
On model checking durational Kripke structures
(Extended abstract)

F. Laroussinie, N. Markey, and Ph. Schnoebelen

Lab. Spécification & Vérification
ENS de Cachan & CNRS UMR 8643

61, av. Pdt. Wilson, 94235 Cachan Cedex France
email: {fl,markey,phs}@lsv.ens-cachan.fr

Abstract. We consider quantitative model checking in durational
Kripke structures (Kripke structures where transitions have integer du-
rations) with timed temporal logics where subscripts put quantitative
constraints on the time it takes before a property is satisfied.
We investigate the conditions that allow polynomial-time model check-
ing algorithms for timed versions of CTL and exhibit an important gap
between logics where subscripts of the form “= c” (exact duration) are
allowed, and simpler logics that only allow subscripts of the form “≤ c”
or “≥ c” (bounded duration).
A surprising outcome of this study is that it provides the second example
of a ∆

p
2-complete model checking problem.

1 Introduction

Model checking (the automatic verification that a model fulfills temporal logic
specifications) is widely used when designing and debugging critical reactive
systems [Eme90,CGP99]. During the last decade, model checking has been
extended to real-time systems, where quantitative information about timings is
required.

Real-time model checking has been mostly studied and developed in the
framework of Alur and Dill’s Timed Automata [ACD93]. There now exists a large
body of theoretical knowledge and practical experience for this class of systems,
and it is agreed that their main drawback is the complexity blowup induced by
timing constraints: all model checking problems are at least PSPACE-hard over
Timed Automata [Alu91,CY92,ACD93,AL99].

However, there exist simpler families of timed models, for which polynomial-
time model checking is possible. Usually, these are based on classical, discrete,
Kripke structures (KS). Here there is no inherent concept of time (contrary to
clocks in Timed Automata) and the elapsing of time is encoded by events. For
example, in [EMSS92] each transition of a KS is viewed as taking exactly one
time unit, and in [LST00] a “tick” proposition labels states where the clock
is incremented. This framework is less expressive than Timed Automata, but
it is conceptually simpler, it allows efficient model checking algorithms, and is

2 F. Laroussinie, N. Markey, and Ph. Schnoebelen

convenient in many situations.

There are two main popular approaches for extending temporal logics with
the ability to express timing aspects of computations (see [AH92] for a survey).

First, the use of freeze variables (also formula clocks) in temporal formulae
allows the comparison of delays between events. The resulting logics are very
expressive but often have hard model checking problems (because they make it
possible to combine the timings of several different events in arbitrary ways).

A simpler approach is the use of timing constraints tagging temporal modal-
ities. For example, the formula EF<10 A states that it is possible to reach a
state verifying A (“EFA”) in less than 10 time units. These constraints are less
expressive than freeze variables but they lead to more readable formulae, and
sometimes allow easier model checking.

Timing constraints can have three main forms: “≤ c” and “≥ c” set a lower
or upper bound for durations, while “=c” requires a precise value. TCTL is the
extension of CTL with all three types of constraints, while TCTL≤,≥ is the
fragment of TCTL where the “= c” constraints are forbidden. Other classical
temporal logics can be extended in the same way, and we call TCTL∗, TLTL≤,≥,
etc. the resulting formalisms.

Model checking TCTL over Kripke structures can be done in time1 O(|S|3 ·
|ϕ|) [EMSS92]. This is in sharp contrast with model checking over Timed Au-
tomata (PSPACE-complete [ACD93]) and with model checking CTL extended
by freeze variables (PSPACE-complete over KSs [LST00]).

Thus it appears that polynomial-time model checking of timed properties is
possible if one picks the right logic (e.g. TCTL) and the right models (e.g. KSs).

Our contribution. In this paper, we propose and study durational Kripke struc-
tures (DKSs), a very natural extension of KSs. As illustrated in Fig. 1, a DKS is
a KS where transitions have possible durations specified by an interval of inte-
gers. Such structures generalize the models of [EMSS92] or [LST00] and provide
a higher-level viewpoint. For example, steps having long durations can be mod-
eled without long sequences of transitions. Also, the size of a DKS is mostly
insensitive to a change of time scale. Still, the model does not allow anything
like the synchronization of several clocks in Timed Automata.

