRS UMR 7089, France

{Francois.Laroussinie,Eudes.Petonnet}@liafa.jussieu.fr

2 LIGM, Université Paris Est – Marne-la-Vallée & CNRS UMR 8049, France

Antoine.Meyer@univ-mlv.fr

Abstract

This paper presents a quantitative extension for the
linear-time temporal logicLTL allowing to specify the num-
ber of states satisfying certain sub-formulas along paths.
We give decision procedures for the satisfiability and model
checking of this new temporal logic and study the complex-
ity of the corresponding problems. Furthermore we show
that the problems become undecidable when more expres-
sive constraints are considered.

1. Introduction

Temporal logic (TL) is a well-known and well-studied for-
malism for specifying and verifying properties of automated
systems [13]. Classical temporal logics, such asLTL or
CTL, express properties on the temporal ordering of events
along the executions (see [6] for a survey). Many extensions
of these formalisms have been studied, whose aim is usually
to improve expressivity in order to capture more complex
specifications, or to make properties shorter and easier to
write. Of course there is an important trade-off between the
expressivity of the logic and the efficiency of decision pro-
cedures, the ultimate goal being to algorithmically decide
satisfiability or model-checking problems.

Among the well-known extensions of classical tempo-
ral logics, we can mention real-time TLs (see for exam-
ple [2, 3, 7]) where it is possible to add timing constraints
in properties (for example, one can specify that an event
A follows an eventB in at most 5 time units) or proba-
bilistic TLs (see [10] for such an extension ofCTL) where
it is possible to express properties like “eventA will oc-
cur with probability 0.99 or greater”. These two extensions
are calledquantitative extensions. Another classical variant
consists in adding some form of regular expressions [8] (or

operators defined with grammars as in [17]).

In this paper, we present a counting extension ofLTL
in the line of [12], calledCLTL, whereUntil modalities
are equipped with constraints on the number of true occur-
rences of certain subformulas. For instance, in a mutual ex-
clusion protocol where two processes try to access the same
critical section, the formulaG

(

req1 ⇒ F[♯cs2≤5]cs1)
)

ex-
presses the fact that whenever process1 requests access to
the critical section it is eventually granted access, and until
then process2 can be granted access at most5 times. More
generally, we allow constraints to be arbitrary Boolean com-
binations of atomic statements of the form

∑

i αi · ♯ϕi ∼ c,
wherec and eachαi are positive integers,∼ is a compar-
ison operator and each♯ϕi represents the number of states
from which somearbitrary CLTL formulaϕi holds along a
certain prefix of the run.

We show that, even thoughCLTL formulas can be trans-
lated into classicalLTL, this translation might yield an ex-
ponential blow-up in formula size. We then turn to the satis-
fiability and model-checking problems forCLTL, for which
we provide automata-based algorithms running in exponen-
tial space. This complexity is asymptotically optimal, since
both problems turn out to beEXPSPACE-complete. We
conclude this algorithmic study by presenting a fragment
of CLTL whose satisfiability and model-checking problems
arePSPACE-complete, and show that any generalization of
constraints with subtraction makes both problems undecid-
able. Finally, we show that for a similar counting extension
of CTL∗, the model-checking problem remains solvable in
EXPSPACE.

This work is related to our previous effort on counting
extensions ofCTL [12], where we use the same counting
constraints as described above. By varying the allowed syn-
tax of constraints, we presented a thorough account of the
expressiveness and succinctness of the logic with respect
to CTL, and proposed an algorithmic study of the model-

checking problem, which ranges fromP-complete when
only atomic constraints are considered to∆P

2 -complete for
the full logic. Contrary toCLTL, we also managed to char-
acterize decidable fragments with subtractive constraints.

There have also been several works on extensions ofLTL
to handle quantitative aspects of systems. In [8], the au-
thors extend linear-time logic with some simple regular ex-
pressions along with quantitative constraints on the num-
ber of occurrences of sub-expressions. They present algo-
rithms for model-checking this extension, whose time com-
plexity is exponential in the size of formulas and thevalue
of integer constants (satisfiability is not considered). This
means their time complexity is doubly-exponential, which
is comparable to ours. However, our logic can more eas-
ily express complicated quantitative constraints but cannot
specify as simply properties on the order of events. An-
other interesting specification language is Sugar/PSL [14],
which defines many additional operators aboveLTL. These
include in particular some counting constraints which are
used together with regular expressions, subsumingCLTL
with atomic constraints. To our knowledge, there is no ac-
curate study of lower complexity bounds for these exten-
sions [4].

The paper is organized as follows. Section 2 defines the
logic CLTL, whose expressivity and succinctness are stud-
ied in Section 3. Section 4 presents anEXPSPACE satis-
fiability algorithm based on alternating Büchi automata, as
well as theEXPSPACE-hardness proof and aPSPACE al-
gorithm for a fragment ofCLTL. Section 5 deals with an
undecidable extension of the constraint language. Finally
Section 6 presents a counting extension ofCTL∗.

2. Definitions

Models. Let AP be a set of atomic propositions. In linear-
time temporal logics, formulas are interpreted over infinite
words in(2AP)ω. Given such a wordw, wi denotes thei-th
letter andwi is thei-th non-empty suffix ofw with i ≥ 0.
As we will be considering the model-checking problem, we
also recall the classical notion of Kripke structure:

Definition 1. A Kripke structure (or KS) S is a tuple
〈Q, qinit, R, ℓ〉 whereQ is a finite set of states,qinit ∈ Q
is the initial state,R ⊆ Q × Q is a total accessibility rela-
tion andℓ : Q → 2AP is a labeling of states with atomic
propositions.

