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Abstract

We consider model checking of timed temporal formulae in durational transition
graphs (DTGs), i.e., Kripke structures where transitions have integer durations.
Two semantics for DTGs are presented and motivated. We consider timed versions
of CTL where subscripts put quantitative constraints on the time it takes before a
property is satisfied.

We exhibit an important gap between logics where subscripts of the form “= c”
(exact duration) are allowed, and simpler logics that only allow subscripts of the
form “≤ c” or “≥ c” (bounded duration).

Without exact durations, model checking can be done in polynomial time, but
with exact durations, it becomes ∆p

2-complete or PSPACE-complete depending on
the considered semantics.

Keywords: Model checking; Timed automata; Timed Transition Graphs; Dura-
tional Kripke Structures; Quantitative Temporal Logics.

1 Introduction

Model checking (the automatic verification that a model fulfills temporal logic
specifications) is widely used when designing and debugging critical reactive
systems [CGP99,BBF+01]. During the last decade, model checking has been
extended to real-time systems, where quantitative information about timings
is required [EMSS92,ACD93,HNSY94,CC99].

Timed models. Real-time model checking has been mostly studied and de-
veloped in the framework of Alur and Dill’s Timed Automata [AD94]. There
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now exists a large body of theoretical knowledge and practical experience for
this class of systems, and it is agreed that their main drawback is the complex-
ity blowup induced by timing constraints: All model checking problems are at
least PSPACE-hard 1 over Timed Automata [Alu91,CY92,ACD93,AL02].

However, there exist simpler families of timed models, for which polynomial-
time model checking is possible. Usually, these are based on classical, discrete,
Kripke Structures (KSs). In this case, there is no inherent concept of time
(contrary to clocks in Timed Automata (TA)) and the elapsing of time is
encoded by events. For example, each transition of a KS can be viewed as
taking exactly one time unit. This simple and natural assumption is used in,
e.g., [EMSS92,CCMM95]. A small extension consists in allowing also “instan-
taneous” transitions, that take zero time unit, as is done in [CTM+99,LST03].
Finally the Timed Transition Graphs (TTGs) [CC95] extends the previous
models by associating arbitrary integer durations with transitions.

The TTG framework is less expressive than TAs, but it is conceptually simpler,
may allow efficient model checking algorithms, and is convenient in many
situations (see examples in [CCMM95,CC01]). Moreover this approach easily
lends itself to BDD-based symbolic model checking [CC95,CC99,MS04].

Timed specifications. It is often necessary to verify real-time properties
over timed systems. Such properties can involve the minimal or maximal de-
lay to reach some particular configuration, or the duration of a given property
along a path [CCM+94,CY92]. A flexible approach for specifying these prop-
erties is to extend classical temporal logics with the ability to express timing
aspects of computation (see [AH92] for a survey). There are two main pop-
ular approaches for such extensions: First, the use of freeze variables (also
formula clocks) in temporal formulae allows the comparison of delays be-
tween events [AH94]. The resulting logics are very expressive but often have
hard model checking problems (because they make it possible to combine the
timings of several different events in arbitrary ways); The second approach,
which is simpler, is the use of timing constraints tagging temporal modali-
ties [Koy90,ACD90]. For example, the formula EF<10 A states that it is possi-
ble to reach a state satisfying A (“EF A” in CTL) in less than 10 time units.
These constraints are less expressive than freeze variables but they lead to
more readable formulae, and sometimes allow more efficient model checking
algorithms.

Timing constraints can have three main forms: “≤ c” and “≥ c”, where c is

1 Here, and in other places in the article, we make the convenient assumption that
there are no collapses between major complexity classes like PTIME, NP, PSPACE,
etc.
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some integer constant, set a lower or upper bound for durations, while “= c”
requires a precise value. TCTL is the extension of CTL with all three types
of constraints, and we write TCTL≤,≥ for the fragment of TCTL where the
“=c” constraints are forbidden. Other classical temporal logics (e.g., CTL∗ or
LTL) can be extended in the same way, and we call TCTL∗, TLTL≤,≥, etc.,
the resulting formalisms.

Model checking TCTL over Kripke structures can be done in time 2 O(|S|3 ·
|ϕ|) [EMSS92]. This is in sharp contrast with model checking over Timed Au-
tomata (PSPACE-complete [ACD93]) and with model checking CTL extended
by freeze variables (PSPACE-complete over KSs [LST03]).

Thus it appears that, for timed properties of timed systems, polynomial-time
model checking is possible if one picks the right logic (e.g., TCTL) and the
adequate models (e.g., KSs).

Our contribution. In this article, we aim at defining extensions of KSs
for handling real-time aspects in such a way that model checking remains
efficient (polynomial-time). We propose and study durational transition graphs
(DTGs), a very natural extension of KSs. As illustrated in Fig. 1, a DTG
is a KS where transitions have possible durations specified by an interval
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Fig. 1. A DTG modeling publications by one researcher (time in days)

of integers. Such structures generalize the models where every transition is
considered as taking 0 or 1 time unit and provide a higher-level viewpoint. For
example, steps having long durations can be modeled without long sequences
of transitions. Also, the size of a DTG is mostly insensitive to a change of
time scale. We study two semantics for DTGs. Indeed time elapsing can be
interpreted in different manner: Either transitions are atomic, and time elapses
abruptly, all in one step — then the duration of a transition can be seen as a

2 In such statements, |S| denotes the size of the structure, and |ϕ| the length of the
temporal formula.
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cost with this “jump” semantics; Or time elapses (semi-)continuously, i.e., we
stay in the source state for the duration of the transition before going to the
target state, and we call this one the “continuous” semantics.

Our main results are two polynomial-time algorithms for model checking
TCTL≤,≥ properties with respect to both semantics. The algorithm for the
“continuous” semantics is much more intricate than the one for the “jump”
semantics. This extends the positive results from [EMSS92,LST03] to a more
expressive class of models.

Allowing exact duration constraints increases the complexity of model check-
ing: We show that model checking TCTL over DTGs is PSPACE-complete or
∆p

2-complete depending on the semantics for DTGs. This last result is tech-
nically involved, and it is also quite surprising since ∆p

2, the class PNP of
problems that can be solved by a deterministic polynomial-time Turing ma-
chine that has access to an NP oracle [Sto76,Pap94], does not contain many
natural complete problems [Pap84,Wag87,Kre88]. Indeed, the only known ∆p

2-
complete problems from the field of temporal model checking have only been
recently identified [LMS01,RS05].

We also consider logics that do not admit polynomial-time model checking al-
gorithms (TLTL and TCTL∗), and we show that, for these too, exact duration
constraints induce a similar complexity blowup when model checking DTGs.

Related work. Quantitative logics for the more expressive TA are now well-
known and many results are available regarding their expressive power, or their
satisfiability and model checking [AH94,ACD93,AH93,AFH96,Hen98]. That
exact durations may induce harder model checking complexity was already
observed in the case of TLTL and Timed Automata [AFH96].

The literature contains several models that are close to DTGs. Emerson et
al. give polynomial time algorithms for model checking TCTL over discrete
KSs in [EMSS92] and TCTL≤ over tight DTGs (all intervals are singletons,
see section 7.2) with the jump semantics in [ET99, section 4]. They also
study model checking for quantitative logics with more complex constraints
in [ET97,ET99]. Model checking TCTL over small-steps DTGs (i.e., with tran-
sition durations in {0, 1}, see section 7.2) is considered in [LST03] where the
expressive power of constraints is investigated. Algorithms for maximal and
minimal delays and condition counting are given in [CTM+99] for small-steps
DTGs.

The Timed Transition Graphs introduced in [CC95] correspond to our DTGs
with the jump semantics (see section 2). An algorithm based on BDDs for
bounded TCTL is given in [CC95], it uses an unfolding of temporal formula
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with respect to timing constraints which makes its complexity very sensitive
to a change of time scale. Algorithms for minimal or maximal delays and
for condition counting in TTGs are given in [CCM+94]. DTGs with the jump
semantics have also been studied in [LMS02] where complexity of TCTL model
checking is addressed, and in [MS04] where an algorithm based on BDDs is
given for TCTL model checking (and implemented on top of NuSMV).

[LS05] introduces probabilistic DTGs, a model exhibiting both nondetermin-
istic and stochastic behavior, and addresses timed model checking for these
systems.

The literature also contains several models based on more expressive discrete-
time structures [Lew90,YMW97]. These works do not explicitly look for poly-
nomial-time verification algorithms. Sometimes linear-time logics are consid-
ered [Ost90,AH94], but model checking is shown to be at least PSPACE-hard
in those cases.

Plan of the article. We first define DTGs (section 2) and the quantitative
temporal logic we use (section 3). For TCTL and TCTL≤,≥, model checking of
DTGs assuming the jump semantics is addressed in section 4, and assuming
the continuous semantics in section 5. Finally we consider TLTL and TCTL∗

in section 6, while other possible semantics are addressed in section 7.

2 Durational Transition Graphs

We write N for the set of natural numbers, and IN (or just I) for the set
of intervals over N. An interval ρ ∈ I is either finite (of the form “[n,m]”
with n ≤ m) or right-open and infinite (of the form “[n,∞)”).

Let AP be a countable set {P1, P2, . . .} of atomic propositions.

Definition 2.1 A Durational Transition Graph (DTG for short) is a 4-tuple
S = 〈Q, qinit, R, l〉 where Q is a set of states, qinit ∈ Q is the initial state,
R ⊆ Q × I × Q is a total transition relation with duration and l : Q → 2AP

labels every state with a subset of AP.