We show that model checking DKSs can be done in polynomial time when
TCTL≤,≥ is considered, i.e. when exact durations are not allowed as subscripts
of modalities. This extends the positive results from [EMSS92,LST00] to a more
expressive class of models.

Allowing exact duration constraints increases the complexity of model check-
ing: we show that model checking TCTL over DKSs is ∆p

2-complete. This last
result is technically involved, and it is also quite surprising since ∆p

2, the class

1 In such statements, |S| denotes the size of the structure, and |φ| the length of the
temporal formula.

On model checking durational Kripke structures 3

New
Idea

Draft
Written

Submis−
sion

Wait for
Submi.

Notif.
Accept

Final
Version

Publication

Notif.
Reject

Revised
Draft[7,45]

0
0

[25,50] [25,50]

[0,7]

[50,110]

1

[0,10]

0

[0,∞)

[0,∞)

[0,366]

Fig. 1. A DKS modeling publications by one author (time in days)

PNP of problems that can be solved by a deterministic polynomial-time Tur-
ing machine that has access to an NP oracle [Sto76,Pap94], does not contain
many natural complete problems [Pap84,Wag87,Kre88]. Indeed, the only known
∆
p
2-complete problem from the field of temporal model checking has only been

recently identified [LMS01].
Finally, we show that exact duration constraints induce similar complexity

blowup when model checking DKSs with other logics like TLTL and TCTL∗.

Related work. Quantitative logics for Timed Automata are now well-known and
many results are available regarding their expressive power, or the complexity
of satisfiability and model checking [AH94,ACD93,AH93,AFH96,Hen98]. That
exact durations may induce harder model checking complexity was already ob-
served in the case of TLTL and Timed Automata [AFH96].

The literature contains several models that are close to DKSs but mostly
linear-time logics were considered [Ost90,AH94] and this makes model checking
at least PSPACE-hard.

Over discrete KSs, Emerson considers model checking for TCTL in [EMSS92]
and for quantitative logics with more complex constraints in [ET97,ET99]. Model
checking TCTL over “small-step DKS” (see section 2) is considered in [LST00]
where the expressive power of constraints is investigated. [Lew90] describes a
quantitative CTL over discrete timed structures but does not investigate com-
plexity of model checking.

2 Durational Kripke structures

We write N for the set of natural numbers, and IN (or just I) for the set of
intervals over N. An interval ρ ∈ I is either finite (of the form “[n,m]”) or
right-open and infinite (of the form “[n,∞)”).

Assume a countable set AP = {P1, P2, . . .} of atomic propositions.

4 F. Laroussinie, N. Markey, and Ph. Schnoebelen

Definition 2.1. A durational Kripke structure (DKS) is a 3-tuple S = 〈Q,R, l〉
where Q is a set of states, R ⊆ Q × I × Q is a total transition relation with
duration and l : Q→ 2AP labels every state with a subset of AP.

Below we only consider finite DKSs, s.t. Q, R and all l(q) are finite sets.
Graphically, a DKS is just a directed graph where a triple (q, ρ, q′) ∈ R is

depicted as a ρ-labeled edge from q to q′.

Semantics. The intended meaning of an edge (q, ρ, q′) is that it is possible to
move from q to q′ with any duration d ∈ ρ. Note that d is a natural number. We

write q
d
−→ q′ when d ∈ ρ for some (q, ρ, q′) ∈ R. A sequence π = q0

d0−→ q1
d1−→ q2 . . .

with qi
di−→ qi+1 ∈ R for all i is called a path if it is finite and a run if it is infinite.

A simple path is a path where no state is visited twice (a loop-free path). For
a run π, π|n is the path obtained by only considering the first n steps in π. For
q ∈ Q, we let Exec(q) denote the set of runs starting from q: because R is total,
any state is the start of at least one run.

The size (or length) of a path π = q0
d0−→ q1

d1−→ q2 · · · qn is n (the number of
steps), and its duration, denoted Time(π), is d0 + · · · + dn−1.

Example 2.2. The DKS of Fig. 1 models the publication process of one busy re-
searcher, assuming time in counted in days. (This example does not distinguish
between the name of the states and their labeling by propositions. Also, single-
ton intervals [n, n] are written simply n.) A property we would like to express
(and model-check) is “whenever a notification is received, either publication or
submission occurs in less than 150 days”.

