Counting LTL

Francois Laroussinte Antoine Meyet
Eudes Petonnét

L LIAFA, Université Paris Diderot — Paris 7 & CNRS UMR 7089 aFce
{Francoi s. Lar oussi ni e, Eudes. Petonnet} @i af a. j ussi eu. fr

2 LIGM, Université Paris Est — Marne-la-Vallee & CNRS UMR4) France
Ant oi ne. Meyer @ni v-m v. fr

Abstract operators defined with grammars as in [17]).

. o . In this paper, we present a counting extensiorL b
This paper presents a quantitative extension for the . . : I
. . . : . in the line of [12], calledCLTL, whereUntil modalities
linear-time temporal logi¢.TL allowing to specify the num- ; . .
o . are equipped with constraints on the number of true occur-

ber of states satisfying certain sub-formulas along paths. . : i

. - P rences of certain subformulas. For instance, in a mutual ex-
We give decision procedures for the satisfiability and model :

. . . clusion protocol where two processes try to access the same
checking of this new temporal logic and study the complex-

. : critical section, the formul& (re F CS1)) ex-
ity of the corresponding problems. Furthermore we show (A1 = Flics;<s) 1))
. presses the fact that whenever processquests access to
that the problems become undecidable when more expres: o S i
. . . the critical section it is eventually granted access, ani un
sive constraints are considered.)
then procesg can be granted access at mosimes. More
generally, we allow constraints to be arbitrary Boolean €om
_ binations of atomic statements of the fopmy «; - f; ~ ¢,
1. Introduction wherec and eachy; are positive integersy is a compar-

ison operator and eadfp; represents the number of states

Temporal logic (TL) is a well-known and well-studied for- from which somearbitrary CLTL formulay; holds along a
malism for specifying and verifying properties of autonthte ~ certain prefix of the run.
systems [13]. Classical temporal logics, suchL#ik or We show that, even thoudELTL formulas can be trans-
CTL, express properties on the temporal ordering of eventslated into classicalTL, this translation might yield an ex-
along the executions (see [6] for a survey). Many extensionsPonential blow-up in formula size. We then turn to the satis-
of these formalisms have been studied, whose aim is usuallyfiability and model-checking problems f@LTL, for which
to improve expressivity in order to capture more complex We provide automata-based algorithms running in exponen-
specifications, or to make properties shorter and easier tdial space. This complexity is asymptotically optimal,cen
write. Of course there is an important trade-off between the both problems turn out to bEXPSPACE-complete. We
expressivity of the logic and the efficiency of decision pro- conclude this algorithmic study by presenting a fragment
cedures, the ultimate goal being to algorithmically decide of CLTL whose satisfiability and model-checking problems
satisfiability or model-checking problems. arePSPACE-complete, and show that any generalization of

Among the well-known extensions of classical tempo- constraints with subtraction makes both problems undecid-
ral logics, we can mention real-time TLs (see for exam- able. Finally, we show that. for a similar couqting extensiqn
ple [2, 3, 7]) where it is possible to add timing constraints of CTL", the model-checking problem remains solvable in
in properties (for example, one can specify that an eventEXPSPACE.

A follows an eventB in at most 5 time units) or proba- This work is related to our previous effort on counting
bilistic TLs (see [10] for such an extension©f’L) where extensions ofCTL [12], where we use the same counting
it is possible to express properties like “evehtwill oc- constraints as described above. By varying the allowed syn-

cur with probability 0.99 or greater”. These two extensions tax of constraints, we presented a thorough account of the
are calledquantitative extensiong\nother classical variant expressiveness and succinctness of the logic with respect
consists in adding some form of regular expressions [8] (orto CTL, and proposed an algorithmic study of the model-

checking problem, which ranges froRrcomplete when Counting LTL. We define a quantitative extensionldfL
only atomic constraints are consideredA§-complete for able to express constraints over the number of times certain
the full logic. Contrary taCLTL, we also managed to char- sub-formulas are satisfied along a run:
acterize decidable fragments with subtractive conssaint o]] »