A run (or path)ρ of S is an infinite sequence of states
q0q1q2 . . . such that(qi, qi+1) ∈ R for everyi. We useρ(i)
to denote the stateqi andρi to denote the suffixqi · qi+1 · · ·
of ρ. Runs(q) denotes the set of runs starting from some
stateq ∈ Q andRuns(S) is a shortcut forRuns(qinit).

In the following, we will be referring to both infinite
words in(2AP)ω and paths of some KS asruns.

Counting LTL. We define a quantitative extension ofLTL
able to express constraints over the number of times certain
sub-formulas are satisfied along a run:

Definition 2. Given a set of atomic propositionsAP, we
define:

CLTL ∋ ϕ, ψ ::= P | ϕ ∧ ψ | ¬ϕ | ϕU[C]ψ

whereP ∈ AP andC is a counting constraint defined as:

C ∋ C,C′ ::= ⊤ | C ∧ C′ | ¬C |
∑

i αi · ♯ψi ∼ k

wherek, αi ∈ N
∗, ∼∈ {<,≤,=,≥, >} andψi ∈ CLTL.

In CLTL formulas, we make use of the standard abbre-
viations∨, ⇒, ⇔, ⊥, ⊤, as well as the additional modality
F[C]ϕ

def
= ⊤U[C]ϕ, and its dualG[C]ϕ

def
= ¬F[C]¬ϕ. More-

over the classical Next operatorX is defined asF[♯⊤=1], the
standardUntil U is U[⊤] (F is F[⊤] andG is G[⊤]). Any for-
mula occurring in a constraintC associated with a modality
in Φ is considered as a sub-formula ofΦ. The size|Φ| of
Φ takes the size of these constraints and their sub-formulas
into account, assuming that integer constants are encoded
in binary (unless explicitly stated otherwise). The DAG-
size ofΦ is the total number ofdistinctsub-formulas ofΦ.
As model-checking algorithms compute only once the truth
value of a sub-formula, this is generally more relevant to the
complexity of model-checking.

The semantics ofCLTL formulas is defined over infinite
words in(2AP)ω :

Definition 3. The following clauses define the conditions
for an infinite wordw ∈ (2AP)ω to satisfy aCLTL formula
ϕ – writtenw |= ϕ – by induction over the structure ofϕ:

w |= P iff P ∈ w0

w |= ϕ ∧ ψ iff w |= ϕ andw |= ψ

w |= ¬ψ iff w 6|= ψ

w |= ϕU[C]ψ iff ∃i ≥ 0, wi |= ψ, w, i−1 |= C

and ∀0 ≤ j < i, wj |= ϕ

The semantics ofw, i |= C is based on the interpretation of
♯ϕ over the suffixeswj for 0 ≤ j ≤ i, denoted by|w, i|ϕ
and defined as:|w, i|ϕ

def
= |{j | 0 ≤ j ≤ i ∧ wj |= ϕ}|.

Given these values,C is interpreted in a natural way (and⊤
is true over every word).

Given a KSS = 〈Q, qinit, R, ℓ〉, we writeS |= Φ when
every executionρ ∈ Runs(S) satisfiesΦ (i.e. ℓ(ρ(0)) ·
ℓ(ρ(1)) · · · |= Φ). We use≡ to denote the standard equiva-
lence between formulas.

Remark1. Let us denote byC the constraint dual toC ob-
tained by propagating the negation operator in¬C towards

atomic constraints (using De Morgan’s laws and inverting
comparison operators as required).

Negation and disjunction operators can be eliminated
from constraints using the fact thatϕU[¬C]ψ ≡ ϕU[C]ψ

andϕU[C∨C′]ψ ≡ ϕU[C]ψ ∨ ϕU[C′]ψ. However, even
thoughϕU[C∧C′]ψ ⇒ ϕU[C]ψ ∧ ϕU[C′]ψ, the converse
does not hold, as can be seen on the simple example
F[♯P1=1∧♯P2=1]⊤ (indeed this formula requires that at some
point both P1 andP2 must have been seen exactly once,
while F[♯P1=1]⊤∧F[♯P2=1]⊤ does not: for instanceP1 may
occur twice beforeP2 first occurs).

This implies that anyCLTL formula can be translated
into an equivalent formula where all constraints are of the
form

∧

i αi · ♯ϕi ∼ k. However, this may yield an expo-
nentially longer formula, since it essentially requires con-
straints to be put into disjunctive normal form.

Manipulating constraints. We now define two opera-
tions on constraints, which will play an important technical
role in the remainder of the paper.

LetC be a counting constraint containingm atomic con-
straints (m > 0) of the form

∑

j∈[1,ni]
αij · ♯ϕ

i
j ∼ ki for

i ∈ [1,m]. We defineSC as the set{ϕij | i ∈ [1,m], j ∈
[1, ni]}. For any∆ ⊆ SC , we inductively define the sub-
tractive updateC −∆ of C by∆ by:

¬C −∆
def
= ¬(C −∆)

(C ∧C′)−∆
def
= (C −∆) ∧ (C′ −∆)

(
∑

i αi · ♯ϕi ∼ k)−∆
def
=

∑

i αi · ♯ϕi ∼ k′

with k′
def
= k −

∑

ϕj∈∆ αj .

Notice that even though constants inC are defined to be
positive integers,C − ∆ may contain negative constants
as right-hand sides of comparison operators. However, it
can easily be seen that atomic constraints where negative
constants (or possibly 0) occur are either trivially true or
trivially false. We thus define a second update operation,
calledsimplification.