Below we only consider finite DTGs, such that Q, R and all l(q) are finite
sets. Graphically, a DTG is a directed graph where a triple (q, ρ, q′) ∈ R is
depicted as a ρ-labeled edge from q to q′. The interval ρ specifies the possible
durations of the transition.

Example 2.2 The DTG of Fig. 1 models the publication process of one busy
researcher, assuming time is counted in days. (This example does not distin-
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guish between the name of the states and their labeling by propositions. Also,
singleton intervals “[n, n]” are written simply as “n”.)

We consider several natural semantics for DTGs. Indeed the intended meaning
of an edge (q, ρ, q′) in a DTG is that it is possible to move from q to q′ with
any integer duration d belonging to the interval ρ. This can be interpreted in
different manners.

• First we consider the jump semantics : moving from q to q′ takes d time units
and there are no intermediary states. Hence, if the system is in q at time t,
then it is in q′ at time t+d; there is no position for time t+1, . . . , t+d−1. This
semantics corresponds to the semantics of Timed Transition Graph [CC95].
• Then we consider the continuous semantics : the system waits for d − 1

time units in state q before performing the transition. This is the semantics
used in Timed Automata of Alur and Dill [ACH94] when discrete time is
assumed.
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Fig. 2. Two different semantics for a DTG

Fig. 2 gives an intuitive representation of those two semantics. A third one,
called continuous early, will be briefly addressed at the end of this article.

Timed Transition Systems. A DTG S is used as a symbolic description of
the behavior of a process. This is formalized by associating a Timed Transition
System (TTS) with S (actually, we do this in two different ways, see sections 4
and 5). A TTS is a labeled transitions system with fairness, and where every
transition has a fixed integer duration. Formally, a TTS is a 5-tuple T =
〈S, sinit,→, l, F 〉 where S is a (possibly infinite) set of states, sinit ∈ S is the
initial state,→ ⊆ S×N×S is a total transition relation with integer durations,
l : S → 2AP labels every state with a subset of AP and F ⊆ S is a fairness

condition. A transition (s1, d, s2) ∈ → is denoted by s1
d
−→ s2.
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Remark 2.3 This notion of TTSs is a variant of the one classically used in
the semantics of Timed Automata, the main difference being that their TTSs
are usually defined over dense time domain and assume special properties like
time-determinism and time-additivity.

A sequence π = s0
d0−→ s1

d1−→ s2 . . . of transitions in a TTS is called a path if it
is finite and a run if it is infinite. For a run (resp. path) π, π|n is the prefix
path obtained by only considering the first n steps in π, and π≥n is the suffix
run (resp. path) obtained by removing the first n steps. A simple path is a
path where no state is visited twice.

Let Inf(π) be the set of states that occur infinitely many times along a run π.
We say that π is a fair run if Inf(π) ∩ F 6= ∅. For s ∈ S, we let ExecF(s)
denote the set of fair runs starting from s. Note that for any n ∈ N, for any
run π, π is fair iff π≥n is. Fairness conditions are used in the definition of the
continuous semantics (section 5).

The size (or length) of a path π = s0
d0−→ s1

d1−→ s2 · · · sn is n (the number of
steps), and its duration, denoted by Time(π), is d0 + · · ·+ dn−1.

Size of a DTG. We assume the constants used to denote intervals are
encoded in binary. The size of a transition (q, [l, u], q′) of a DTG S is defined
as 1+⌊log(l+1)⌋+⌊log(u+1)⌋ and the size of (q, [l,∞), q′) as 1+⌊log(l+1)⌋.
Then the size of S is defined as its number of states, |Q|, plus the sum of the
sizes of its transitions.

3 Quantitative temporal logic

TCTL is a quantitative extension of CTL where temporal modalities are sub-
scripted with constraints on duration [ACD93]. Here it is interpreted over
TTSs states.

Definition 3.1 (Syntax of TCTL) TCTL formulae are given by the fol-
lowing grammar:

ϕ, ψ ::= P1 | P2 | . . . | ¬ϕ | ϕ ∧ ψ | EXϕ | EϕU∼c ψ | AϕU∼c ψ

where ∼ can be any comparator in {<,≤,=,≥, >} and c any natural number.

Definition 3.2 (Semantics of TCTL) The following clauses define when a
state s of some TTS T = 〈S, sinit,→, l, F 〉 satisfies a TCTL formula ϕ, written
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s |=T ϕ, by induction over the structure of ϕ (clauses for Boolean operators
are omitted).

s |=T EXϕ iff ∃π ∈ ExecF(s) s.t. π = s
d0−→ s1

d1−→ s2 . . . and
s1 |=T ϕ,

s |=T EϕU∼c ψ iff ∃π ∈ ExecF(s) s.t. π = s
d0−→ s1

d1−→ s2 . . . and
∃n s.t.Time(π|n) ∼ c,

sn |=T ψ and
si |=T ϕ, ∀ 0 ≤ i < n (with s0 = s),

s |=T AϕU∼c ψ iff ∀π ∈ ExecF(s) s.t. π = s
d0−→ s1

d1−→ s2 . . . ,
∃n s.t.Time(π|n) ∼ c,

sn |=T ψ and
si |=T ϕ, ∀ 0 ≤ i < n (with s0 = s),

We write T |= ϕ whenever sinit |=T ϕ.

Thus, in EϕU∼cψ, the classical until is extended by requiring that ψ be satisfied
within a duration (from the current state) satisfying the constraint “∼c”.

Note that the modality EX deals with a step of the TTS. We will see that,
depending on how TTSs are associated with a DTG S, i.e., depending on the
semantics of DTGs, such a TTS step may correspond to a delay transition
of the DTG, where the control location remains unchanged. We could use
another semantics for EX and require that it concerns the action transitions
of S: this would not change the complexity results presented in this article,
and our algorithms can easily be adapted to handle this case.

Standard abbreviations include ⊤, ⊥, ϕ ∨ ψ, ϕ ⇒ ψ, . . . as well as AXϕ (for
¬EX¬ϕ), EF∼cϕ (for E⊤U∼cϕ), AF∼cϕ (for A⊤U∼cϕ), EG∼cϕ (for ¬AF∼c¬ϕ)
and AG∼c ϕ (for ¬EF∼c ¬ϕ). Further, the modalities U, F and G without sub-
scripts are shorthand for U≥0 , etc. The size |ϕ| of a formula ϕ is defined in
the standard way, with constants c written in binary notation.

Equivalence between formulae. We write ϕ ≡ ψ when ϕ and ψ are
equivalent (i.e., when every state of every TTS satisfies ϕ⇔ ψ). The following
equivalences hold:

A ϕ U≤c ψ ≡ AF≤c ψ ∧ ¬E(¬ψ)U(¬ϕ ∧ ¬ψ) (E1)

A ϕ U≥c ψ ≡ AG<c

(

ϕ ∧ A ϕ U>0 ψ
)

if c > 0 (E2)

The proof of Equivalence (E1) is the following:

• ⇒: Assume s |= AϕU≤c ψ. First AF≤c ψ holds clearly for s. Moreover we
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also have s |= AϕUψ and the classical CTL equivalence AϕUψ ≡ AFψ ∧
¬(E(¬ψ)U(¬ϕ ∧ ¬ψ)) entails s |= ¬(E(¬ψ)U(¬ϕ ∧ ¬ψ)).
• ⇐: s |= ¬(E(¬ψ)U(¬ϕ∧¬ψ)) means that there is no run from s along which
¬ϕ precedes ψ, this entails that every run from s satisfies either ϕUψ or
G¬ψ. Then if s also satisfies AF≤c ψ, we have s |= AϕU≤c ψ.

For Equivalence (E2), we can argue as follows:

• ⇒: Assume that s |= A ϕ U≥c ψ, and consider π = s0(= s)
d0−→ s1

d1−→ . . . ∈
ExecF(s) and n s.t. Time(π|n) < c. Then clearly ϕ holds for any si with
0 ≤ i ≤ n. Moreover for any fair run σ from si, π|i · σ ∈ ExecF(s) and then

there exists a state si,σ satisfying ψ s.t. Time(s0
d0−→ . . .

d
−→ si,σ ) ≥ c and

then Time(si
di−→ . . .

d
−→ si,σ ) > 0 for any 0 ≤ i ≤ n and any state between

si and si,σ satisfies ϕ. This gives the result.

• ⇐: Assume that s |= AG<c (ϕ ∧ A ϕ U>0 ψ), and consider π = s0(= s)
d0−→

s1
d1−→ . . . ∈ ExecF(s). Consider the minimal n s.t. Time(π|n) ≥ c (such a n

exists because any state si with Time(π|i) < c satisfies AϕU>0 ψ and then

there is some j > i with Time(si
di−→ . . .

dj−1
−−→ sj |) > 0). Moreover we have

n > 0. For any 0 ≤ i < n, Time(π|i) < c and we have si |= ϕ ∧ AϕU>0 ψ.
Then sn−1 |= AϕU>0 ψ and there exists j ≥ n s.t. sj |= ψ and ∀n < l < j,
sl |= ϕ and Time(π|j) ≥ Time(π|n) ≥ c.

The rest of the article formally defines how a TTS T (S) is associated with
a DTG S and considers the model checking problem: Given a DTG S and a
TCTL formula ϕ, does T (S) |= ϕ? We consider several possibilities for defining
T (S), starting with the jump semantics.