There have also been several works on extensiopElof ~ Definition 2. Given a set of atomic propositionsP, we
to handle quantitative aspects of systems. In [8], the au-d€fine:
thors extend linear-time logic with some simple regular ex-
pressions along with quar?titative constraintg on ?he num- CLTLS 0.9 u= P [o A¢ | ¢ | Uiery
ber of occurrences of sub-expressions. They present algo
rithms for model-checking this extension, whose time com-
plexity is exponential in the size of formulas and treue C3C,C' ==T|CAC' | =C | 3,0t ~k
of integer constants (satisfiability is not considered)isTh
means their time complexity is doubly-exponential, which wherek, o; € N*, ~€ {<, <,=,>, >} andy; € CLTL.
is comparable to ours. However, our logic can more eas-
ily express complicated quantitative constraints but cann N CLTL formulas, we make use of the standard abbre-
specify as simply properties on the order of events. An- V|at|0ndsf\/, =, <, 1, T,aswell as thdefaddmonal modality
other interesting specification language is Sugar/PSL [14] Fiej¢ = TUjcje, and its dualGieye = —Fey—p. More-
which defines many additional operators abbVe. These over the classical Next operatéiis defined ag;+—,), the
include in particular some counting constraints which are standardintil U is Ut (F is Firj andG is Gry). Any for-
used together with regular expressions, subsun@hgL mula occurring in a constraidt associated with a modality
with atomic constraints. To our knowledge, there is no ac- in @ is considered as a sub-formula®f The size|®| of
curate study of lower complexity bounds for these exten- ¢ takes the size of these constraints and their sub-formulas
sions [4]. into account, assuming that integer constants are encoded

The paper is organized as follows. Section 2 defines their,' binary (unless explicitly stated otherwise). The DAG-

logic CLTL, whose expressivity and succinctness are stud-S'“€ 0f® is the to_tal numt_)er offistinctsub-formulas of.
ied in Section 3. Section 4 presents EXPSPACE satis- As model-checking algorl_th_ms compute only once the truth
fiability algorithm based on alternating Biichi automata, a value ofgsub-formula, th's.'s generally more relevant i
well as theEXPSPACE-hardness proof and RSPACE al- complexity of model-checkmg.) _ o
gorithm for a fragment o€LTL. Section 5 deals with an The semantics o€LTL formulas is defined over infinite

. H AP\w .
undecidable extension of the constraint language. FinaIIyWords in(2%):
Section 6 presents a counting extensiolCoL".

whereP € AP andC is a counting constraint defined as:

Definition 3. The following clauses define the conditions
for an infinite wordw € (24)« to satisfy aCLTL formula

2. Definitions o —writtenw |= ¢ — by induction over the structure of
Models. LetAP be a set of atomic propositions. In linear- w =P iff P e wo

time temporal logics, formulas are interpreted over indinit wEeAY iff wE pandw = ¢

words in(2AP)«. Given such a woray, w; denotes theé-th w iff w b

letter andw? is thei-th non-empty suffix ofv with i > 0. . ;)
As we will be considering the model-checking problem, we wi= Ui iff 3> 0,0" ¢, wi-1EC
also recall the classical notion of Kripke structure: andV0 < j <i, w ¢

Definition 1. A Kripke structure(or KS) S is a tuple
(Q, qinit, R, £) where@ is a finite set of stategy,ix € @

is the initial state,R C Q x @ is a total accessibility rela-
tion and/ : Q — 2P is a labeling of states with atomic
propositions.

The semantics ab, i = C'is based on the interpretation of
tp over the suffixesv’ for 0 < j < 4, denoted byw, i|,
and defined asfw,i|, = [{j | 0 < j <iAw E ¢}
Given these valuesg] is interpreted in a natural way (and
is true over every word).

A run (or path)p of S is an infinite sequence of states
doq14e - - - such that(q;, ¢;+1) € R for everyi. We usep(i)
to denote the statg andp’ to denote the suffiy; - ¢; 41 - - -
of p. Runs(q) denotes the set of runs starting from some
stateq € @ andRuns(S) is a shortcut foRuns(ginit)-

In the following, we will be referring to both infinite Remarkl. Let us denote by’ the constraint dual t6’ ob-
words in(247)« and paths of some KS asns tained by propagating the negation operator(i towards

Given a KSS = (Q, ginit, R, £), we writeS = ® when
every executiorp € Runs(S) satisfies® (i.e. £(p(0)) -
£(p(1))--- E ®). We use= to denote the standard equiva-
lence between formulas.

atomic constraints (using De Morgan’s laws and inverting
comparison operators as required).

(pUicnp € pUiepep if €' £ C). It can be shown that is
a well-founded strict partial ordering ovELTL formulas.

Negation and disjunction operators can be eliminated

from constraints using the fact thal_c1¢ = QDU[é]’l/J
and pUicveny = @Uegy V U, However, even
thoughoUicacnt = wUic1¥ A pUjcn9, the converse

does not hold, as can be seen on the simple examplqormula o1Uiy can be

Fiepi—1nsp,—1) T (indeed this formula requires that at some
point both P, and P, must have been seen exactly once,
while Fjyp, 1) T AF3p,—1) T does not: for instancg; may
occur twice before> first occurs).

This implies that anyCLTL formula can be translated

3. Expressivity

In classicalLTL, a crucial observation is that
unfolded” by distinguishing the
possible cases in the first state of a run, yielding the fol-
lowing equivalence:

Unfolding.

©1Upa = V (991 A X(smUsDz))

into an equivalent formula where all constraints are of the In order to obtain a similar equivalence for a formula

form A, a; - s ~ k. However, this may yield an expo-
nentially longer formula, since it essentially requiresco
straints to be put into disjunctive normal form.