We define the constraintC↓ obtained fromC by replac-
ing any (trivially true) atomic constraint of the formS > k
with k < 0 or S ≥ k with k ≤ 0 by ⊤ (whereS stands
for an arbitrary sum of counting expressions), and any (triv-
ially false) atomic constraint of the formS < k with k ≤ 0
or S ≤ k with k < 0 by ⊥, and simplifying the obtained
constraint in the usual way (as one would simplify a propo-
sitional logic formula). Note thatC↓ is either reduced to⊤
or ⊥, or does not contain⊤ or ⊥ as a sub-formula. Also
note thatC andC↓ are equivalent.

We will write C′ ⊑ C whenever there exists a set∆ ⊆
SC such thatC′ = (C − ∆)↓, andC′

⊏ C if ∆ 6= ∅.
This notation is extended toCLTL formulas in a natural way

(ϕU[C′]ψ ⊑ ϕU[C]ψ if C′ ⊑ C). It can be shown that⊏ is
a well-founded strict partial ordering overCLTL formulas.

3. Expressivity

Unfolding. In classicalLTL, a crucial observation is that
formula ϕ1Uϕ2 can be “unfolded” by distinguishing the
possible cases in the first state of a run, yielding the fol-
lowing equivalence:

ϕ1Uϕ2 ≡ ϕ2 ∨
(

ϕ1 ∧ X(ϕ1Uϕ2)
)

In order to obtain a similar equivalence for a formula
ϕ1U[C]ϕ2 in countingLTL we need to take into account
all the counting expressions occurring inC, and to update
the relevant atomic constraints accordingly. To this end we
make use of the two elementary update operations on con-
straints defined in the previous section.

Lemma 1. For all word w in (2AP)ω and indexi ≥ 0,
w, i |= C ⇐⇒ w1, i − 1 |= (C − ∆) ↓, where
∆ = {ϕ ∈ SC | w |= ϕ}.

Proof. Let
∑

i αi.♯ϕi ∼ k be any atomic constraint inC,
and

∑

i αi.♯ϕi ∼ k′ with k′ = k −
∑

ϕj∈∆ αj the corre-
sponding constraint inC′ = C−∆. By definition of∆, for
everyϕ ∈ ∆ we have

|w, i|ϕ = |{j | 0 ≤ j ≤ i ∧ wj |= ϕ}|

= 1+ |{j | 0 < j ≤ i ∧ wj |= ϕ}|

= 1+ |{j | 0 ≤ j ≤ i−1∧ w1+j |= ϕ}|

= 1+ |w1, i−1|ϕ.

Similarly for everyϕ 6∈ ∆, |w, i|ϕ = |w1, i−1|ϕ. Thus

k −
∑

i αi.|w, i|ϕ = k −
∑

ϕj∈∆ αj −
∑

i αi.|w
1, i−1|ϕi

= k′ −
∑

i αi.|w
1, i−1|ϕi

.

Since every atomic constraint ofC is satisfied overw at po-
sition i if and only if the corresponding constraint inC′ is
satisfied overw1 at positioni−1, andC andC′ have other-
wise identical structures in terms of Boolean combinations,
we get thatw, i |= C ⇐⇒ w1, i − 1 |= C − ∆, which
entails the result since the simplification operation does not
change the validity of a constraint.

This enables us to express the effect of the first step in a
run on a formula’s constraints. We can now come up with
an unfolding property similar toLTL. The intuitive idea is to
guess the subsetΓ ⊆ SC of formulas accounted for in con-
straintC which hold over the word at position0, check that
this guess is correct and updateC accordingly as described
in the previous lemma.

Proposition 2 (Unfolding). LetΦ = ϕ1U[C]ϕ2 and

Ψ =
∨

Γ⊆SC

(
∧

ψ∈Γ ψ ∧
∧

ψ∈SC\Γ ¬ψ

∧ ϕ1 ∧ X(ϕ1U[(C−Γ)↓]ϕ2)
)

.

The following equivalence holds:

Φ ≡

{

Ψ ∨ ϕ2 if w,−1 |= C,

Ψ otherwise.

Proof. Φ ⇒ Ψ/Ψ ∨ ϕ2: If Φ is satisfied over some word
w ∈ (2AP)ω , then by definition∃i ≥ 0,wi |= ϕ2,w, i−1 |=
C and∀0 ≤ j < i, wj |= ϕ.

If i = 0, i.e.w,−1 |= C andw |= ϕ2, thenΨ∨ϕ2 holds.
Otherwise (i > 0) it must be thatw |= ϕ1 andw, i−1 |= C.
Let ∆ be the set of formulas ofSC which hold overw, by
Lemma 1 we havew1, i−2 |= (C − ∆)↓. Furthermore
there exists a disjunct inΨ (namely whenΓ = ∆) such that
∧

ψ∈Γ ψ∧
∧

ψ∈SC\Γ ¬ψ holds. Finally, we can deduce from

all of the above that(w1)i−1 |= ϕ2, w1, i−2 |= (C −∆)↓
and∀0 ≤ j < i − 1, (w1)j |= ϕ, in other wordsw1 |=
ϕ1U[(C−∆)↓]ϕ2. Together with the above observations, this
implies thatw |= Ψ.