4 The jump semantics

4.1 Definition

Let S = 〈Q, qinit, R, l〉 be a DTG. The jump semantics of S is defined as the
TTS Tj(S) = 〈S, sinit,→, l, F 〉 with:

• S = Q and sinit = qinit;

• s1
d
−→ s2 iff there exists (s1, ρ, s2) ∈ R and d ∈ ρ;

• F = Q.

Observe that any state s ∈ S is labeled as it is in S. For any formula ϕ, we
write S |=j ϕ iff Tj(S) |= ϕ.
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Tj(· · · ) is the most basic semantics for DTGs. Indeed the only difference be-
tween S and Tj(S) is that a transition labeled by some interval ρ in R has been
replaced by a (possibly infinite) set of transitions corresponding to all dura-
tions in ρ. Any run is a fair run. This semantics makes the DTGs equivalent
to the Timed Transition Graphs of [CC95].

4.2 Model checking DTGs with the jump semantics

In DTGs where durations belong to {0, 1}, model checking can be done in
polynomial time [EMSS92,LST03]. But when dealing with arbitrary durations,
a complexity blow-up occurs and NP-hard problems appear for simple formulae
and many variants of weighted graphs [NU02]. Indeed we have:

Proposition 4.1 Model checking formulae of the form EF=c P over DTGs
with the jump semantics is NP-hard.

PROOF. By reduction from SUBSET-SUM [GJ79, p. 223]: An instance is a
finite set A = {a1, . . . , an} of natural numbers and some number D. One asks
whether there exists a subset A′ of A such that D =

∑

a∈A′ a. This is the case
iff S |=j EF=D P where S is the DTG depicted on Figure 3. 2

. . .
qinit

P
0 0 0 0

a1 a2 a3 an

0

Fig. 3. The DTG associated with an instance of SUBSET-SUM

Therefore model checking TCTL over DTGs is NP-hard and coNP-hard for
the jump semantics. In fact model checking the fragment of TCTL using only
the EF∼c and AF∼c modalities, is already Θp

2-complete for tight DTGs [Sch03].

For TCTL, we have:

Theorem 4.2 Model checking TCTL over DTGs with the jump semantics is
∆p

2-complete.

See appendix A for the proof. Recall that ∆p
2 (resp. Θp

2) is the complexity
class PNP (resp. PNP[O(log n)]) of problems that can be solved by a polyno-
mial time Turing machine having access to an NP oracle (resp. and making
O(log n) adaptive queries to the oracle) [Pap94]. Both classes lie between NP

and PSPACE. TCTL model checking over DTGs with the jump semantics is
the second verification problem shown to be complete for ∆p

2.
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The hardness part of Theorem 4.2 crucially relies on exact duration con-
straints. Without them, polynomial-time model checking is possible:

Theorem 4.3 Verifying whether Tj(S) |= Φ, for S a DTG and Φ a TCTL≤,≥

formula, can be done in time O(|S|2 · |Φ|).

PROOF. Let S = 〈Q, qinit, R, l〉 be a DTG. We extend the standard CTL
model checking algorithm with labeling procedures running in time O(|S|2 ·
⌈log c⌉) for subformulas of the form E ϕ U∼c ψ and A ϕ U∼c ψ.

• ξ = E ϕ U≤c ψ: We restrict to the subgraph where only states satisfying
E ϕ U ψ have been kept, and where we only consider the minimal duration
on every transition. Then for every state q we compute the duration cq of the
shortest path leading to some ψ-state. This can be done in time O(|Q| · |R|)
using a classical single-source shortest path algorithm [CLR90]. Then q |= ξ
iff cq ≤ c.
• ξ = E ϕ U≥c ψ: First we introduce a new proposition PSCC+(ϕ) to label every

node belonging to a strongly connected set of nodes satisfying ϕ and where
at least one edge allows a strictly positive duration. Labeling states for
PSCC+(ϕ) can be done in time O(|S|).

There are two ways a state can satisfy ξ. Either a simple path is enough,
or a path with loops is required so that a long enough duration is reached.
We check the existence of a path of the first kind with a variant of the earlier
shortest paths method, this times geared towards longest acyclic paths. We
check for the existence of a path of the second kind by verifying the CTL
formula E ϕU(PSCC+(ϕ) ∧ E ϕ U ψ). This provides an algorithm running in
time O(|Q| · |R|).
• ξ = A ϕ U≤c ψ: We first label with a new atomic proposition PSCC0(¬ψ) the

states of strongly connected components where one can loop on ¬ψ-states
using transitions allowing zero durations. We then reduce to the previous
cases using equivalence (E1) and AF≤cψ ≡ ¬E¬ψU>c⊤ ∧ ¬E¬ψUPSCC0(¬ψ).
• ξ = A ϕ U≥c ψ: We reduce to the previous cases using equivalence (E2) and

AG<cΨ ≡ ¬EF<c¬Ψ. A procedure for the subformula AϕU>0ψ can be easily
defined. 2

This algorithm for TCTL≤,≥ is then a simple extension of the one for CTL
with shortest path procedures. From CTL we also inherit a lower bound for
complexity: model checking TCTL≤,≥ is PTIME-complete.
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5 The continuous semantics

5.1 Definition

Given a state q of S, we define δmax(q) ∈ N ∪ {∞} as the upper bound of the
intervals labeling outgoing transitions from q. Formally, δmax(q) = ∞ if there
exists an outgoing transition (q, ρ, q′) with ρ = [l,∞), and otherwise δmax(q)
is max{u | (q, [l, u], q′) ∈ R}. The continuous semantics of S is defined as the
(possibly infinite) TTS Tc(S) = 〈S, sinit,→, l, F 〉 with:

• S = {(q, i) | q ∈ Q and 0 < i < δmax(q)}∪{(q, 0) | q ∈ Q} and sinit = (qinit, 0);
• The transition relation → is defined as follows:
· action transitions:

– (q, 0)
0
−→ (q′, 0) if ∃(q, ρ, q′) ∈ R and 0 ∈ ρ;

– (q, i)
1
−→ (q′, 0) if ∃(q, ρ, q′) ∈ R and i+ 1 ∈ ρ;

· delay transitions:

– (q, i)
1
−→ (q, i+ 1) if i+ 1 < δmax(q);

• The states (q, i) are labeled by the atomic propositions labeling q;
• F = Q× {0}.

The delay transitions let time elapse in the current state, and the fairness
condition forbids waiting forever in a state: An action transition has to be
taken eventually.

Note that this semantics allows for defining parallel composition of the un-
derlying TTS. Indeed, in this case, the behavior of a synchronized product of
DTGs consists in synchronizing several TTSs where transitions have durations
0 or 1. But from the complexity point of view, parallel composition entails a
blow-up for model checking: Verification of parallel compositions of KSs or TA
or DTGs, has the same complexity [AL02].

The continuous semantics is inspired from the semantics of TAs. Indeed, a
DTG with the continuous semantics can be seen as a timed automaton with
a single clock, with N as underlying time domain, and where the clock is only
used to time transitions and is reset after each move. Model checking TAs with
one clock has been studied in [LMS04] where it is shown that it admits the
same complexity as model checking DTGs (but the algorithms for one-clock
TAs are trickier).

Remark 5.1 From any state of Tc(S) there exists at least one fair run. This
is based on the fact that R is left-total and on the definition of Tc (the set of
states, the relation → and the fair condition). As a consequence, any path can
be extended to a fair run.

12



We observe that the continuous semantics is not equivalent to the jump se-
mantics on two grounds: it makes nondeterministic choices “later” and has
more intermediary states (a finer granularity).

Hence, if one considers the following (untimed) formula:

Ψ
def
= EF(q ∧ ¬EF s)

then Tc(S) |= Ψ and Tj(S) 6|= Ψ for the DTG S displayed on Fig. 2.

See appendix C for a comparison between the continuous semantics and the
jump semantics.

5.2 Model checking DTGs with the continuous semantics

NP-hardness (Prop. 4.1) also holds for the continuous semantics, and here
again, there is no hope for efficient model checking algorithm with exact du-
rations. The problem is even harder (assuming PSPACE differs from ∆p

2):

Theorem 5.2 Model checking TCTL over DTGs with the continuous seman-
tics is PSPACE-complete.

Appendix B contains the proof of this statement. In fact, the proof only in-
volves EF∼c- and AF∼c-modalities, and the complexity result also holds for the
logic B(F).

Here again, if we restrict to TCTL≤,≥, we can have an efficient algorithm for
model checking:

Theorem 5.3 Verifying whether Tc(S) |= Φ, for S a DTG and Φ a TCTL≤,≥

formula, can be done in time O(|S|3 · |Φ|3).

PROOF.

Assume S = 〈Q, qinit, R, l〉. Let TS be Tc(S). We design an algorithm for label-
ing every state (q, i) of TS with the set of subformulae of Φ it satisfies: Given a
state q and a subformula ϕ of Φ, we define Sat[q, ϕ] as the sequence of integer
intervals Sj = [αj, βj) such that:

• Any TS state (q, i) satisfies ϕ iff i ∈
⋃

j Sj.
• For any Sj, we have
· [αj, βj) ⊆ [0, δmax(q)),
· αj < βj, and

13



· βj < αj+1 if Sat[q, ϕ] contains at least j + 1 items.

For any q and ϕ, this clearly defines a unique set Sat[q, ϕ]. Its number of
intervals in Sat[q, ϕ] is the size of Sat[q, ϕ] (denoted by |Sat[q, ϕ]|).