Restricted DKSs. There are several natural restrictions one can put on the gen-
eral model of DKS:

– A tight DKS is a DKS where all intervals are singletons. The Timed State
Graphs considered in [AH94] are equivalent to tight DKS. Below we show
that, in general, restricting to tight DKSs does not make model checking
easier.

– A small-step DKS (a ssDKS) is a tight DKS where all steps have duration
0 or 1. The model used in [LST00] is very close to small-step DKSs, but the
duration information, “0 or 1 time unit?”, is carried by the nodes.

– A KS is a small-step DKS where all steps have duration 1. This is the model
assumed in [EMSS92].

There are fundamental differences between ssDKSs and DKSs. First, if there is
a path connecting some q to some q′, then the shortest such path has duration
at most |Q| − 1 in a ssDKS, while it can have exponential duration in DKSs.

Moreover, in ssDKSs time progresses smoothly along paths: a path π of
duration c can always be decomposed into two subpaths π = π′.π′′ with
Time(π′) = b c2c and Time(π′′) = d c2e. This property plays a crucial rôle in
efficient TCTL model checking algorithms over ssDKSs [EMSS92,LST00].

On model checking durational Kripke structures 5

3 Quantitative temporal logic

TCTL is the quantitative extension of CTL where temporal modalities are sub-
scripted with constraints on duration [ACD93]. Here it is interpreted over DKSs
states.

Definition 3.1 (Syntax of TCTL). TCTL formulae are given by the following
grammar:

ϕ, ψ ::= P1 | P2 | . . . | ¬ϕ | ϕ ∧ ψ | EXϕ | EϕU∼c ψ | AϕU∼c ψ

where ∼ can be any comparator in {<,≤,=,≥, >} and c any natural number.

Standard abbreviations include >,⊥, ϕ ∨ ψ, ϕ ⇒ ψ, . . . as well as AXϕ (for
¬EX¬ϕ), EF∼c ϕ (for E>U∼c ϕ), AF∼c ϕ (for A>U∼c ϕ), EG∼c ϕ (for ¬AF∼c ¬ϕ)
and AG∼c ϕ (for ¬EF∼c ¬ϕ). Further, the modalities U, F and G without sub-
scripts are shorthand for U≥0 , etc. The size |ϕ| of a formula ϕ is defined in
standard way, with constants written in binary notation.

Definition 3.2 (Semantics). The following clauses define when a state q of
some DKS S, satisfies a TCTL formula ϕ, written q |= ϕ, by induction over the
structure of ϕ (semantics of boolean operators is omitted).

q |= EXϕ iff there is a q
d
−→ q′ s.t. q′ |= ϕ,

q |= EϕU∼c ψ iff there is a run π of the form q = q0
d0−→ q1

d1−→ q2 · · · and a n
s.t. Time(π|n) ∼ c, qn |= ψ, and qi |= ϕ for all 0 ≤ i < n,

q |= AϕU∼c ψ iff for all runs π of the form q = q0
d0−→ q1

d1−→ q2 · · · there is a n
s.t. Time(π|n) ∼ c, qn |= ψ, and qi |= ϕ for all 0 ≤ i < n.

Thus, in EϕU∼cψ, the classical until is extended by requiring that ψ be satisfied
within a duration (from the current state) verifying the constraint “∼c”.

Here are some examples of TCTL formulae stating expected properties for
the DKS from Figure 1:

AG(New Idea ⇒ ¬EF<100 Publication)

AG(Submission ⇒ AF<40 (Publication ∨ Revised Draft ∨ New Idea))

The first formula states that a new idea is never followed by a publication in
less than 100 days. The second formula states that any submission is inevitably
followed by a notification of acceptance, a revised draft, or a new idea, in less
than 40 days.

Equivalent formulae. We write ϕ ≡ ψ when ϕ and ψ are equivalent (every state
of every DKS satisfies ϕ ⇔ ψ) and ϕ ≡ss ψ when the equivalence only holds in
states of small-step DKSs.