Manipulating constraints. We now define two opera-
tions on constraints, which will play an important techiica
role in the remainder of the paper.

Let C be a counting constraint containingatomic con-
straints {n > 0) of the form}=, ., ., _a;'- Bl ~ k; for

€ [1,m]. We defineSc as the se{y; | i € [1,m],j €

[1,n:]}. ForanyA C S¢, we inductively define the sub-
tractive updat€' — A of C by A by:

-C' — A Z+(C—A)
(CAC)—A Z(C—-A)A(C" = A)

(Ciei-toi v k) = A 35 ai -t ~ K
with & £k — S

pjen Y

Notice that even though constantsdhare defined to be
positive integersC' — A may contain negative constants

as right-hand sides of comparison operators. However, ity — S idw,il, =k =
can easily be seen that atomic constraints where negative

constants (or possibly 0) occur are either trivially true or
trivially false. We thus define a second update operation
calledsimplification

We define the constraiidi| obtained fromC by replac-
ing any (trivially true) atomic constraint of the forf > &
with k. < 0orS > kwith & < 0 by T (wheresS stands
for an arbitrary sum of counting expressions), and any-(triv
ially false) atomic constraint of the forsi < £ with £ < 0
or S < kwith £ < 0 by L, and simplifying the obtained
constraint in the usual way (as one would simplify a propo-
sitional logic formula). Note thaf'| is either reduced td
or L, or does not contaifm or L as a sub-formula. Also
note thatC andC| are equivalent.

We will write C/ C C whenever there exists a s&tC
Sc such thatC’ = (C — A)], andC’ C Cif A # @.
This notation is extended ©LTL formulas in a natural way

©1Ujc1p2 in countingLTL we need to take into account
all the counting expressions occurring@h and to update

the relevant atomic constraints accordingly. To this end we
make use of the two elementary update operations on con-
straints defined in the previous section.

Lemma 1. For all word w in (2AP)« and indexi > 0,
wi E C <= whi—-1FE (C-A)l, where
A={peSc|wk ¢}

Proof. Let ", .o, ~ k be any atomic constraint i@,
and) " o fp; ~ K with &' =k — ZWGA «; the corre-
sponding constraint i’ = C — A. By definition of A, for
everyp € A we have

w,ily = 1{j |0 <j<inw e}
=1+|{jl0<j<inu’ [y}
=1+ [{j10<j<i-1Aw'™ |= o}
=1+ w',i—1],.
Similarly for everyp € A, |w,i|, = |w',i—1|,. Thus

NG ol |wti—1

=k -3, a;.|w'i-1

Pi

i

' Since every atomic constraint 6fis satisfied ovew at po-
sition 7 if and only if the corresponding constraint @ is
satisfied ovet! at positioni — 1, andC andC’ have other-
wise identical structures in terms of Boolean combinations
we get thatw,i = C <= w',i—1 F C — A, which
entails the result since the simplification operation dass n
change the validity of a constraint. O

This enables us to express the effect of the first step in a
run on a formula’s constraints. We can now come up with
an unfolding property similar tbTL. The intuitive idea is to
guess the subs&tC S¢ of formulas accounted for in con-
straintC which hold over the word at positidh check that
this guess is correct and upddfeaccordingly as described
in the previous lemma.

Proposition 2 (Unfolding). Let® = ¢; U2 and

¥ = Vrcso (Aper ® A Nyesorr =¥
A1 A X(%U[(C—F)u%))-

The following equivalence holds:

{

Proof. ® = U /T V ¢y If O is satisfied over some word
w € (2AP)«, then by definitiordi > 0, w’ = 2, w,i—1 =
Candv0 < j <i,w’ = .

Ifi =0,i.e.w,—1 | Candw = @3, then¥ Vs, holds.
Otherwise { > 0) it must be thaiv = ¢, andw,i—1 | C.
Let A be the set of formulas o~ which hold overw, by
Lemma 1 we havev!,i —2 = (C — A)|. Furthermore
there exists a disjunct iff (namely wheri® = A) such that
Nyer YA Npeso\r ¢ holds. Finally, we can deduce from
all of the above thatw!)"=! |= o, wl,i—2 = (C — A)]
andv0 < j < i—1, (w')? & ¢, in other wordsw!
©1Ujc—a)y 2. Together with the above observations, this
implies thatw = .

U = &: Letw = ¥, there must exisE' such thatw =
Nper ¥ A Ngpesorr 7¢ A o1 AX(e1Uc-r)jyp2). From
this, we can deduce that (B} > 0,w,i+1 E @2 and
VO <j <dw,j kg1, (Qu'i E (C—-T)] and (3)
I' = {p € S¢ | w = ¢} which by Lemma 1 entails that
w,i+1 | C. Together with item (1) above, we get that
w = . O

UV o
g

if w,—1 E C,
otherwise.