In the sequel, we write Sat[q, ϕ] for the union
⋃

j Sj.

We define procedures for inductively computing Sat[q, ξ] for all subformulas
of a given TCTL≤,≥ formula Φ and for all states q ∈ Q. Along with these
procedures, we show that

• |Sat[q, ξ]| is finite and bounded by |ξ| · |Rq
S |, where Rq

S is the set of S-
transitions from q, and
• The Sat[q, ξ] (for all states q and a given ξ) can be computed in time O(|ξ|2 ·
|R|3).

This will globally ensure that the whole algorithm runs in time O(|Φ|3 · |R|3).

Before going further, we introduce some new notations: For a given integer
interval ρ = [l, u), we write ρ− 1 for the interval [max(0, l− 1),∞) if u =∞,
and [max(0, l − 1), u− 1) otherwise. We also define ←−ρ as the interval ρ itself
if it equals the singleton [0, 1), and as ρ− 1 otherwise.

We now describe our procedures and prove the above statements. The cases of
atomic propositions and Boolean connectives are straightforward and clearly
satisfy the requirements w.r.t. the size of Sat[q, ϕ]. We now consider the re-
maining cases:

• Case ξ = EXψ: We have to deal with the two kinds of transitions 3 :
· For action transitions: Given a transition (q, ρ, q′) ∈ R, if 0 ∈ Sat[q′, ψ],

then we add ←−ρ to Sat[q, ξ];
· For delay transitions: For any ρ ∈ Sat[q, ψ], we add ρ− 1 to Sat[q, ξ].

• Case ξ = EϕU≤c ψ: For each state (q, i) in the TTS Tc(S), we compute the
duration of the shortest path (if any) witnessing the property EϕUψ, and
compare it to c. That path will necessary be a prefix of a fair run, thus
fairness is not an issue here.

For each state q in Q, assuming Sat[q, ϕ] and Sat[q, ψ] have already been
computed, we first refine these intervals by computing the smallest list of
intervals L(q) =

⋃

j=1..l[aj, bj) s.t.:
(1) For any j, aj < bj, and bj ≤ aj+1 if j + 1 ≤ l;
(2) For any i, we have i ∈ L(q) ⇔ i ∈ Sat[q, ϕ]∪ Sat[q, ψ], and each interval

[aj, bj) is either included in one of Sat[q, ψ]’s intervals, or disjoint with
Sat[q, ψ].

3 Remember that the EX-operator deals with any (action- and delay-) transition of
the TTS.
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(3) Intervals in L(q) are homogeneous w.r.t. action transitions: For any tran-
sition (q, ρ, q′) ∈ R, for any j, either [aj, bj) ⊆

←−ρ or [aj, bj) ∩
←−ρ = ∅.

(4) The special interval [0, 1) is handled separately: If 0 ∈ Sat[q, ϕ]∪Sat[q, ψ],
then it is the first interval in L(q).
Building L(q) is easy from Sat[q, ϕ] and Sat[q, ψ]: Computing the special

union of condition 2 yields at most |Sat[q, ϕ]|+ 2|Sat[q, ψ]| intervals. Then,
by condition 3, any transition (q, ρ, q′) might split one of these intervals into
two or three smaller ones, i.e., add two intervals. Last, condition 4 possibly
adds another one. Thus |L(q)| ≤ |Sat[q, ϕ]|+ 2|Sat[q, ψ]|+ 2|Rq

S |+ 1.
Let δψq,i be the duration of the shortest paths satisfying ϕ and leading

to some ψ-state. Clearly (q, i) |= ξ iff δψq,i ≤ c. Let [a, b) be an interval in
L(q). Since any point in [a, b) may fire the same set of action transitions,
the function i 7→ δψq,i is non increasing over [a, b): any execution starting
by an action transition (leading to some (q′, 0)) enabled from (q, i) is also
enabled from (q, i + 1) if i, i + 1 ∈ [a, b). Figure 4 describes an example of
such duration function.

q r
r|=ψ

[3,3]

[5,∞)

[3,4]

[12,∞) [5,7]
[4,6]

[7,17]

3 5 8 12

5

7

9

11

δψq ξ = EF≤8 ψ

Fig. 4. An example of the duration function for a simple DKS

We have the following important properties:
· Assume that δψq,a is known for every left-end point a of the intervals in

L(q), then it is possible to deduce easily δψq,i for any i ∈ L(q). Indeed, for
[a, b) in L(q), we have:

– Either there is an interval in L(q) of the form [b, b′). Then for any
position i ∈ [a, b), a shortest path leading to ψ may start either by an
action transition — and then δψq,i = δψq,a — or by letting time elapse

until the interval [b, b′) — and then δψq,i = δψq,b − b− i.
– Or there is no interval [b, b′) in L(q). Then for any i ∈ [a, b), we have
δψq,i = δψq,a, since in that case, the shortest path necessarily begins
with an action transition.

· A shortest path from some (q, a) with [a, b) ∈ L(q) starts by an action
transition or by a delay transition of at least b− a time units: It is never
pertinent to wait before performing an enabled action transition when
considering shortest paths. Time elapsing only occurs when it is necessary
to reach the next interval of L(q).
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Therefore it is sufficient to compute the duration of shortest paths from
the left-end point of any interval of L(q), and we can consider a jump-
semantics point of view restricted to left-end points: The intermediary states
(inside the intervals) are not relevant for this. Consider the DTG G =
(VG,→G, lG) as follows:
· VG = {(q, [a, b)) | [a, b) ∈ L(q)};
· lG : VG → {ψ, ϕ ∧ ¬ψ} labels each state (q, ρ) depending on whether ρ ⊆

Sat[q, ψ];
· Transitions →G are computed as follows:

– Consider (q, ρ, q′) ∈ R s.t. [0, 1) ∈ L(q′). We have: (q, [a, b))
1
−→G

(q′, [0, 1)) whenever [a, b) ∈ L(q) and a + 1 ∈ ρ. Moreover we have

(q, [0, 1))
0
−→G (q′, [0, 1)) whenever [0, 1) ∈ L(q) and 0 ∈ ρ.

– If [a, b), [b, b′) ∈ L(q), then we have (q, [a, b))
b−a
−→G (q, [b, b′)).

Then we have: |G|
def
= |VG|+ |→G| ≤

∑

q∈Q|L(q)|+
∑

q∈Q|L(q)| · (|R|+ 1).
Now we can adapt the procedure described for Theorem 4.3 to get the
duration of shortest paths leading to ψ for any G state (q, [a, b)), and it
corresponds precisely to δψq,a. This can be achieved in time O(|VG| · |→G|).

Now it remains to compute Sat[q,EϕU≤cψ] from δψq,a and c. If δψq,a ≤ c, we

have [a, b) ⊆ Sat[q, ξ]. Otherwise if, for some b′, [b, b′) ∈ L(q) and δψq,b ≤ c,

then [b− (c− δψq,b), b) ⊆ Sat[q, ξ]. Then we merge the intervals in Sat[q, ξ] in
order to fulfill its requirements.

The size of Sat[q, ξ] can be bounded by |Sat[q, ψ]| + |Sat[q, ϕ]| + |Rq
S |.

Indeed, Sat[q,EϕUψ] contains at most |Sat[q, ψ]|+ |Sat[q, ϕ]| intervals. Now,
as explained above, we may have to split these intervals depending on the
length of the shortest path. Two cases may arise:
· the splitting occurs while the length of the shortest path is decreasing

(and thus becomes smaller than c). This case occurs when we are waiting
for a transition to be enabled, i.e., it is bound to a constraint x ≥ i. Thus
one transition contains at most one such constraint, and thus may give
rise to at most one such splitting;
· the splitting occurs at a point where the shortest path is increasing, i.e.,

the shortest path is longer than c after that splitting. This may only
happen when a transition becomes disabled, that is, it is bound to a
constraint x ≤ i. Here again, one transition may give rise to at most one
such splitting.

Thus one transition (q, ρ, q′) may at most add one interval in Sat[q, ξ]. Fi-
nally, we get |Sat[q, ξ]| ≤ |Sat[q, ψ]|+ |Sat[q, ϕ]|+ |Rq

S |.

• Case ξ = EϕU≥c ψ: We assume c > 0 — the case c = 0 corresponds to
the standard CTL modality. We use similar techniques as in the previous
case. Now in L(q) we distinguish the sub-intervals satisfying ϕ∧¬ψ, ϕ∧ ψ
or ¬ϕ ∧ ψ. Moreover we replace every interval [a, b) labeled by ¬ϕ ∧ ψ
with [a, a + 1) because only the point a may witness ξ. We have |L(q)| ≤
2 · (|Sat[q, ϕ]| + |Sat[q, ψ]| + |Rq

S |). We also build a DTG G = (VG,→G, lG)
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with VG = {(q, [a, b)) | [a, b) ∈ L(q)} and lG : VG → {ϕ∧ψ, ϕ∧¬ψ,¬ϕ∧ψ}.
But now we look for maximal durations ∆ψ

q,a to reach ψ and we distinguish
finite intervals and unbounded intervals:
· For finite intervals in L(q), we only consider the right-end points because

as soon as a long path goes through the interval [a, b) with b <∞, it goes
through the point b − 1. And we have ∆ψ

q,i = ∆ψ
q,b−1 + b − 1 − i for any

i ∈ [a, b).
· For unbounded interval [a,∞) in L(q), we have ∆ψ

q,i = ∆ψ
q,j for any i, j ∈

[a,∞) — and then (q, i) |= ξ iff (q, j) |= ξ — therefore we can restrict
ourself to look for the truth value of ξ in the point a.
We then define the transitions of G in order to represent these right-end

points of finite intervals and the left-end point of unbounded intervals; the
aim is to use the algorithm defined for the jump semantics to compute the
maximal durations. We define −→G as follows:
· Consider (q, ρ, q′) ∈ R s.t. [0, 1) ∈ L(q′). We have: (q, [a, b))

1
−→G (q′, [0, 1))

whenever [a, b) ∈ L(q) and [a, b) ⊆ ρ. Moreover we have (q, [0, 1))
0
−→G

(q′, [0, 1)) whenever [0, 1) ∈ L(q) and ρ = [0, 0].