6 F. Laroussinie, N. Markey, and Ph. Schnoebelen

The following equivalences hold:

A ϕ U≤c ψ ≡ AF≤c ψ ∧ ¬E(¬ψ)U(¬ϕ ∧ ¬ψ) (1)

A ϕ U≥c ψ ≡ AG<c

(

ϕ ∧ A ϕ U>0 ψ
)

(2)

Some seemingly natural equivalences only hold for small-step DKSs (but do not
hold for DKSs in general). For example:

E ϕ U≤c ψ ≡ss E ϕ U≤1 (ψ ∨ E ϕ U≤c−1 ψ) (3)

E ϕ U=c ψ ≡ss E ϕ U=1 (E ϕ U=c−1 ψ) (4)

E ϕ U≥c ψ ≡ss E ϕ U=c (E ϕ U ψ) (5)

4 Model checking TCTL over DKSs

The model checking problem we consider in this section is, given some DKS S,
some state q, and some TCTL formula ϕ, to decide whether q |= ϕ.

Model checking algorithms for TCTL have to deal with the timing constraints
carried by the modalities. Constraints of the form “= c” (exact durations) are
usually more difficult than inequality constraints. Furthermore, when dealing
with DKSs, the durations associated with the transitions make the problem
even harder. Indeed NP-hard problems appear for simple formulae:

Proposition 4.1 (Hardness of reachability with exact duration). Model
checking formulae of the form EF=c P over DKS is NP-hard.

Proof. By reduction from SUBSET-SUM [GJ79, p. 223]: an instance is a finite
set A = {a1, . . . , an} of natural numbers and some number D. One asks whether
there exists a subset A′ of A s.t. D =

∑

a∈A′ a. This is the case iff q0 |= EF=D P

in the following DKS:

. . .
q0 q1 q2 qn

P

0 0 0 0

a1 a2 a3 an

0

ut

Therefore model checking TCTL over DKSs is NP-hard and coNP-hard. Now,
the problem is clearly in PSPACE since one can easily encode DKSs as Timed
Automata on which model-checking TCTL is PSPACE-complete [ACD93].

4.1 Polynomial-time model checking for restricted cases

It turns out that polynomial-time model checking remains possible as long as
equality constraints or durations on transitions are forbidden, as we now show.

Let TCTL≤,≥ denote the fragment of TCTL where equality constraints on
modalities are not allowed:

On model checking durational Kripke structures 7

Theorem 4.2. Model checking TCTL≤,≥ over DKSs can be done in time

O
(

|S|
2
.|ϕ|

)

.

Proof. It is enough to extend the classical CTL algorithm with labeling proce-
dures running in time |S|

2
.dlog ce for each modality EP1 U∼cP2 and AP1 U∼cP2.

ϕ is E P1 U≤c P2: We restrict to the subgraph where only states satisfying
E P1 U P2 have been kept, and where we only consider the left extremity
of intervals ρ on edges. Then for every state q we compute the smallest du-
ration (call it cq) such that q |= EP1U≤cq

P2. This can be done in time O(|S2|)
using a classical single-source shortest paths algorithm [CLR90]. Then q |= ϕ

iff cq ≤ c.
ϕ is E P1 U≥c P2: We start with some preprocessing of S: let us introduce a new

proposition PSCC+(ψ) and use it to label every node belonging to a strongly
connected set of nodes satisfying ψ and where at least one edge allows a
strictly positive duration. That is, q |= PSCC+(ψ) iff it is possible to loop on
ψ-states around q with ever increasing durations. Labeling states for PSCC+(ψ)

can be done in time O(|S|) once they are labeled for ψ.
We can now solve the original problem. There are two ways a state can satisfy
ϕ. Either a simple path is enough, or a path with loops is required so that a
long enough duration is reached. We check the existence of a path of the first
kind with a variant of the earlier shortest paths method, this times geared
towards longest acyclic paths. We check for the existence of a path of the
second kind by model checking the CTL formula EP1U(PSCC+(P1)∧EP1UP2).

ϕ is A P1 U≤c P2: We reduce to the previous cases using equivalence (1) and
AF≤c ψ ≡ ¬E¬ψ U>c> ∧ ¬E¬ψU PSCC0(¬ψ). Here PSCC0(¬ψ) labels strongly
connected components where one can loop on ¬ψ-states using transitions
allowing for zero durations.