Remark2. Note that even a single unfolding step as de-

Next, if C ¢ {T, L}, itis easy to show that

Q= (/\wesc ﬁl/’)u((\/lpesc P) A (SDIU[C]SD2))
= (Apese ﬂ/’)u((vlpesc Y) N D))

whered’ is ¥’ V ¢, if w,—1 = C and ¥’ otherwise, and
¥’ is identical to formula¥ in Prop. 2 above, omitting the
disjunct forT' = @. Now the top-most constraints’ oc-
curring in ¥’ are equal tqC' — I')] with some non-empty
T, and thus?’ = ®. By induction hypothesisy’ can be
translated intd TL, which concludes the proof. O

However, this translation may yield an exponential in-
crease in dag-size, since the number of distinct conssraint
C' C C'is of the order ofM™ (with M the largest con-
stant andn the number of atomic constraints occurring in
), hence also i°(®") . We are as of yet not able to
show that this bound is tight, but there ex®{TL formulas
whose shortest equivalebfL formula is provably of dag-
size at least irD(M).

Proposition 4 (Succinctness)AnyLTL formula equivalent
to the CLTL formula®;, = F(—=bUp,—x T) has temporal
depth at leaskt — 1 (i.e. exponential in®y|).

Proof. Consider the seAP = {a,b,c}, and the property
STAIRS ([9]), which states that there exists a portion of
the path in which proposition occurs at least times but
propositionb does not occur. In [9], it is shown that this
property can only be expressed by B formula with at
leastk — 1 nestedUntil modalities. However, this formula
is equivalent to th€LTL formulady,. O

scribed by the previous proposition may entail an exponen-4. Decision procedures

tial increase in the dag-size of the formula, since the'set

needs to be guessed explicitly. This blow-up can be kept

polynomial by “scanning” formulas i§< one at a time and
in a fixed order instead of considering all possibl€ S¢.

We consider two standard decision problemsG@aiL,
namely satisfiability (give® € CLTL, does there exists a
model for® ?) and model checking (giveh € CLTL and

This technique was used in [12] to study the translation of a some KSS, do all runs ofS satisfy®, i.e.S = & ?).

fragment of CCTL into CTL.

Expressivity and succinctness. Similarly to the corre-
sponding countingTL logic [12], CLTL is not more ex-
pressive than classichrI'L.

Proposition 3 (Expressivity) Any CLTL formula can be
translated intoLTL.

Proof. We reason by induction on the structuredaf The
case of Boolean connectivesis trivial. We treat the dase
©Ujcp by induction on the well-founded partial ordering
C defined in the previous section.

If ® is minimal forC (i.e. C' € {T,.1}), we can di-
rectly use the inductiveTL translations ofp and+, since

pU ¢ = L andpU 9 = pUi.

Classical decision procedures fofL satisfiability are
based on automata constructions. Given sameformula
®, one can either build an (exponential) non-deterministic
Bichi automaton or a (polynomial) alternating Biichi au-
tomaton accepting exactly the models®f Satisfiability
then consists in checking whether the language of the au-
tomaton is empty [15]. We begin this section by recalling
the definition of alternating Biichi automata, then extdred t
usual automata-based decision procedures for satisfyabili
and model-checking to our log€LTL.

4.1. Alternating Blichi Automata over w-words

An alternating Biichi automaton on infinite words is a
tuple A = (X, S, 5%, 6, F) whereX is a finite alphabetS

is a finite set of states € S is the initial state§ : S x
¥ — BT(9) is the transition function assigning a positive
Boolean formula ovef (including L andT) to every pair
(s,0),andF’ C S is the Buchi acceptance condition.

A run over an infinite wordw = aga; --- € X% is an
infinite S-labeled treeT = (T,1) whereT is a tree and
[: NodegT) — S assigns an element ifi to every node
in T. The roote of T has to be labeled by’ (i.e.l(c) =
s%) and every node: at depthi (written || = i) hask
(k > 0) childrenz;,. .. x such that the formulé(i(z), a;)
is interpreted to true when one assighdo every state in
{l(x1),...,l(x)} and_L to other states.

The run is accepted when every infinite branciafon-
tains infinitely often nodes labeled by statesfimnd every
finite branch ends in a nodesuch that(I(z),a),) = T.
We useL(.A) to denote the set of words acceptedby

4.2. Satisfiability

By using the standard techniques 1drL, one obtains
the following results:

Proposition 5. Given aCLTL formula®, one can build an
alternating Bichi automaton4s such that (1)|.As| is in
O(|®| - M®) whereM is the maximal constant occurring
in constraints insideb, and (2) L, (Ag) is exactly the set
of runs satisfyingb.