· For any [a, b), [a′, b′) in L(q) s.t. b = a′, we have (q, [a, b))
b′−b
−→G (q, [b, b′))

(resp. (q, [a, b))
1
−→G (q, [b,∞))) if b′ <∞ (resp. b′ =∞).

· If [a,∞) ∈ L(q), we have (q, [a,∞)
1
−→G (q, [a,∞)).

A state (q, [a, b)) with b <∞ of G stands for the state (q, b−1) in S while
a state (q, [a,∞)) in G stands for (q, a) in S. The third kind of transition
is used to represent time elapsing in unbounded intervals.

Note that a G transition (q, [a, b))
1
−→ (q, [b, b′)) with b′ < ∞ represents

the path (q, b − 1)
1
−→ (q, b)

1
−→ . . . (q, b′ − 1) in TS . Then the labeling of

intermediary states is given by the target node (contrary to the case where
nodes correspond to the left-end points), but this does not matter for EϕUψ
modality because these intermediary states exist iff b′ > b+1 and this entails
(q, [b, b′)) ⊆ Sat[q, ϕ].

The procedure for the jump semantics of Theorem 4.3 can be used and
we assume that it returns maximal durations for G states, and ∞ (resp.
−∞) is used when the longest path until ψ is arbitrary long (resp. there is
no path reaching ψ). The algorithm runs in time O(|VG| · |→G|).

It remains to merge contiguous intervals in order to get Sat[q, ξ]. As in
the previous case, we end up with at most |Sat[q, ψ]| + |Sat[q, ϕ]| + |Rq

S |
intervals.

• Case ξ = AϕU≤c ψ: We reduce to the previous cases using equivalence
(E1) and AF≤c ψ ≡ ¬E¬ψU>c⊤ ∧ ¬E¬ψU PSCC0(¬ψ). Here PSCC0(¬ψ) labels
strongly connected components where one can loop on ¬ψ-states using only
transitions allowing zero durations. Note that runs staying in PSCC0(¬ψ) will
necessarily be fair.

• Case ξ = AϕU≥c ψ: We reduce to the previous cases using equivalence (E2)
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and AG<c ϕ ≡ ¬EF<c ¬ϕ and

AϕU>0 ψ ≡ AG≤0 (ϕ ∧ AX(AϕUψ)) ∧ AF≥1 ⊤.

Here formula AF≥1 ⊤ means that there is no run of null duration (we
may assume that c ≥ 1, since otherwise ξ ≡ AϕUψ), and is equivalent
to ¬EF≤0 PSCC0(⊤).

Now we can show that |Sat[q, ϕ]| being bounded by |ϕ| · |Rq
S | is preserved along

the algorithm. This entails that the DTGs G built for EϕU∼c ψ are such that
|VG| is in O(|ξ| · |R|) and |−→G| is in O(|ξ| · |R|2); thus the procedures run in
time O(|ξ|2 · |R|3). 2

6 Other temporal logics

In this section we consider how exact duration subscripts do or do not increase
the cost of model checking when the models are DTGs and the logic is a timed
variant of classic temporal logics like LTL or CTL∗.

We write TLTL and TCTL∗ for the timed variants of the logics LTL and
CTL∗ and will let TLTL≤,≥ and TCTL∗

≤,≥ denote the fragments where exact
duration constraints are not allowed. The formal definitions of LTL and CTL∗

are omitted (see [Eme90]), here we only point out the main characteristics of
these logics.

6.1 Model checking TLTL over DTGs

TLTL is the linear-time timed temporal logic where formulae are built with
atomic propositions, Boolean combinators and the modalities X and U∼c.
TLTL formulae are path formulae and are interpreted over runs in a DTG.
As usual in this case (see, e.g., [SC85]), we consider existential model check-
ing, that is the problem of deciding for a DTG S, a state q and a formula ϕ,
whether there exists a path from q satisfying ϕ in the TTS associated with
the DTG by the selected semantics.

Theorem 6.1 For both the jump and the continuous semantics:

(1) Model checking TLTL over DTGs is EXPSPACE-complete.
(2) Model checking TLTL≤,≥ over DTGs is PSPACE-complete.

18



PROOF. [Sketch] The proof uses the results obtained in the timed frame-
work [AH94,AFH96].

(1): EXPSPACE-hardness: it is possible to describe with a TLTL formula the
accepting runs of a Turing Machine that runs in space 2n (see, e.g., [AH94]).
As usual, a run of the TM is seen as a sequence of instantaneous descriptions
(i.d.). Here each i.d. has length 2n. One easily writes that any two consecutive
i.d.’s agree with the TM rules by means of the F=2n modality, a modality of
size O(n). This holds for any considered semantics, and the underlying DTG
only uses “

1
−→”-transitions.

Membership in EXPSPACE: It can be seen as a special case of the EXPSPACE

upper bound for TPTL [AH94], a logic more expressive than TLTL interpreted
over “timed state graphs” (a model in which one can encode DTGs with
continuous semantics). More precisely one can show that there is an algorithm
running within space polynomial in the size of the DTG and exponential in
the size of the formula to be verified.

(2): PSPACE-hardness is inherited from PSPACE-hardness of LTL model check-
ing.

Membership in PSPACE: [AFH96] shows that model checking MITL0,∞ (a logic
equivalent to TLTL≤,≥) over Timed Automata can be done in PSPACE. Since
Timed Automata easily encode DTGs with continuous semantics, the upper
bound follows. 2

6.2 Model checking TCTL∗ over DTGs

TCTL∗ extends both TCTL and TLTL: the path quantifiers E and A are
allowed to express properties over states, and the modalities U∼c may be em-
bedded with no restriction as in TLTL to express complex properties over
executions. TCTL∗ formulae are interpreted over pairs (π, s) corresponding to
a state along an execution.

Theorem 6.2 For both the jump and the continuous semantics, we have:

(1) Model checking TCTL∗ over DTGs is EXPSPACE-complete.
(2) Model checking TCTL∗

≤,≥ over DTGs is PSPACE-complete.

PROOF. [Sketch]

First consider the case of the jump semantics. Here the results are a direct
consequence of Theorem 6.1: the techniques from [EL87] produce an algorithm
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for TCTL∗ under the form of a simple polynomial-time labeling algorithm
that calls an oracle for TLTL model checking. Hence model checking belongs
to PEXPSPACE, that is EXPSPACE. More precisely the algorithm runs in space
polynomial in the size of the DTG and exponential in the size of the formula.

The same reasoning applies to TCTL∗
≤,≥ and yields a PPSPACE, i.e., PSPACE,

algorithm.

Now we consider the continuous semantics. Let S be a DTG and let MS be the
maximal integer constant occurring in S. We aim at deciding whether Tc(S)
satisfies some formula Φ by reducing to a model checking instance for the
jump semantics. The first step consists in replacing Tc(S) by a synchronized
product (S ′ × C0 × . . . × Cl) with l = ⌈log(MS + 1)⌉. Every Ci is used to
encode the i-th bit of the value v associated with the corresponding Tc(S)
state (q, v). The Cis are two-states KSs and S ′ represents the control part of
S. The synchronized product allows to increase the value v according to time
elapsing and specifies when a transition is enabled or not depending on the
guards in S and the current value v. The only difference between Tc(S) and
the TTS generated by (S ′ × C0 × . . . × Cl) is that states (q, v) with v > MS

are merged in a unique state (q,MS + 1), this clearly does not change the
truth value of formulae. Moreover note that the size of the underlying TTS is
exponential in |S|.

First assume Φ ∈ TCTL∗. The model checking algorithm for TCTL∗ and
DTGs with the jump semantics can be adapted to decide TCTL∗ formulae over
TTS. As it runs in space polynomial in the size of the DTG and exponential
in the size of the formula, it provides an algorithm for deciding Tc(S) |= Φ
running in space exponential in |S| and |Φ|.