ϕ is A P1 U≥c P2: We reduce to the previous cases using equivalence (2) and
AG<c ϕ ≡ ¬EF<c ¬ϕ. ut

When equality constraints are allowed but arbitrary large durations in DKSs are
forbidden, we rely on the following result:

Theorem 4.3 ([EMSS92,LST00]). Model checking TCTL over small-step
DKSs can be done in polynomial-time.

Now, since model checking is already P-hard for CTL over KSs, model checking
TCTL≤,≥ over DKSs, or TCTL over ssDKSs, is PTIME-complete.

4.2 ∆
p

2 model checking for TCTL over DKSs

Allowing both exact durations and general DKSs makes model checking harder
(Prop. 4.1) but this is not enough to make the problem PSPACE-complete2. In
fact, we have:

2 This sentence assumes there is no collapse in the polynomial-time hierarchy.

8 F. Laroussinie, N. Markey, and Ph. Schnoebelen

Proposition 4.4. Model checking TCTL over DKSs is in ∆
p
2.

Proof. A natural ∆p
2 algorithm is to use the natural CTL-like labeling algorithm,

accessing an NP oracle for the basic modalities. Theorem 4.2 provides determin-
istic polynomial-time solutions for modalities where exact duration is not used.
Therefore it remains to provide NP routines for modalities of the form EP1U=cP2

and A P1 U=c P2. We deal with the E P1 U=c P2 modalities in Lemma 4.5, and
with the A P1 U=c P2 modalities in Lemma 4.6. ut

Lemma 4.5. Model checking formulae of the form EP1 U=c P2 over DKSs is in
NP.

Proof. Let S = 〈Q,R, l〉 be a DKS. We first deal with the simpler case where S
is tight (all intervals labeling R are singletons).

Assume there exists a path π = q0
d0−→ q1

d1−→ q2 · · · qn in S witnessing q0 |=
E P1 U=c P2. We can assume n < c · |Q| since any null duration loop can be
removed from π, but this is not enough to guarantee that π has size polynomial
in |S| + dlog ce.

With π we associate the Parikh image of its transitions, that is, the map
Φπ : R 7→ N that counts the number of times each transition appears in π. Such
a Φ also counts the number of times each node is entered and left: Φi(q) =
∑

{Φ(t) | t enters q} and Φo(q) =
∑

{Φ(t) | t leaves q}.
Obviously, Φπ satisfies the following properties:

1. Φi
π(q) = Φo

π(q) for any q different from q0 and qn. Furthermore, if q0 = qn,
then Φi

π(q0) = Φo
π(q0), otherwise Φo

π(q0) − Φi
π(q0) = 1 = Φi

π(qn) − Φo
π(qn).

2. The subgraph of S induced by the transitions t ∈ R with Φπ(t) > 0 is
connected.
3. Φπ has duration c, i.e. c =

∑

{d · Φ(t) | t = (q, [d, d], q′) ∈ R}.
4. qn |= P2 and q |= P1 for any state q s.t. Φo

π(q) > 0.
Conversely, if some Φ (with q0, qn) fulfills conditions 1. and 2., then by Euler

circuit theorem, Φ is Φπ for some path π from q0 to qn in S. If conditions 3.
and 4. also hold, then π proves that q0 |= E P1 U=c P2. If we assume n < c · |Q|,
then Φ can be encoded in polynomial-size, conditions 1 to 4 can be checked in
polynomial-time, and Φ (with qn) can be used as the polynomial-size witness we
need for an NP algorithm.

Now, if we remove the assumption that S is tight, it is enough to replace
condition 3. by

∑

t=(q,ρ,q′)

min(ρ) · Φ(t) ≤ c ≤
∑

t=(q,ρ,q′)

max(ρ) · Φ(t)

ut

Lemma 4.6. Model checking formulae of the form AP1 U=c P2 over DKSs is in
coNP.

Proof (Sketch). Since AP1 U=c P2 ≡ AP1 U≥c P2 ∧ ¬EG=c ¬P2, it is enough to
show that model checking formulae of the form EG=c P can be done in NP. This
is done using techniques similar to the previous Lemma. (One difference is that
we have to consider two cases: the path visits duration c, or it avoids it.) ut

On model checking durational Kripke structures 9

4.3 ∆
p

2-hardness of TCTL model checking

We now show that model checking TCTL over DKSs is ∆p
2-hard, and hence ∆p

2-
complete. This means that there is no essentially better way for model checking
TCTL over DKS than the labeling algorithm used in Prop. 4.4.