Proof. Let ® be aCLTL formula. LetM be the maximal
constant occurring in the counting constraintsbirandm
the maximal number of atomic constrai, «; - f; ~ k
occurring in the same constraintdn

We defineds = (%, Ss,5° 0, F), whereX is 247,
Sg is the set of all subformulas @ (including those ap-
pearing in constraints)p; Uy c_a)jp2 for every subfor-
mulap;Ujcjp2 andA C Se, and their negations? is @,
§: Se x ¥ — B1(Ss) is the transition function defined be-
low and F' contains every state ifi of the form—(p1Uys)
or =(p1Uc)p2)-

In the following we usé to denote the negation normal
form of the formulad € BT (S4): every conjunction (resp.
disjunction) becomes a disjunction (resp. conjunction),
(resp.L) becomesL (resp.T), andd is justd. Negated
states are fine singe € Sg = —¢ € Sp.

For convenience, we define of the transition function re-
cursively. Occurrences 6f o, o) in right-hand sides should
be replaced by their definition until a formulaB1(Ss) is
obtained. We havé(P,c) = T if P € o and_L otherwise,
3 NY,0) =d(p,0) Ad(¢,0), andd(—p, o) = 6(p, 7).
The rule forU is based on the unfolding rule (see Prop. 2):
d(p1Ujcyp2,0) = 6(p2,0) VO if p,—1 = C andd other-

wise, with

0= \/ngc (quer S, o) A /\qpesc\r 5(ﬁ¢7 o)
ANd(p1,0) A (e1Uyc—ryye2))-

The number of states is IR(|®| - M™) : everyp; U2
subformula may providéM + 2)™ states. Also note that
the transition formul& above can be expressed in a more
concise way using a more refined unfolding technique (Cf.
Rem. 2), at the cost of roughly duplicatin§c| times
the states corresponding to edgfa-subformula. This au-
tomaton recognizes exactly the modelspof O

The complexity of this algorithm is in fact asymptoti-
cally optimal:

Theorem 6. CLTL satisfiability iSEXPSPACE-complete.

Proof. Membership inEXPSPACE is based on Prop. 5:
the size of the automatad is in 2°(®1*) and checking
emptiness of an alternating Buichi automato® &PACE-
complete [5]. This provides aaXPSPACE algorithm.

First note thaEXPSPACE-hardness is a consequence of
the complexity ofTLTL (i.e. TimedLTL) over discrete time
domains [11]. Nevertheless we give a proof based on the
encoding inCLTL of the execution of a Turing Machine
running in exponential space over some input word (such
an encoding is classical, see for example [3]).

Consider a deterministi2z”-space-bounded Turing ma-
chineM = (2, Qum, qo, gF, RA), With an initial tape con-
tentX = zy...x,. We assume w.l.o.gc = {a,b}. ¢
is the initial state andr is the final state. And as usual
Ry CQmxExEx{-1,1} x Qum.

Now we construct a polynomial-size formula describing
the accepting computation g1 on X. The set of atomic
propositionsAP is defined as followsAP containsP, and
P, to represent the corresponding symbol on the tape, an ad-
ditional propositionP, to separate two consecutive config-
urations, and proposition, , and P, , for everyq € Q a
to mark the position of the tape head on a cell containing a
symbola or b respectively.

A configuration of M is encoded as a sequence2df
states labeled with propositionsA# to represent the con-
tent of the cells. One of these cell is labeled with safhg
or P, 4, and the sequence is preceded and followed by a
state labeled withP;.

In the following we use the abbreviatidfy to represent
A peap —P. This formulais used to represent empty cells.

To specify that the run is the correct and accepting one,
we need a formula of the forrt®; A ©,,,) = @, (where
1, m anda stand forinit, move and accept respectively),
meaning that if the run starts with the initial configuration
and follows the transitions o}, then it is accepting. These

three formulas can be expressedirL:

®i = Pu AX(Pay a0 A Nacran Fler=r P
A FgT—nt1)(PaUpgr=2n —n) Ps)
By, = G(Py = X(~Po)Upr—gn Ps)
A Ny, P,y enps G((PL A XPy AXXP3)

= Fyroonio) fm(Pr, P, P3))
b, = F(Paqu vV Pbqu),

where the functiorfy(Py, P2, Ps) refers to the transition
rules of M: fap(P1, Po, P3) gives the value of the cell
containing P, in the next configuration given the defini-
tion of the left cell (°;) and the right cell P5). For in-
stance, for every rulég, a, b, +1,q’) in Rxq we will have:
fm(Pr, Py g, P2) = P, forany P, € AP and anyP, # P;.
Moreover we have for any?, € AP, the two values:
fM(Pa.,anmPl) = Pa,q/ andfM(Pa,anbapl) = Pb,q/-
And we also defing'a(Py, P>, P3s) = P, if neither P, or
P are of the formP, , or P, , for someg.