Ψ ⇒ Φ: Let w |= Ψ, there must existΓ such thatw |=
∧

ψ∈Γ ψ ∧
∧

ψ∈SC\Γ ¬ψ ∧ ϕ1 ∧ X(ϕ1U[(C−Γ)↓]ϕ2). From
this, we can deduce that (1)∃i > 0, w, i+1 |= ϕ2 and
∀0 ≤ j ≤ i, w, j |= ϕ1, (2) w1, i |= (C − Γ)↓ and (3)
Γ = {ϕ ∈ SC | w |= ϕ} which by Lemma 1 entails that
w, i+1 |= C. Together with item (1) above, we get that
w |= Φ.

Remark2. Note that even a single unfolding step as de-
scribed by the previous proposition may entail an exponen-
tial increase in the dag-size of the formula, since the setΓ
needs to be guessed explicitly. This blow-up can be kept
polynomial by “scanning” formulas inSC one at a time and
in a fixed order instead of considering all possibleΓ ⊆ SC .
This technique was used in [12] to study the translation of a
fragment ofCCTL into CTL.

Expressivity and succinctness. Similarly to the corre-
sponding countingCTL logic [12], CLTL is not more ex-
pressive than classicalLTL.

Proposition 3 (Expressivity). Any CLTL formula can be
translated intoLTL.

Proof. We reason by induction on the structure ofΦ. The
case of Boolean connectives is trivial. We treat the caseΦ =
ϕU[C]ψ by induction on the well-founded partial ordering
⊏ defined in the previous section.

If Φ is minimal for⊏ (i.e. C ∈ {⊤,⊥}), we can di-
rectly use the inductiveLTL translations ofϕ andψ, since
ϕU[⊥]ψ ≡ ⊥ andϕU[⊤]ψ ≡ ϕUψ.

Next, if C 6∈ {⊤,⊥}, it is easy to show that

Φ ≡ (
∧

ψ∈SC
¬ψ)U

(

(
∨

ψ∈SC
ψ) ∧ (ϕ1U[C]ϕ2)

)

≡ (
∧

ψ∈SC
¬ψ)U

(

(
∨

ψ∈SC
ψ) ∧Φ′)

)

whereΦ′ is Ψ′ ∨ ϕ2 if w,−1 |= C andΨ′ otherwise, and
Ψ′ is identical to formulaΨ in Prop. 2 above, omitting the
disjunct forΓ = ∅. Now the top-most constraintsC′ oc-
curring inΨ′ are equal to(C − Γ)↓ with some non-empty
Γ, and thusΨ′

⊏ Φ. By induction hypothesis,Ψ′ can be
translated intoLTL, which concludes the proof.

However, this translation may yield an exponential in-
crease in dag-size, since the number of distinct constraints
C′

⊏ C is of the order ofMm (with M the largest con-
stant andm the number of atomic constraints occurring in
C), hence also in2O(|Φ|2). We are as of yet not able to
show that this bound is tight, but there existCLTL formulas
whose shortest equivalentLTL formula is provably of dag-
size at least inO(M).

Proposition 4 (Succinctness). AnyLTL formula equivalent
to theCLTL formulaΦk = F(¬bU[♯a=k]⊤) has temporal
depth at leastk − 1 (i.e. exponential in|Φk|).

Proof. Consider the setAP = {a, b, c}, and the property
STAIRSk ([9]), which states that there exists a portion of
the path in which propositiona occurs at leastk times but
propositionb does not occur. In [9], it is shown that this
property can only be expressed by aLTL formula with at
leastk − 1 nestedUntil modalities. However, this formula
is equivalent to theCLTL formulaΦk.

4. Decision procedures

We consider two standard decision problems forCLTL,
namely satisfiability (givenΦ ∈ CLTL, does there exists a
model forΦ ?) and model checking (givenΦ ∈ CLTL and
some KSS, do all runs ofS satisfyΦ, i.e.S |= Φ ?).

Classical decision procedures forLTL satisfiability are
based on automata constructions. Given someLTL formula
Φ, one can either build an (exponential) non-deterministic
Büchi automaton or a (polynomial) alternating Büchi au-
tomaton accepting exactly the models ofΦ. Satisfiability
then consists in checking whether the language of the au-
tomaton is empty [15]. We begin this section by recalling
the definition of alternating Büchi automata, then extend the
usual automata-based decision procedures for satisfiability
and model-checking to our logicCLTL.

4.1. Alternating Büchi Automata over ω-words

An alternatingBüchi automaton on infinite words is a
tupleA = (Σ, S, s0, δ, F) whereΣ is a finite alphabet,S

is a finite set of states,s0 ∈ S is the initial state,δ : S ×
Σ → B+(S) is the transition function assigning a positive
Boolean formula overS (including⊥ and⊤) to every pair
(s, σ), andF ⊆ S is the Büchi acceptance condition.

A run over an infinite wordw = a0a1 · · · ∈ Σω is an
infinite S-labeled treeT = (T, l) whereT is a tree and
l : Nodes(T) → S assigns an element inS to every node
in T . The rootǫ of T has to be labeled bys0 (i.e. l(ǫ) =
s0) and every nodex at depthi (written |x| = i) hask
(k ≥ 0) childrenx1,. . . ,xk such that the formulaδ(l(x), ai)
is interpreted to true when one assigns⊤ to every state in
{l(x1), . . . , l(xk)} and⊥ to other states.

The run is accepted when every infinite branch ofT con-
tains infinitely often nodes labeled by states inF and every
finite branch ends in a nodex such thatδ(l(x), a|x|) = ⊤.
We useL(A) to denote the set of words accepted byA.