Proving ∆p
2-hardness is difficult in part because there exist very few natural

problems that are ∆p
2-complete and that could be used in reductions to TCTL

model checking. Here we capitalize on our recent proof that model-checking
FCTL is∆p

2-complete [LMS01] and follow its pattern. However, this pattern must
be altered and we have to encode boolean problems in numerical problems. Since
model-checking TCTL becomes polynomial-time when the numerical constants
are written in unary, the ∆p

2-hardness proof has to encode information in the
bits of the numbers used in the DKS and the TCTL formula.

A ∆
p
2-complete problem. We start by briefly recalling SNSAT (for sequentially

nested satisfiability), the ∆p
2-complete satisfiability problem we reduce from. An

instance I of SNSAT has the form

I =

x1 := ∃Z1 F1(Z1),
x2 := ∃Z2 F2(x1, Z2),

...
xn := ∃Zn Fn(x1, . . . , xn−1, Zn)

where each Fi is a boolean expression, each Zi is a set of (auxiliary) boolean
variables, and the xi are the main variables. We write X for {x1, . . . , xn}, Z
for Z1 ∪ · · · ∪ Zn, and assume the sets X,Z1, . . . , Zn are pairwise disjoint. Var
denotes X ∪ Z and p = |Z|.

W.l.o.g., we assume every Fi is a 3CNF and write
∧

l

∨3
m=1 αi,l,m for Fi. With

every disjunct
∨

m αi,l,m we associate a clause Ci,l of the form xi ∨
∨

m αi,l,m
and write Cl = {C1, . . . , Cr} for the resulting set of clauses.

I defines a unique valuation vI of the variables in X where vI(xi) = >
iff Fi(vI(x1), . . . , vI(xi−1), Zi) is satisfiable. The computational problem called
SNSAT is, given an instance I as above, to decide whether vI(xn) = >. Therefore
I can be seen as a sequence of n satisfiability problems where the ith problem
depends on the answers of the earlier problems.

With this in mind, we say a valuation w of Var is:
safe: if, for all i = 1, . . . , n, w(xi) implies Fi(w(x1), . . . , w(xi−1), w(Zi)),
correct: if, for all i = 1, . . . , n, w(xi) = Fi(w(x1), . . . , w(xi−1), w(Zi)),
admissible: if w is correct and coincide with vI over X.
A correct valuation is safe and is also consistent for negative values assigned to
some xi. Still, this does not guarantee that the values of variables in Z are best
possible, i.e. that w is admissible. An arbitrary valuation over Z extends into a
correct valuation in a unique way, and checking that a given w is correct can be
done in polynomial-time.

An admissible valuation is just a valuation for Z that yields vI for X. Hence
it is optimal over Z. Clearly, admissible valuations exist for any SNSAT instance,

10 F. Laroussinie, N. Markey, and Ph. Schnoebelen

positive (vI(xn) = >) or negative, but checking that a given w is admissible is
∆
p
2-complete.

Reducing SNSAT to TCTL model checking. Fix some K ∈ N. To variables
u ∈ Var and clauses C ∈ Cl we assign weights s(u) and s(C) given by:

s(xi) = Ki s(zi) = Kn+i s(Ci) = Kn+p+i

A multiset M of variables and clauses (M ∈ N
Var∪Cl) has weight

s(M) =
∑

x s(x) × M(x). Now if M(x) < K and M′(x) < K for all
x ∈ Var ∪ Cl , then s(M) = s(M′) iff M = M′. Therefore, by picking K large
enough, we can reduce the equality of small multisets to the equality of their
weights.

We now build SI , a DKS associated with I. See Fig. 2. Nodes in SI are of

xn

xn

. . .

. . .

x1

x1

z1

z1

. . .