The lengths of formula®;, ®,,, and®, are polynomial,

since constants are encoded in binary, which implies the

EXPSPACE-hardness o€LTL satisfiability.

Note that if constraints are atomicg, without Boolean
combinations in subscripts), then is equal tol and the
size of Ag is in O(|®| - M). If in addition, constants are

an accepting infinite run if and only if there exists a path in
S violating ®. O

Note that the program complexity of model-checking for
CLTL (i.e. the complexity of model-checkingfied for-
mula) is (like forLTL) NL-complete [16].

4.4. APSPACE fragment of CLTL

The EXPSPACE-hardness proof o€LTL satisfiability
only uses counting constraints of the fortT" = £”": there
is no need for nested formulas in constraints, no Boolean
combinations and no sums. Here we introduce the fragment
CLTL™ defined as the set @LTL formulas where count-
ing constraints are purely conjunctive terms, and compar-
ison symbols are not mixed inside a constraint. In other
terms, constraints are of the forn\'>". a; - #v; < k7,
“AY, i - fi; > k” or their non-strict variants. Note that
this restriction also applies over subformulas in constgai

We usep;Ujc<jp2 (resp.oiUjcyp2) to denote atn-
til-subformula tagged with a constraint of the form “less
than”i.e.with < or < (resp. “greater than” witk> or >).

In the following theorem, we claim th<L ™~ formulas
admitPSPACE decision procedures:

Theorem 7. The satisfiability and model-checking prob-
lems forCLTL™ are PSPACE-complete.

assumed to be encoded in unary, the satisfiability algorithmpProof. PSPACE-hardness comes fromiTL satisfiability.

become$SPACE.
4.3. Model-checking

Corollary 1. The model-checking problem f@<L is
EXPSPACE-complete.

Proof. Hardness foEXPSPACE comes from that of satisfi-

PSPACE membership is based on the fact that given a
CLTL™ formula® and A4 the corresponding automaton
as built in Proposition 5, for any accepting run over some
modelw of ®, there exists a “small” accepting run ower
By small, we mean a tree with width (i.e. the maximal
number of nodes at the same level) boundeiiy

Let ® be aCLTL™ formula. First we can assume that
® only contains atomic constraints (with no conjunction):

ability, which can be reduced to a model-checking problem indeed evernCLTL ™~ formulap;, U c o2 is equivalent to

using some kind ofiniversalKripke structureS, able to
generate any possible word {27)~: @ is satisfiable iff
S. £ —®. LetAP be{ P, ..., P,}. Instead of considering

p1Uc1p2 A p1Ujcryp2. This translation can be done ef-
ficiently and the dag-size of the resulting formula is linear
in the size of the original one. L&ubf{®) be the set of

a complete KS whose states are labeled with every possiblesubformulas ofp.

subset ofAP (which would yield an exponential structure),
we use a succinct K8, that encodes every valuation of a
state inS,, as a sequence of states labeled respectively by
@ or P;...Itthen remains to sligthtly modif$ to take into
account this encoding. L&’ be the modified formula, we
can reduces, = ®toS), = 9.

Membership inEXPSPACE is obtained following the
idea for classicaLTL model-checking. Given a Kripke
StructureS and aCLTL formula®, one builds as previously
an alternating Buichi automatoh for the formula—®. Itis
then straightforward to compute the product4fvith the

Now considetds as defined in Proposition 5. The num-
ber of states ofds is in O(|®| - M) whereM is the size
of the maximal constant occurring . Thus this number
is exponential in®| (this blow-up is due to the rewriting
of o1 U2 subformulas int@; Ujc_ryp2 subformulas in
the functions).

Now consider an accepting ruh = (7,1) of Ag over
an infinite wordw that is a model ofb. At every leveli
of the treeT’, the nodeqz1, ...,z } are labeled with the
set of formulag{i(z1),...,l(zx)} C Se (see the definition
of S in Prop. 5) and every formuléz;) holds over the

structureS in such a way that the obtained automaton has word w®. For everyy) € Subf®) of the form 112,

itis possible to have several formulasU;c_rp- for dif-
ferent subset§' of S-. But we clearly only need to verify
one formula of this set: i) is a “less than” (resp. a “greater
than”) formula, we consider the one containing the mini-
mal (resp. maximal) constahtin the constraint. Indeed we
clearly havep Uiccpjp2 = p1Ujc<prp2 for anyk < &/
andy1Ujos w2 = ¢1Uics w2 foranyk > &'

5. Extension with diagonal constraints

In [12], we presented several decidable fragments of
CCTL in which atomic constraints with subtraction were
allowed. In this section, we show that even a simple exten-
sion of LTL with such constraints leads to undecidability.
More formally, we consider the logic obtained fraDbTL

Then at every level of the tree, we only need to keep oneby replacing the constraint languagewith the language

formula among this subset of formulég Ujc_rjp2 | T C

Sc}. Thus we can ensure the number of formulas label-

ing states at some level to be bounded®y; This remark
leads to alNSPACE algorithm for satisfiability (and model
checking). It works as follows.