4.2. Satisfiability

By using the standard techniques forLTL, one obtains
the following results:

Proposition 5. Given aCLTL formulaΦ, one can build an
alternating B̈uchi automatonAΦ such that (1)|AΦ| is in
O(|Φ| ·M |Φ|) whereM is the maximal constant occurring
in constraints insideΦ, and (2)Lω(AΦ) is exactly the set
of runs satisfyingΦ.

Proof. Let Φ be aCLTL formula. LetM be the maximal
constant occurring in the counting constraints inΦ andm
the maximal number of atomic constraints

∑

i αi · ♯ψi ∼ k
occurring in the same constraint inΦ.

We defineAΦ = (Σ, SΦ, s
0, δ, F), whereΣ is 2AP,

SΦ is the set of all subformulas ofΦ (including those ap-
pearing in constraints),ϕ1U[(C−∆)↓]ϕ2 for every subfor-
mulaϕ1U[C]ϕ2 and∆ ⊆ SC , and their negations,s0 is Φ,
δ : SΦ×Σ → B+(SΦ) is the transition function defined be-
low andF contains every state inS of the form¬(ϕ1Uϕ2)
or¬(ϕ1U[C]ϕ2).

In the following we useθ to denote the negation normal
form of the formulaθ ∈ B+(SΦ): every conjunction (resp.
disjunction) becomes a disjunction (resp. conjunction),⊤

(resp.⊥) becomes⊥ (resp.⊤), andθ is just θ. Negated
states are fine sinceϕ ∈ SΦ ⇒ ¬ϕ ∈ SΦ.

For convenience, we define of the transition function re-
cursively. Occurrences ofδ(ϕ, σ) in right-hand sides should
be replaced by their definition until a formula inB+(SΦ) is
obtained. We haveδ(P, σ) = ⊤ if P ∈ σ and⊥ otherwise,
δ(ϕ ∧ ψ, σ) = δ(ϕ, σ) ∧ δ(ψ, σ), andδ(¬ϕ, σ) = δ(ϕ, σ).
The rule forU is based on the unfolding rule (see Prop. 2):
δ(ϕ1U[C]ϕ2, σ) = δ(ϕ2, σ) ∨ θ if ρ,−1 |= C andθ other-

wise, with

θ =
∨

Γ⊆SC

(
∧

ψ∈Γ δ(ψ, σ) ∧
∧

ψ∈SC\Γ δ(¬ψ, σ)

∧ δ(ϕ1, σ) ∧ (ϕ1U[(C−Γ)↓]ϕ2)
)

.

The number of states is inO(|Φ| ·Mm) : everyϕ1U[C]ϕ2

subformula may provide(M + 2)m states. Also note that
the transition formulaθ above can be expressed in a more
concise way using a more refined unfolding technique (Cf.
Rem. 2), at the cost of roughly duplicating|SC | times
the states corresponding to eachU[C]-subformula. This au-
tomaton recognizes exactly the models ofΦ.

The complexity of this algorithm is in fact asymptoti-
cally optimal:

Theorem 6. CLTL satisfiability isEXPSPACE-complete.

Proof. Membership inEXPSPACE is based on Prop. 5:
the size of the automatonAΦ is in 2O(|Φ|2) and checking
emptiness of an alternating Büchi automaton isPSPACE-
complete [5]. This provides anEXPSPACE algorithm.

First note thatEXPSPACE-hardness is a consequence of
the complexity ofTLTL (i.e.TimedLTL) over discrete time
domains [11]. Nevertheless we give a proof based on the
encoding inCLTL of the execution of a Turing Machine
running in exponential space over some input word (such
an encoding is classical, see for example [3]).

Consider a deterministic2n-space-bounded Turing ma-
chineM = 〈Σ, QM, q0, qF , RM〉, with an initial tape con-
tentX = x1 . . . xn. We assume w.l.o.g.Σ = {a, b}. q0
is the initial state andqF is the final state. And as usual
RM ⊆ QM × Σ× Σ× {−1, 1} ×QM.

Now we construct a polynomial-size formula describing
the accepting computation ofM onX . The set of atomic
propositionsAP is defined as follows:AP containsPa and
Pb to represent the corresponding symbol on the tape, an ad-
ditional propositionPs to separate two consecutive config-
urations, and propositionsPa,q andPb,q for everyq ∈ QM

to mark the position of the tape head on a cell containing a
symbola or b respectively.

A configuration ofM is encoded as a sequence of2n

states labeled with propositions inAP to represent the con-
tent of the cells. One of these cell is labeled with somePa,q
or Pb,q, and the sequence is preceded and followed by a
state labeled withPs.

In the following we use the abbreviationP∅ to represent
∧

P∈AP ¬P . This formula is used to represent empty cells.
To specify that the run is the correct and accepting one,

we need a formula of the form(Φi ∧ Φm) ⇒ Φa (where
i, m anda stand forinit , move andaccept respectively),
meaning that if the run starts with the initial configuration
and follows the transitions ofM, then it is accepting. These

three formulas can be expressed inCLTL:

Φi = Ps ∧ X(Px1,q0 ∧
∧

2≤k≤n F[♯⊤=k]Pxk

∧ F[♯⊤=n+1](P∅U[♯⊤=2n−n]Ps)

Φm = G
(

Ps ⇒ X(¬Ps)U[♯⊤=2n]Ps
)

∧
∧

(P1,P2,P3)∈AP3 G
(

(P1 ∧ XP2 ∧ XXP3)

⇒ F[♯⊤=2n+2]fM(P1, P2, P3)
)

Φa = F(Pa,qF ∨ Pb,qF),

where the functionfM(P1, P2, P3) refers to the transition
rules ofM: fM(P1, P2, P3) gives the value of the cell
containingP2 in the next configuration given the defini-
tion of the left cell (P1) and the right cell (P3). For in-
stance, for every rule(q, a, b,+1, q′) in RM we will have:
fM(P1, Pa,q, P2) = Pb for anyP1 ∈ AP and anyP2 6= Ps.
Moreover we have for anyP1 ∈ AP, the two values:
fM(Pa,q, Pa, P1) = Pa,q′ andfM(Pa,q, Pb, P1) = Pb,q′ .
And we also definefM(P1, P2, P3) = P2 if neitherP1 or
P3 are of the formPa,q orPb,q for someq.