Now assume Φ is a TCTL∗
≤,≥ formula. Let MΦ be the maximal constant in

Φ. Using the ideas of [AFH96] one can show that verifying subformulae of the
form ϕU≤c ψ or ϕU≥c ψ can be done by adding to the model one extra clock
for each such subformula. Indeed if we want to verify the property ϕU≤c ψ for
several configurations s1, s2 . . . along a run, it is sufficient to reset the clock
xϕU≤c ψ when the first configuration s1 is visited and to verify that xϕU≤c ψ ≤ c
when a configuration t satisfying ψ is reached. Then any configuration located
between s1 and t will also satisfy ϕU≤c ψ. Note that this contrasts with the
modalities U=c for which one clock is not sufficient. Therefore we can add
k clocks (k is the number of modalities U∼c ), namely k sets of log(MΦ + 1)
bits (encoded as the Cis). The synchronized product is then composed by 1 +
⌈log(MS)⌉+k·⌈log(MΦ)⌉ processes (with k ≤ |Φ|). The synchronization is then
defined in order to increase the different counters according to time elapsing.
Then it remains to verify that some Φ holds for the parallel composition where
Φ is a simple translation of Φ into CTL∗ including special atomic propositions
to handle timing constraints.
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This proves membership is PSPACE since model checking CTL∗ formulae over
products of KSs is PSPACE-complete [KVW00]. 2

Remark 6.3 For TCTL+, the timed variant of CTL+, model checking is ∆p
2-

complete for the jump semantics [LMS02]: ∆p
2-hardness comes from the fact

that CTL+ model checking is already ∆p
2-hard in the untimed case, and mem-

bership in ∆p
2 is based on an extension of Lemmas A.3 and A.4 in Appendix A

for formulae of the form E
(

∧

i PiU∼ciP
′
i ∧

∧

j ¬(PjU∼cjP
′
j)

)

. For the continuous

semantics, TCTL+ model checking is clearly ∆p
2-hard and PSPACE-easy.

7 Variants of DTGs

In this section we consider another possible semantics for DTGs. We also
consider two natural restricted subclasses of DTGs. We discuss how these
choices impact on the complexity of model checking.

7.1 Continuous early semantics

Another notion of continuous semantics could have been used in the previ-
ous section: We call it the continuous early semantics 4 . In that semantics,
there are intermediary states, but when entering such an intermediary state,
the system commits itself to taking a fixed transition and cannot change the
destination state.

Given a transition (q, ρ, q′) of S, we define δmax(q
ρ
−→ q′) as u (resp. ∞) if

ρ = [l, u] (resp. ρ = [l,∞)). The continuous early semantics (written c.e.-
semantics) of S is defined as the TTS Tce(S) = 〈S, sinit,→, l〉 with:

• S = Q ∪ {(q
ρ
−→ q′, i) | (q, ρ, q′) ∈ R ∧ 1 ≤ i < δmax(q

ρ
−→ q′)} and sinit = qinit;

• The transition relation → is defined as follows:
· q

0
−→ q′ if ∃(q, ρ, q′) ∈ R and 0 ∈ ρ;

· q
1
−→ q′ if ∃(q, ρ, q′) ∈ R and 1 ∈ ρ;

· q
1
−→ (q

ρ
−→ q′, 1) if 1 < δmax(q

ρ
−→ q′);

· (q
ρ
−→ q′, i)

1
−→ (q

ρ
−→ q′, i+ 1) if i+ 1 < δmax(q

ρ
−→ q′);

· (q
ρ
−→ q′, i)

1
−→ q′ if i+ 1 ∈ ρ.

• The states q ∈ Q of Tce are in S; the states of the form (q
ρ
−→ q′, i) are

labeled by the atomic propositions associated with q;
• F = Q.

4 And, for improved clarity, we now call continuous late the semantics defined in
section 5.1.
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With this semantics, we distinguish between two kinds of transition: Those
leading to a new control state, called the action transitions, and those corre-
sponding to a simple delay of one time unit along a transition, called the delay
transitions. The number of states is infinite when there exist transitions with
unbounded duration in S.

Observe that the fairness condition F allows one to rule out runs with a suffix

of the form (q
[l,∞)
−−→ q′, i)

1
−→ (q

[l,∞)
−−→ q′, i + 1)

1
−→ (q

[l,∞)
−−→ q′, i + 2)

1
−→ . . . Indeed

a transition (q, [l,∞), q′) ∈ R means that the transition from q to q′ can take
an arbitrary finite amount of time (beyond l).

Figure 5 illustrates the difference between the two “continuous” semantics.
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Fig. 5. Continuous late and continuous early semantics for DTGs

These semantics are not equivalent bisimilar as may be seen with the (untimed)

formula Ψ
def
= E[ (EG¬r)U r ] stating that one can reach r by a path where r is

never inevitable. Ψ holds in (the initial state of) Sex with the continuous late
semantics, but not with the continuous early semantics, because the execution
is committed into the transition towards r and the subformula EG ¬r does
not hold anymore. See appendix C for more comparison between the three
semantics.

As regards algorithmic issues, model checking DTGs under the continuous
early semantics can be reduced to the continuous late semantics. Formally, we
have:

Lemma 7.1 Given a DTG S = 〈Q, qinit, R, l〉, there exists a DTG S = 〈Q, qinit,
R, l〉 such that for any TCTL formula ϕ, we have:

S |=ce ϕ iff S |=cl ϕ.

Furthermore, S can be build in logarithmic space from S.
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The DTG S is defined as follows:

• Q
def
= Q ∪ {(q

ρ
−→ q′) | ∃(q, ρ, q′) ∈ R and ρ ∩ [2,∞) 6= ∅}

• qinit

def
= qinit

• l(q) = l(q) and l((q
ρ
−→ q′)) = l(q).

• R is the following set:







(q, 1, (q
ρ
−→ q′)),

((q
ρ
−→ q′), [max(1, l−1), u− 1], q′)

∣

∣

∣

∣

∣

∣

∃(q, [l, u], q′) ∈ R, and u ≥ 2







⋃







(q, 1, (q
[l,∞)
−−→ q′)),

((q
[l,∞)
−−→ q′), [max(1, l−1),∞), q′)

∣

∣

∣

∣

∣

∣

∃(q, [l,∞), q′) ∈ R







⋃

{

(q, 0, q′) | ∃(q, ρ, q′) ∈ R and 0 ∈ ρ
}

⋃

{

(q, 1, q′) | ∃(q, ρ, q′) ∈ R and 1 ∈ ρ
}

.

Figure 6 gives an example of S and S. The equivalence of truth value for TCTL
formulae is straightforward: In S it is not possible any more to wait for more
than 1 time unit in a node of S, the process has to choose a transition and
additional states (q

ρ
−→ q′) behaves as intermediary states of the c.e.-semantics.

q0

q1

q2

q0

q1

q2

q0
[0,30]
−−−→q1

q0
[1,∞)
−−−→q2

q2
[20,40]
−−−→q0

q2
[1,30]
−−−→q1

[0,
30

]

[1,30]
[1,∞

)

[20,40]

0
1

1

[1,29]

1

[1,∞
)1

1

1

[1,29]

1

[19,39]

S S

Fig. 6. Reduction from continuous early to continuous late semantics

This entails:

Theorem 7.2 Model checking TCTL≤,≥ assuming the c.e.-semantics can be
done in polynomial time.

As regards full TCTL, the proof for the continuous late semantics (Appendix B)
can easily be adapted to this semantics, and thus model checking TCTL over
DTGs with the continuous early semantics is shown to be PSPACE-complete.
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7.2 Restricted classes of DTGs

Tight DTGs. Instead of allowing duration intervals in transitions of DTGs,
we could restrict the durations to be an integer value. This restriction does
not change the complexity results: The lower bounds in Theorems 4.2, 5.2, 6.1
and 6.2 have been shown for such tight DTGs.

DTGs with duration 0/1. An interesting subclass of DTG is the small-
steps DTG (DTG0/1) where every transition (q, ρ, q′) has an interval ρ ⊆ [0, 1].
These DTGs have fundamental properties. First the choice of semantics does
not matter: given a DTG0/1S, Tj(S), Tce(S) and Tcl(S) are isomorphic, and
are a TTS where every transition has a duration in {0, 1}. In such a TTS,
time progresses smoothly along paths: A path π of duration c can always be
decomposed into two subpaths π = π′·π′′ with Time(π′) = ⌊ c

2
⌋ and Time(π′′) =

⌈ c
2
⌉. Moreover the duration of a simple path is bounded by |Q| while in general

TTS the duration of a simple path is exponential in |S|.

Observe that the model used in [LST03] is very close to small-steps DTGs, but
the duration information, “0 or 1 time unit”, is carried by the nodes. In many
works (for ex. [EMSS92,CCM+94]), Kripke structures where the duration of
every transition is exactly 1 time unit, are used to model real time systems.
The two properties (smooth time elapsing and polynomial durations) allow
efficient model checking algorithms [EMSS92,LST03].

Acknowledgments. We thank Jeremy Sproston for discussing the proof of
Theorem 5.3 with us, and the anonymous referees for their useful remarks.

8 Conclusion

Figure 7 summarizes our results on model checking quantitative temporal
logics over DTGs.

A general pattern is that exact duration constraints make model checking
harder. Without them, polynomial-time model checking is possible if one uses
TCTL specifications, and this holds for the three semantics we considered.
Another, less interesting, way to efficient model checking goes through the
restriction to small-steps DTGs.
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DTG0/1 jump sem. cont. sem.

TCTL
≤,≥ PTIME-complete

≤,≥,= PTIME-complete
∆p

2-complete PSPACE-complete
[EMSS92,LST03]

TLTL
≤,≥ PSPACE-complete

≤,≥,= EXPSPACE-complete

TCTL∗
≤,≥ PSPACE-complete

≤,≥,= EXPSPACE-complete

Fig. 7. Overview of results
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A Model checking TCTL over DTGs with the jump semantics

In this appendix, we prove the following Theorem:

Theorem A.1 Model checking TCTL over DTGs with the jump semantics is
∆p

2-complete.