Let S; be the set of¢ formulas labeling states of level
i: we have|S;| < |®| and this set can be encoded in poly-
nomial space (w.r.tj®|). Now the procedure guesses non-
deterministically a lettetv; and a subse$;,; and verifies
that it may correspond to the level 1. For this, the al-
gorithm has to checl§; 1 E 6(¢, w;) for everyy € S;:
this is done again with a non-deterministic choice of subset
I" in the functiond and by interpretingo, Ujc<)p2 (resp.
p1Ujcsp2) as true if there is some formulay Ujc_ryp2
in SfL'Jrl (reSp.QO1U[C/]g02 in SfL'Jrl withC = C’ — F)

Moreover as usual for this kind of algorithms, the pro-
cedure will guess non-deterministically that some lé\isl
the first state of a cycle and will verify that there is a future
level labeled with the same set of formulgs to do this we
simply need to memorizé,.

Finally we need to verify that the acceptance condition
is satisfied by the final cycle from levél This is done
by checking that every formula; Uicyp2 € S is satisfied

C’ of constraints of the formip; — fa ~ k (i.e. with no
Boolean combination), which we callagonalconstraints.

It turns out that, unlikeCCTL where model-checking re-
mains polynomial for this restricted case, this constraint
language yields undecidability in the caseabfTL.

Theorem 8. The model-checking and satisfiability prob-
lems forCLTL with atomic diagonal constraints are unde-
cidable.

Proof. This is done by reduction from the halting problem
of a two-counter machina1 with countersC' and D, and

n instructions!y,...,I,. Eachli; is either a decrement
(if X=0 then jelse X--, k) whereX stands for
C or D, an incrementX ++, j), or the halting instruction
(hal t). We define a Kripke structur& (Q,R,0),
where@ = {q1,...,¢.} U{rs,t; | L =({f ...)}. The
transition relation is defined as follows:

o if I, = (X++, j),then(g,q;) € R;and

oif ; = (if X=0 then j el se X--,k), then
(gi>73), (135 qx), (g3, t:) and(ti, ¢;) in R.
The labeling/ is defined over the sethalt, C*+,C—, C?,
DT, D=, D% asl(q;) = {X T} if I; is an increment of{,
{(r;) = {X~} and/(t;) = {X°} if I; is a decrement for

somewhere along the cycle (there must be no branch along,- and((q;) = {halt} if I; is the halting instruction.

which the labelp; U2 ultimately appears forever). For
this, we need to store (and update) thmtil-subformulas

that have not yet been satisfied along the cycle, and markis fact. Indeed along any run $iv

each of them as soon as the correspondingolds, which
can be done step by step by analyzing the fundiio®nce

the set of formulas, is repeated, we need to have succes-

fully asserted this fact for every formula (or one of its de-
scendants with constraiot—I"). Note that every; Ucjp2
that does not occur at levélbut appears inside the cycle
will be either satisfied before the next occurrencégafor
will yield a subformulayp;Ujcr¢2 in S, and then will be
treated as in the previous case.

This yields arNSPACE procedure and by Savitch’s the-
orem one can deduce the existence BB®ACE algorithm.
The model-checking algorithm is based on the same tec
nigue for analyzing the alternating automaton. O

This result is another illustration of the potential com-
plexity cost of equality in quantitative constraints ashe t
timed case [1].

A run going through; for some; will simulate the pos-
itive test “X = 0”: we use the propositioX° to observe
a state satisfiex©
if and only if that state is somig state, which witnesses the
fact that the counter’s value was deemed equal to zero. The
propositions on the other states are self-explanatory, wit
nessing increments and decrements of counters.
CheckingCLTL with atomic diagonal constraints on this
structure solves the halting problem, sink¢ haltsif and
only if Sy = @ with:

® = Fghai>1)) T
V' Vxereo(Fiaxt—sx-<onT V Flax+—gx->0X°)

h-The formula® is satisfied by a run because eititay halts,

or the run does not simulate correctiyf because the num-
ber of decrements is at some point larger than the number
of increments, or because some counter was incorrectly as-
sumed to be zero while simulating a test. Thus I true

for every run, it is in particular the case of the path simulat
ing the behavior of\1. O

6.CCTL"

Using similar modalities in a branching framework, one
can define a counting extension of the loGiEL".

Definition 4. Let AP be a set of atomic propositions, we
distinguish:

CCTL" 3 ¢4, 9, =
CCTL: S Yp, Py

P | (Ps/\ws | Ps | E‘pp
vs | op Ny | “¥p | ‘PPU[C]wp

whereC' denotes a counting constraint as in Def. 2 with
subformulas irCCTL" U CCTL,.