The lengths of formulasΦi, Φm andΦa are polynomial,
since constants are encoded in binary, which implies the
EXPSPACE-hardness ofCLTL satisfiability.

Note that if constraints are atomic (i.e. without Boolean
combinations in subscripts), thenm is equal to1 and the
size ofAΦ is in O(|Φ| ·M). If in addition, constants are
assumed to be encoded in unary, the satisfiability algorithm
becomesPSPACE.

4.3. Model-checking

Corollary 1. The model-checking problem forCLTL is
EXPSPACE-complete.

Proof. Hardness forEXPSPACE comes from that of satisfi-
ability, which can be reduced to a model-checking problem
using some kind ofuniversalKripke structureSu able to
generate any possible word in(2AP)ω : Φ is satisfiable iff
Su 6|= ¬Φ. Let AP be{P1, . . . , Pn}. Instead of considering
a complete KS whose states are labeled with every possible
subset ofAP (which would yield an exponential structure),
we use a succinct KSS ′

u that encodes every valuation of a
state inSu as a sequence ofn states labeled respectively by
∅ orPi. . . It then remains to sligthtly modifyΦ to take into
account this encoding. LetΦ′ be the modified formula, we
can reduceSu |= Φ to S ′

u |= Φ′.
Membership inEXPSPACE is obtained following the

idea for classicalLTL model-checking. Given a Kripke
StructureS and aCLTL formulaΦ, one builds as previously
an alternating Büchi automatonA for the formula¬Φ. It is
then straightforward to compute the product ofA with the
structureS in such a way that the obtained automaton has

an accepting infinite run if and only if there exists a path in
S violatingΦ.

Note that the program complexity of model-checking for
CLTL (i.e. the complexity of model-checking afixed for-
mula) is (like forLTL) NL-complete [16].

4.4. APSPACE fragment of CLTL

The EXPSPACE-hardness proof ofCLTL satisfiability
only uses counting constraints of the form “♯⊤ = k”: there
is no need for nested formulas in constraints, no Boolean
combinations and no sums. Here we introduce the fragment
CLTL− defined as the set ofCLTL formulas where count-
ing constraints are purely conjunctive terms, and compar-
ison symbols are not mixed inside a constraint. In other
terms, constraints are of the form “

∧∑

i αi · ♯ψi < k”,
“
∧∑

i αi · ♯ψi > k” or their non-strict variants. Note that
this restriction also applies over subformulas in constraints.

We useϕ1U[C≺]ϕ2 (resp.ϕ1U[C≻]ϕ2) to denote anUn-
til -subformula tagged with a constraint of the form “less
than” i.e.with ≤ or< (resp. “greater than” with≥ or>).

In the following theorem, we claim thatCLTL− formulas
admitPSPACE decision procedures:

Theorem 7. The satisfiability and model-checking prob-
lems forCLTL− arePSPACE-complete.

Proof. PSPACE-hardness comes fromLTL satisfiability.
PSPACE membership is based on the fact that given a
CLTL− formula Φ andAΦ the corresponding automaton
as built in Proposition 5, for any accepting run over some
modelw of Φ, there exists a “small” accepting run overw.
By small, we mean a tree with awidth (i.e. the maximal
number of nodes at the same level) bounded by|Φ|.

Let Φ be aCLTL− formula. First we can assume that
Φ only contains atomic constraints (with no conjunction):
indeed everyCLTL− formulaϕ1U[C∧C′]ϕ2 is equivalent to
ϕ1U[C]ϕ2 ∧ ϕ1U[C′]ϕ2. This translation can be done ef-
ficiently and the dag-size of the resulting formula is linear
in the size of the original one. LetSubf(Φ) be the set of
subformulas ofΦ.

Now considerAΦ as defined in Proposition 5. The num-
ber of states ofAΦ is in O(|Φ| · M) whereM is the size
of the maximal constant occurring inΦ. Thus this number
is exponential in|Φ| (this blow-up is due to the rewriting
of ϕ1U[C]ϕ2 subformulas intoϕ1U[C−Γ]ϕ2 subformulas in
the functionδ).

Now consider an accepting runT = (T, l) of AΦ over
an infinite wordw that is a model ofΦ. At every leveli
of the treeT , the nodes{x1, . . . , xk} are labeled with the
set of formulas{l(x1), . . . , l(xk)} ⊆ SΦ (see the definition
of SΦ in Prop. 5) and every formulal(xj) holds over the
word wi. For everyψ ∈ Subf(Φ) of the formϕ1U[C]ϕ2,

it is possible to have several formulasϕ1U[C−Γ]ϕ2 for dif-
ferent subsetsΓ of SC . But we clearly only need to verify
one formula of this set: ifψ is a “less than” (resp. a “greater
than”) formula, we consider the one containing the mini-
mal (resp. maximal) constantk in the constraint. Indeed we
clearly haveϕ1U[C<k]ϕ2 ⇒ ϕ1U[C<k′]ϕ2 for anyk ≤ k′

andϕ1U[C>k]ϕ2 ⇒ ϕ1U[C>k′]ϕ2 for anyk ≥ k′.
Then at every level of the tree, we only need to keep one

formula among this subset of formulas{ϕ1U[C−Γ]ϕ2 | Γ ⊆
SC}. Thus we can ensure the number of formulas label-
ing states at some level to be bounded by|Φ|. This remark
leads to anNSPACE algorithm for satisfiability (and model
checking). It works as follows.