A.1 Membership in ∆p
2

Allowing both exact durations and general DTGs makes model checking harder
(Prop. 4.1) but this is not enough to make the problem PSPACE-complete for
the jump semantics. Indeed, we have:

Proposition A.2 Model checking TCTL over DTGs with the jump semantics
is in ∆p

2.

The standard model-checking algorithm for branching-time logics computes,
for each subformula ψ of the formula at hand, the set of states in the DTG that
satisfy ψ. This algorithm is in ∆p

2 if evaluating a basic modality in a given
state can be done in NP. Theorem 4.3 provides deterministic polynomial-
time solutions for modalities where exact durations are not used. Therefore
it remains to provide NP routines for modalities of the form E P1 U=c P2 and
A P1 U=c P2. We do this through the following two lemmas:

Lemma A.3 Model checking the formula EP1U=cP2 over DTGs with the jump
semantics is in NP.
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PROOF. Let S = 〈Q, qinit, R, l〉 be a DTG. We first deal with the simpler
case where S is tight (all intervals labeling R are singletons).

Assume there exists a path π = q0
d0−→ q1

d1−→ q2 · · · qn in S witnessing q0 |=
E P1 U=c P2. We can assume n < c · |Q| since any null duration loop can be
removed from π, but this is not enough to guarantee that π has size polynomial
in |S|+ ⌈log c⌉.

With π we associate the Parikh image of its transitions, that is, the map
Φπ : R 7→ N that counts the number of times each transition appears in π.
Such a Φ also counts the number of times each node is entered and left:
Φi(q) =

∑

{Φ(t) | t enters q} and Φo(q) =
∑

{Φ(t) | t leaves q}.

Obviously, Φπ satisfies the following properties:

(1) Φi
π(q) = Φo

π(q) for any q different from q0 and qn. Furthermore, if q0 = qn,
then Φi

π(q0) = Φo
π(q0), otherwise Φo

π(q0)−Φi
π(q0) = 1 = Φi

π(qn)−Φo
π(qn).

(2) The subgraph of S induced by the transitions t ∈ R with Φπ(t) > 0 is
connected.

(3) Φπ has duration c, i.e., c =
∑

{d · Φ(t) | t = (q, [d, d], q′) ∈ R}.
(4) qn |= P2 and q |= P1 for any state q such that Φo

π(q) > 0.

Conversely, if some Φ (with q0, qn) fulfills conditions 1 and 2, then by Euler
circuit theorem, Φ is Φπ for some path π from q0 to qn in S. If conditions 3
and 4 also hold, then π proves that q0 |= E P1 U=c P2.

If we assume n < c·|Q|, then Φ can be encoded in polynomial-size, conditions 1
to 4 can be checked in polynomial-time, and Φ (with qn) can be used as the
polynomial-size witness we need for an NP algorithm.

Now, if we remove the assumption that S is tight, it is enough to replace
condition 3 by

∑

t=(q,ρ,q′)

min(ρ) · Φ(t) ≤ c ≤
∑

t=(q,ρ,q′)

max(ρ) · Φ(t).

2

Lemma A.4 Model checking the formula A P1 U=c P2 over DTGs with the
jump semantics is in coNP.

PROOF. [Sketch] Since AP1 U=cP2 ≡ AP1 U≥cP2 ∧ ¬EG=c¬P2, it is enough
to show that model checking formulae of the form EG=c P can be done in NP.
This is done using techniques similar to the previous Lemma. (One difference
is that we have to consider two cases: the path visits duration c, or it avoids
it.) 2
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This completes the proof of Prop. A.2.

A.2 Hardness for ∆p
2

We now show that model checking TCTL over DTGs with the jump semantics
is ∆p

2-hard, and hence ∆p
2-complete. This means that there is no essentially

better way for model checking TCTL over DTGs than the labeling algorithm
used in Prop. A.2.

Proving ∆p
2-hardness is difficult in part because there exist very few natural

problems that are ∆p
2-complete and that could be used in reductions to TCTL

model checking. Here we capitalize on our proof that model-checking FCTL
is ∆p

2-complete [LMS01] and follow its pattern. However, this pattern must
be altered and we have to encode Boolean problems in numerical problems.
Since model-checking TCTL becomes polynomial-time when the numerical
constants are written in unary, the ∆p

2-hardness proof has to encode informa-
tion in the bits of the numbers used in the DTG and the TCTL formula.

A ∆p
2-complete problem. We start with the definition of SNSAT, “Se-

quentially Nested SATisfiability”, a ∆p
2-complete logic problem we use in our

reduction [LMS01]. An instance I of SNSAT has the form

I =



















x1 := ∃Z1 F1(Z1),

x2 := ∃Z2 F2(x1, Z2),
...

xn := ∃Zn Fn(x1, . . . , xn−1, Zn)



















where each Fi is a Boolean expression, each Zi is a set of (auxiliary) Boolean
variables, and the xi are the main variables. We write X for {x1, . . . , xn}, Z
for Z1 ∪ · · · ∪Zn, and assume the sets X,Z1, . . . , Zn are pairwise disjoint. Var
denotes X ∪ Z and p = |Z|.

W.l.o.g., we assume every Fi is a 3-CNF of the form
∧

l

∨3
m=1 αi,l,m where the

αi,l,m are literals. With every disjunct
∨

m αi,l,m we associate a clause Ci,l of
the form xi ∨

∨

m αi,l,m and write Cl = {C1, . . . , Cr} for the resulting set of
clauses.

I defines a unique valuation vI of the variables in X where vI(xi) = ⊤
iff Fi(vI(x1), . . . , vI(xi−1), Zi) is satisfiable. The computational problem called
SNSAT is, given an instance I as above, to decide whether vI(xn) = ⊤. There-
fore I can be seen as a sequence of n satisfiability problems where the ith
problem depends on the answers of the earlier problems.

31



With this in mind, we say a valuation w of Var is:

safe: if, for all i = 1, . . . , n,

w(xi) implies Fi(w(x1), . . . , w(xi−1), w(Zi)),

correct: if, for all i = 1, . . . , n,

w(xi) = Fi(w(x1), . . . , w(xi−1), w(Zi)),

admissible: if w is correct and coincide with vI over X.

A correct valuation is safe and is also consistent for negative values assigned
to some xi. Still, this does not guarantee that the values of variables in Z are
best possible, i.e., that w is admissible. An arbitrary valuation over Z extends
into a correct valuation in a unique way, and checking that a given w is correct
can be done in polynomial-time.

An admissible valuation is just a valuation for Z that yields vI for X. Hence it
is optimal over Z. Clearly, admissible valuations exist for any SNSAT instance,
positive (vI(xn) = ⊤) or negative, but checking that a given w is admissible
is ∆p

2-complete.

Reducing SNSAT to TCTL model checking. Fix some K ∈ N. To vari-
ables u ∈ Var and clauses C ∈ Cl we assign weights s(u) and s(C) given
by:

s(xi) = Ki, s(zi) = Kn+i, s(Ci) = Kn+p+i.

A multiset M of variables and clauses (M ∈ N
Var∪Cl) has weight s(M) =

∑

x s(x) ×M(x). Now if M(x) < K and M′(x) < K for all x ∈ Var ∪ Cl,
then s(M) = s(M′) iff M =M′. Therefore, by picking K large enough, we
can reduce the equality of small multisets to the equality of their weights.

We now build SI , a DTG associated with I. See Fig. A.1. Nodes in SI are of
two kinds: literal nodes (in the upper part of the figure) and filling nodes (in
the lower part). With a path through the literal nodes that avoids the vertical
“xi −→ xi” edges one associates a valuation of Var in the obvious way. The
filling nodes are there for accounting purposes (see below).

For a literal α of the form ±u, the duration d(α) is defined as s(u)+
∑

{s(C) |
C ∈ Cl, α ⇒ C}. Therefore a path through the literal nodes will collect in
its duration the weight of all the variables it visits plus the weight of all the
clauses these literals satisfy (each clause being counted up to four times since
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Fig. A.1. Kripke structure SI associated with SNSAT instance I

it may be satisfied thanks to four different literals). Then the path visits the
filling nodes where it can gather further clause or literal weights.

Now define

K ′ def
=

∑

u∈Var

s(u) + 4×
∑

C∈Cl

s(C)

and assume K is large enough (here K > 11 suffices). Then, for any u ∈ Var,
a path π of weight K ′ must collect d(u) or d(u) once and only once. Thus π
defines a valuation of Var. Furthermore π has to gather 4 times the weight
of all clauses from Cl. Since, for C ∈ Cl, we can only collect 3s(C) via filling
nodes, π must visit at least one literal that satisfies C.

Hence paths of length K ′ correspond to valuations that satisfy all the clauses.
We rely on this and introduce the following TCTL formulae:

ϕ0
def
= ⊤,

and, for k > 0, ϕk
def
= E

[

Px ⇒ EX
(

Px ∧ ¬ϕk−1

)

]

U=K′⊤,

where Px (resp. Px) is an atomic proposition that labels the n positive xi nodes
(resp. the xi nodes).

We can now link vI and the ϕk by:

Lemma A.5 For k ∈ N and r = 1, . . . , n:
(a) if k ≥ 2r − 1 then (vI(xr) = ⊤ iff SI , xr |= ϕk),
(b) if k ≥ 2r then (vI(xr) = ⊥ iff SI , xr |= ϕk).