The semantics cECTL" formulas is defined over states
of Kripke structures as follows:

Definition 5. The following clauses (Boolean cases are
omitted) define the conditions for a statéesp. a rurmp) of
some KSS = (Q, ginit, R, ¢) to satisfy aCCTL" formulay;
(resp. aCCTL: formulay,) by induction over the structure

of s (resp.p):

qFEs P iff P € ¢(q)

q Fs Epp iff 3p € Runs(q),p s ¥p

P s ps iff p(0) s s

pEs U iff 3i>0,p" Es v, pi-1s C

andV0 < j <i, p' s ¢

We useA to denote the dual dE. The model-checking
problem consists in deciding whether a give@TL" for-
mula holds for a given state in a K&

Theorem 9. The model-checking problem f@CTL" is
EXPSPACE-complete.

Proof. EXPSPACE-hardness comes from the correspond-
ing problems forCLTL. EXPSPACE membership is ob-
tained thanks to th&XPSPACE procedure forCLTL for-
mulas. One can design a polynomial-time algorithm that
calls an oracle foICLTL subformulas, which provides a
PEXPSPACE nrocedure (hence also EXPSPACE). O

7. Conclusion

We have proposed new extensions gl and CTL"
which, together with our related results fGiTL [12], pro-
vide a general overview of expressivity and complexity for
a natural class of quantitative temporal logics. There are
several possible continuations to this work, some of which
we are currently exploring. It would be interesting to evalu
ate the succinctness and algorithmic properties otittey
fragment of CLTL (i.e. CLTL with unary-encoded con-
stants), for which we believe better algorithms may exist

despite the fact that it is not clear how to avoid an exponen-
tial blow-up in the dag-size of theTL translation. It would
also be natural to consider the additionpafstmodalities,
which bring exponential succinctness improvementsiio
with no significant complexity cost. Finally, we are working
on different €umulativgé semantics for constraints, which
evaluate counting expressions over the full history of runs

References

[1] R. Alur, T. Feder, and T. A. Henzinger. The benefits of re-
laxing punctuality.J. ACM 43(1):116-146, 1996.

[2] R. Alur and T. A. Henzinger. Logics and models of real

time: A survey. InProc. REX Workshgpvolume 600 of

LNCS pages 74-106. Springer, 1992.

R. Alur and T. A. Henzinger. A really temporal logic.

J. ACM, 41(1):181-203, 1994.

D. Bustan, D. Fisman, and J. Havlicek. Automata construc

tion for psl. Technical report, The Weizmann Institute of

Science, 2005. Available as Tech. Report MCS05- 04.

A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alterna-

tion. J. ACM 28(1):114-133, 1981.

E. A. Emerson. Temporal and modal logic. Handbook of

Theoretical Computer Scienceolume B, chapter 16, pages

995-1072. Elsevier Science, 1990.

E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srini-

vasan. Quantitative temporal reasonifgal-Time Systems

4(4):331-352, 1992.

E. A. Emerson and R. J. Trefler. Generalized quantitative

temporal reasoning: An automata-theoretic approach. In

Proc. 7th TAPSOF,Ivolume 1214 of NCS pages 189-200.

Springer, 1997.

K. Etessami and T. Wilke. An until hierarchy and other

applications of an Ehrenfeucht-Fraissé game for tenhpora

logic. Inf. Comput, 160(1-2):88-108, 2000.

H. Hansson and B. Jonsson. A logic for reasoning about

time and reliability. Formal Asp. Comput.6(5):512-535,

1994.

F. Laroussinie, N. Markey, and Ph. Schnoebelen. Efiicie

timed model checking for discrete-time system3heor.

Comput. Scj.353(1-3):249-271, 2006.

F. Laroussinie, A. Meyer, and E. Petonnet. Counting CTL

In Proc. 13th FoSSaG$olume 6014 oL NCS pages 206—

220. Springer, 2010.

A. Pnueli. The temporal logic of programs. Rroc. 18th

FOCS pages 46-57. IEEE Comp. Soc. Press, 1977.

Property Specification Language Reference Manual, Ver-

sion 1.1 2003. http://ww. eda- stds. org/ vfv/

docs/ PSL- v1. 1. pdf.

M. Y. Vardi. An automata-theoretic approach to lineamt

poral logic. InLogics for Concurrency: Structure Versus

Automatavolume 1043 o£NCS pages 238—-266. Springer,

1996.

M. Y. Vardi and P. Wolper. An automata-theoretic apmtoa

to automatic program verification. FProc. 1st LICSpages

332-344. IEEE Comp. Soc. Press, 1986.

P. Wolper. Temporal logic can be more expressiné. and

Control, 56(1/2):72—-99, 1983.

(3]
(4]

(5]
(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