Let Si be the set ofSΦ formulas labeling states of level
i: we have|Si| ≤ |Φ| and this set can be encoded in poly-
nomial space (w.r.t.|Φ|). Now the procedure guesses non-
deterministically a letterwi and a subsetSi+1 and verifies
that it may correspond to the leveli + 1. For this, the al-
gorithm has to checkSi+1 |= δ(ψ,wi) for everyψ ∈ Si:
this is done again with a non-deterministic choice of subsets
Γ in the functionδ and by interpretingϕ1U[C≺]ϕ2 (resp.
ϕ1U[C≻]ϕ2) as true if there is some formulaϕ1U[C−Γ]ϕ2

in Si+1 (resp.ϕ1U[C′]ϕ2 in Si+1 with C = C′ − Γ).
Moreover as usual for this kind of algorithms, the pro-

cedure will guess non-deterministically that some levelℓ is
the first state of a cycle and will verify that there is a future
level labeled with the same set of formulasSℓ: to do this we
simply need to memorizeSℓ.

Finally we need to verify that the acceptance condition
is satisfied by the final cycle from levelℓ. This is done
by checking that every formulaϕ1U[C]ϕ2 ∈ Sℓ is satisfied
somewhere along the cycle (there must be no branch along
which the labelϕ1U[C]ϕ2 ultimately appears forever). For
this, we need to store (and update) theUntil-subformulas
that have not yet been satisfied along the cycle, and mark
each of them as soon as the correspondingϕ2 holds, which
can be done step by step by analyzing the functionδ. Once
the set of formulasSℓ is repeated, we need to have succes-
fully asserted this fact for every formula (or one of its de-
scendants with constraintC−Γ). Note that everyϕ1U[C]ϕ2

that does not occur at levelℓ but appears inside the cycle
will be either satisfied before the next occurrence ofSℓ, or
will yield a subformulaϕ1U[C′]ϕ2 in Sℓ and then will be
treated as in the previous case.

This yields anNSPACE procedure and by Savitch’s the-
orem one can deduce the existence of aPSPACE algorithm.
The model-checking algorithm is based on the same tech-
nique for analyzing the alternating automaton.

This result is another illustration of the potential com-
plexity cost of equality in quantitative constraints as in the
timed case [1].

5. Extension with diagonal constraints

In [12], we presented several decidable fragments of
CCTL in which atomic constraints with subtraction were
allowed. In this section, we show that even a simple exten-
sion of LTL with such constraints leads to undecidability.
More formally, we consider the logic obtained fromCLTL
by replacing the constraint languageC with the language
C′ of constraints of the form♯ϕ1 − ♯ϕ2 ∼ k (i.e. with no
Boolean combination), which we calldiagonalconstraints.
It turns out that, unlikeCCTL where model-checking re-
mains polynomial for this restricted case, this constraint
language yields undecidability in the case ofCLTL.

Theorem 8. The model-checking and satisfiability prob-
lems forCLTL with atomic diagonal constraints are unde-
cidable.

Proof. This is done by reduction from the halting problem
of a two-counter machineM with countersC andD, and
n instructionsI1, . . . , In. EachIi is either a decrement
〈if X=0 then j else X--, k〉 whereX stands for
C orD, an increment〈X++, j〉, or the halting instruction
〈halt〉. We define a Kripke structureSM = (Q,R, ℓ),
whereQ = {q1, . . . , qn} ∪ {ri, ti | Ii = 〈if ...〉}. The
transition relation is defined as follows:

• if Ii = 〈X++, j〉, then(qi, qj) ∈ R ; and

• if Ii = 〈if X=0 then j else X--,k〉, then
(qi, ri), (ri, qk), (qi, ti) and(ti, qj) in R.

The labelingℓ is defined over the set{halt, C+, C−, C0,
D+, D−, D0} asℓ(qi) = {X+} if Ii is an increment ofX ,
ℓ(ri) = {X−} andℓ(ti) = {X0} if Ii is a decrement for
X , andℓ(qi) = {halt} if Ii is the halting instruction.

A run going throughti for somei will simulate the pos-
itive test “X = 0”: we use the propositionX0 to observe
this fact. Indeed along any run inSM, a state satisfiesX0

if and only if that state is someti state, which witnesses the
fact that the counter’s value was deemed equal to zero. The
propositions on the other states are self-explanatory, wit-
nessing increments and decrements of counters.

CheckingCLTL with atomic diagonal constraints on this
structure solves the halting problem, sinceM halts if and
only if SM |= Φ with:

Φ = F[(♯halt≥1)]⊤

∨
∨

X∈{C,D}

(

F[(♯X+−♯X−<0)]⊤ ∨ F[(♯X+−♯X−>0)]X
0
)

The formulaΦ is satisfied by a run because eitherSM halts,
or the run does not simulate correctlyM because the num-
ber of decrements is at some point larger than the number
of increments, or because some counter was incorrectly as-
sumed to be zero while simulating a test. Thus, ifΦ is true
for every run, it is in particular the case of the path simulat-
ing the behavior ofM.