PROOF. By induction on k. The case k = 0 holds vacuously. We now assume
that k > 0 and that the Lemma holds for k − 1.
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Proof of the “⇒” direction of both “iff”s. Let w be an admissible
valuation. We use w to build a path π that starts at xr (or xr if w(xr) = ⊥),
has total duration K ′, and only visit literals true under w (such a π exists
because w is admissible). We claim π proves xr |= ϕk (or xr |= ϕk). This only
requires that all nodes visited by π satisfy Px ⇒ EX(Px ∧ ¬ϕk−1) but on SI
this translates into “w(xi) = ⊥ for i ≤ r implies xi |= ¬ϕk−1” and is given by
the induction hypothesis.

Proof of the “⇐” direction of both “iff”s. Assume k ≥ 2r − 1 and
xr |= ϕk (or k ≥ 2r and xr |= ϕk). Thus there is a path π starting from xr (or
xr), with durationK ′, and only visiting states satisfying Px ⇒ EX(Px∧¬ϕk−1).
Since Time(π) = K ′ the valuation w induced by π satisfies all C ∈ Cl. We
further claim that w(xi) = vI(xi) for i = 1, . . . , r and prove this by induction
over i:

(1) If w(xi) = ⊤ then
∧

l

∨

mw(αi,l,m) = ⊤, so that Fi(w(x1), . . . , w(xi−1), Zi)
is satisfiable. By ind. hyp. we get that Fi(vI(x1), . . . , vI(xi−1), Zi) is sat-
isfiable, so that vI(xi) = ⊤.

(2) If w(xi) = ⊥ then xi |= EX(Px ∧ ¬ϕk−1), implying xi |= ¬ϕk−1. If i < r
we have k − 1 ≥ 2i − 1 and, by ind. hyp., vI(xi) = ⊥. If i = r then we
are dealing with the case k ≥ 2r and xk |= ϕk, so that k− 1 ≥ 2i− 1 and
again vI(xi) = ⊥ by ind. hyp. 2

Proposition A.6 Model checking TCTL over DTGs with the jump semantics
is ∆p

2-hard.

PROOF. By Lemma A.5, I is a positive instance iff SI , xn |= ϕ2n−1. Ob-
serve that SI and ϕ2n−1 can be built in logspace from I. Thus SNSAT, a
∆p

2-complete [LMS01], reduces to TCTL model checking. 2

Theorem A.7 Model checking TCTL over DTGs with the jump semantics is
∆p

2-complete.

PROOF. Combine Props A.2 and A.6. 2

Remark A.8 Theorem A.7 can be strengthened in various ways, e.g., observ-
ing that SI is a tight DTG. Further, we used the EX modality in ϕk but this is
not necessary (and could be replaced by EF≤0 ). Moreover SI contains transi-
tions with null duration but it is easy to adapt the construction and show that
Theorem A.7 still holds over tight DTGs with strictly positive durations.
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B Model checking TCTL over DTGs with the continuous seman-
tics

Membership in PSPACE is obtained by adapting algorithms for model checking
TCTL over Timed Automata (this problem is PSPACE-complete [ACD93]) to
DTGs with the continuous semantics.

Lemma B.1 Model checking TCTL over DTGs with the continuous seman-
tics is PSPACE-hard.

PROOF. Consider an instance Φ
def
= Q0p0Q1p1 . . . Qn−1pn−1 · ϕ of QBF,

“Quantified Boolean Formulae”, where for i = 0, . . . , n − 1, Qi belongs to
{∃,∀} and pi is a Boolean variable, and where ϕ is a propositional formula
over the pi’s. The instance Φ is said to be valid if there exists a non-empty
set VΦs

of Boolean valuations for {p0, . . . , pn−1} s.t. for any v ∈ VΦs
, v |= ϕ

and for any i with Qi = ∀ there exists v′ ∈ VΦs
s.t. v′(pj) = v(pj) ∀j < i

and v′(pi) = v(pi). A valuation v for the pi’s can be encoded as an integer
Nv ∈ [0, 2n − 1] such that the j-th bit of the binary encoding of Nv is 1 iff
v(pj) = ⊤.

Now we reduce the QBF instance Φ to a model checking instance: From Φ, we
build the DTG SΦ depicted in Figure B.1.

q0 q1 q2

r0 r1 rn−1

r′0 r′1 r′n−1

. . . qn−1 qn

0 2

0 1

0 4

0 2

0 2n

0
2n−1

b⊥0 b⊤0
1

1

0

b⊥1 b⊤1
2

2

0

. . .

b⊥n−1 b⊤n−1

2n−1

2n−1

0

Fig. B.1. DTG SΦ associated with QBF instance Φ

From any state qi there exist two possible paths leading to qi+1: The upper
one, through ri, with total duration 2i+1, and the lower one, through r′i, with
total duration 2i. A path from q0 to qn can be seen as defining a Boolean
valuation for the pi’s with the following convention: Going through the upper
(resp. lower) SΦ transition issued from qi assigns the value false (resp. true)
to pi.
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Let Si with 1 ≤ i ≤ n be the set of Tc(SΦ) states located at a distance
∑i−1
j=0 2j

from q0. We can easily show by induction on i that

Si = {qi} ∪ {(ri−1
2i

−→ qi, α) | 1 ≤ α ≤ 2i−1}∪

{(qi−1
2i−1

−→ r′i, α) | 1 ≤ α ≤ 2i−1 − 1}.

Moreover note that |Si| = 2i. Any Si state has exactly two possible successors
in Si+1 at a duration 2i: one is reached by a path going through the SΦ upper
transition starting from qi, and the other one is reached by a path using the
lower transition (labeled by 2i). Therefore given a state s in Sn, there exists
exactly one path of duration

∑n−1
i=0 2i leading to s, and this path also defines

a Boolean valuation.

Therefore we can associate with a state s in Sn a unique Boolean valuation vs
for the pi’s. Also, we can interpret a TCTL formula over s in order to get the
value of vs(pj), that is the value of the j-th bit of Nvs

. Indeed every Sn state is
characterized by its distance to qn, which belongs to {0, . . . , 2n− 1}: the state
at distance 0 (i.e., qn) corresponds to the valuation which assigns ⊤ to every
pj, the state at distance 1 corresponds to the valuation which assigns ⊥ to p0

and ⊤ to the other variables etc. An Sn-state s at distance i of qn corresponds
to the valuation vs with Nvs

= 2n−1− i. And we have the following property:

vs(pj) = ⊤ iff s |= EF=2n−1 b
⊤
j .

Indeed reaching qn from s takes i t.u. and then it remains to find a path ρ of
duration 2n − 1 − i into the loop b⊥j → b⊤j → . . . Clearly if the j-th bit of
2n − 1− i is 1, then ρ will finish at an intermediary state between b⊤j and b⊥j ,
and such a state satisfies b⊤j . Conversely if the j-th bit is 0, ρ will terminate
into an intermediary state between b⊥j and b⊤j .

Therefore the propositional formula ϕ is satisfied by the valuation vs iff s |=
ϕ[EF=2n−1 b

⊤
j /pj].

To encode the QBF instance Φ, it remains to add quantifiers over valua-

tions and we have: Φ
def
= Q0p0. Q1p1 . . . Qn−1pn−1. ϕ is valid if, and only if,

O0O1 . . . On−1 ϕ[EF=2n−1 b
⊤
j /pj] where Oi is EF=2i−1 (resp. AF=2i−1 ) if Qi is

∃ (resp. ∀). This is sound because the choice of the i-th upper or lower SΦ

transition is actually performed between instant
∑i−1
j=0 2j and

∑i
j=0 2j. 2

C Comparing the three DTG semantics

One can relate the three semantics for DTGs in formal terms.
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On the one hand, the finer granularity and the later timing of nondeterministic
choices when moving from jump to continuous early to continuous late can be
captured by a notion of timed simulation: We write ⊑ for the largest relation

between states of TTSs s.t. for any q ⊑ r and any timed step q
d
−→ q′ from q,

there exists a sequence of steps r
d1−→

d2−→ · · ·
dn−→ r′ with d = d1 + · · · + dn and

r ⊑ r′. Then, for any DTG S:

Tj(S) ⊑ Tce(S) ⊑ Tc(S).

This entails that ∃TB(F), the fragment of TCTL where only the F∼... modali-
ties (arbitrary timing constraints are permitted) and existential path quantifi-
cation is allowed (but negation is not permitted), is preserved when moving
from Tj to Tce to Tc semantics.

Observe that this notion of simulation does not take fairness constraints into
account. This is for simplification purposes, and fairness can be accounted for,
e.g., along the lines of [HS85].

In the other direction, the wider latitude present in Tc(S) when compared
to Tj(S) or Tce(S), does not add fundamentally new behavior. This can be
captured with a timed notion of stuttering equivalence between timed runs:

Say a timed run π = q1
d1−→ q2

d2−→ q3 · · ·
dn−1
−−−→ qn is equivalent to π′ = q1

d1−→

· · · qi−1
di−1+di
−−−−→ qi+1

di+1
−−→ · · · qn, written π ∼1 π

′, if qi is labeled as qi−1 or as
qi+1. Then t-s-equivalence, denoted ∼t, is defined by considering the reflexive,
symmetric and transitive closure of ∼1. Finally, two TTSs are t-s-equivalent,
written T1 ∼t T2 if they give rise to the same set of finite runs modulo ∼t.
Again, this notion of t-s-equivalence can, and should, be adapted to deal with
infinite runs. Then, for any DTG S:

Tj(S) ∼t Tce(S) ∼t Tc(S).

This entails that LTL−X, the untimed fragment of TLTL, is preserved across
the three semantics.
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