6. CCTL∗

Using similar modalities in a branching framework, one
can define a counting extension of the logicCTL∗.

Definition 4. Let AP be a set of atomic propositions, we
distinguish:

CCTL∗ ∋ ϕs, ψs ::= P | ϕs ∧ ψs | ¬ϕs | Eϕp
CCTL∗

p ∋ ϕp, ψp ::= ϕs | ϕp ∧ ψp | ¬ϕp | ϕpU[C]ψp

whereC denotes a counting constraint as in Def. 2 with
subformulas inCCTL∗ ∪ CCTL∗

p .

The semantics ofCCTL∗ formulas is defined over states
of Kripke structures as follows:

Definition 5. The following clauses (Boolean cases are
omitted) define the conditions for a stateq (resp. a runρ) of
some KSS = 〈Q, qinit , R, ℓ〉 to satisfy aCCTL∗ formulaϕs
(resp. aCCTL∗

p formulaϕp) by induction over the structure
of ϕs (resp.ϕp):

q |=S P iff P ∈ ℓ(q)

q |=S Eϕp iff ∃ρ ∈ Runs(q), ρ |=S ϕp

ρ |=S ϕs iff ρ(0) |=S ϕs

ρ |=S ϕU[C]ψ iff ∃i ≥ 0, ρi |=S ψ, ρ, i−1 |=S C

and ∀0 ≤ j < i, ρj |=S ϕ

We useA to denote the dual ofE. The model-checking
problem consists in deciding whether a givenCCTL∗ for-
mula holds for a given state in a KSS.

Theorem 9. The model-checking problem forCCTL∗ is
EXPSPACE-complete.

Proof. EXPSPACE-hardness comes from the correspond-
ing problems forCLTL. EXPSPACE membership is ob-
tained thanks to theEXPSPACE procedure forCLTL for-
mulas. One can design a polynomial-time algorithm that
calls an oracle forCLTL subformulas, which provides a
PEXPSPACE procedure (hence also inEXPSPACE).

7. Conclusion

We have proposed new extensions forLTL and CTL∗

which, together with our related results forCTL [12], pro-
vide a general overview of expressivity and complexity for
a natural class of quantitative temporal logics. There are
several possible continuations to this work, some of which
we are currently exploring. It would be interesting to evalu-
ate the succinctness and algorithmic properties of theunary
fragment ofCLTL (i.e. CLTL with unary-encoded con-
stants), for which we believe better algorithms may exist

despite the fact that it is not clear how to avoid an exponen-
tial blow-up in the dag-size of theLTL translation. It would
also be natural to consider the addition ofpastmodalities,
which bring exponential succinctness improvements toLTL
with no significant complexity cost. Finally, we are working
on different (cumulative) semantics for constraints, which
evaluate counting expressions over the full history of runs.

References

[1] R. Alur, T. Feder, and T. A. Henzinger. The benefits of re-
laxing punctuality.J. ACM, 43(1):116–146, 1996.

[2] R. Alur and T. A. Henzinger. Logics and models of real
time: A survey. InProc. REX Workshop, volume 600 of
LNCS, pages 74–106. Springer, 1992.

[3] R. Alur and T. A. Henzinger. A really temporal logic.
J. ACM, 41(1):181–203, 1994.

[4] D. Bustan, D. Fisman, and J. Havlicek. Automata construc-
tion for psl. Technical report, The Weizmann Institute of
Science, 2005. Available as Tech. Report MCS05- 04.

[5] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alterna-
tion. J. ACM, 28(1):114–133, 1981.

[6] E. A. Emerson. Temporal and modal logic. InHandbook of
Theoretical Computer Science, volume B, chapter 16, pages
995–1072. Elsevier Science, 1990.

[7] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srini-
vasan. Quantitative temporal reasoning.Real-Time Systems,
4(4):331–352, 1992.

[8] E. A. Emerson and R. J. Trefler. Generalized quantitative
temporal reasoning: An automata-theoretic approach. In
Proc. 7th TAPSOFT, volume 1214 ofLNCS, pages 189–200.
Springer, 1997.

[9] K. Etessami and T. Wilke. An until hierarchy and other
applications of an Ehrenfeucht-Fraı̈ssé game for temporal
logic. Inf. Comput., 160(1-2):88–108, 2000.

[10] H. Hansson and B. Jonsson. A logic for reasoning about
time and reliability. Formal Asp. Comput., 6(5):512–535,
1994.

[11] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Efficient
timed model checking for discrete-time systems.Theor.
Comput. Sci., 353(1-3):249–271, 2006.

[12] F. Laroussinie, A. Meyer, and E. Petonnet. Counting CTL.
In Proc. 13th FoSSaCS, volume 6014 ofLNCS, pages 206–
220. Springer, 2010.

[13] A. Pnueli. The temporal logic of programs. InProc. 18th
FOCS, pages 46–57. IEEE Comp. Soc. Press, 1977.

[14] Property Specification Language Reference Manual, Ver-
sion 1.1, 2003. http://www.eda-stds.org/vfv/
docs/PSL-v1.1.pdf.

[15] M. Y. Vardi. An automata-theoretic approach to linear tem-
poral logic. InLogics for Concurrency: Structure Versus
Automata, volume 1043 ofLNCS, pages 238–266. Springer,
1996.

[16] M. Y. Vardi and P. Wolper. An automata-theoretic approach
to automatic program verification. InProc. 1st LICS, pages
332–344. IEEE Comp. Soc. Press, 1986.

[17] P. Wolper. Temporal logic can be more expressive.Inf. and
Control, 56(1/2):72–99, 1983.