. . .

zp

zp

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0

0

0

0

d(xn)

d(xn)

d(x2)

d(x2)

0 0

0

0

0

0

0

0

d(z1)

d(z1)

d(zp−1)

d(zp−1)

d(x1)

d(x1)

0

d(xn)

d(xn)

0

3C1

2C1

C1

0

3Cr

2Cr

Cr

0

d(x1)

d(x1)

d(zp)

d(zp)

0

0

Fig. 2. Kripke structure SI associated with SNSAT instance I

two kinds: literal nodes (in the upper part of the figure) and filling nodes (in
the lower part). With a path through the literal nodes that avoids the vertical
“xi −→ xi” edges one associates a valuation of Var in the obvious way. The filling
nodes are there for accounting purposes (see below).

For a literal α of the form ±u, the duration d(α) is defined as s(u) +
∑

{s(C) | C ∈ Cl , α ⇒ C}. Therefore a path through the literal nodes will
collect in its duration the weight of all the variables it visits plus the weight of
all the clauses these literals satisfy (each clause being counted up to four times
since it may be satisfied thanks to four different literals). Then the path visits
the filling nodes where it can gather further clause or literal weights.

Now define

K ′ def
=

∑

u∈Var

s(u) + 4 ×
∑

C∈Cl

s(C)

On model checking durational Kripke structures 11

and assume K is large enough (here K > 11 suffices). Then, for any u ∈ Var ,
a path π of weight K ′ must collect d(u) or d(u) once and only once. Thus π
defines a valuation of Var . Furthermore π has to gather 4 times the weight of all
clauses from Cl . Since, for C ∈ Cl , we can only collect 3s(C) via filling nodes, π
must visit at least one literal that satisfies C.

Hence paths of length K ′ correspond to valuations that satisfy all the clauses.
We rely on this and introduce the following TCTL formulae:

ϕ0
def
= >,

and, for k > 0, ϕk
def
= E

[

Px ⇒ EX
(

Px ∧ ¬ϕk−1

)

]

U=K′>,

where Px (resp. Px) is an atomic proposition that labels the n positive xi nodes
(resp. the xi nodes).

We can now link vI and the ϕk by:

Lemma 4.7. For k ∈ N and r = 1, . . . , n:
(a) if k ≥ 2r − 1 then (vI(xr) = > iff SI , xr |= ϕk),
(b) if k ≥ 2r then (vI(xr) = ⊥ iff SI , xr |= ϕk).

Proof. By induction on k. The case k = 0 holds vacuously. We now assume that
k > 0 and that the Lemma holds for k − 1.
i. We prove the “⇒” direction of both “iff”s.

Let w be an admissible valuation. We use w to build a path π that starts at
xr (or xr if w(xr) = ⊥), has total duration K ′, and only visit literals true under
w (such a π exists because w is admissible). We claim π proves xr |= ϕk (or xr |=
ϕk). This only requires that all nodes visited by π satisfy Px ⇒ EX(Px∧¬ϕk−1)
but on SI this translates into “w(xi) = ⊥ for i ≤ r implies xi |= ¬ϕk−1” and is
given by the induction hypothesis.
ii. We now prove the “⇐” direction of both “iff”s.

Assume k ≥ 2r − 1 and xr |= ϕk (or k ≥ 2r and xr |= ϕk). Thus there is
a path π starting from xr (or xr), with duration K ′, and only visiting states
satisfying Px ⇒ EX(Px ∧ ¬ϕk−1). Since Time(π) = K ′ the valuation w induced
by π satisfies all C ∈ Cl . We further claim that w(xi) = vI(xi) for i = 1, . . . , r
and prove this by induction over i:
iia. If w(xi) = > then

∧

l

∨

mw(αi,l,m) = >, so that Fi(w(x1), . . . , w(xi−1), Zi)
is satisfiable. By ind. hyp. we get that Fi(vI(x1), . . . , vI(xi−1), Zi) is satisfiable,
so that vI(xi) = >.
iib. If w(xi) = ⊥ then xi |= EX(Px ∧ ¬ϕk−1), implying xi |= ¬ϕk−1. If i < r we
have k − 1 ≥ 2i− 1 and, by ind. hyp., vI(xi) = ⊥. If i = r then we are dealing
with the case k ≥ 2r and xk |= ϕk, so that k − 1 ≥ 2i− 1 and again vI(xi) = ⊥
by ind. hyp. ut

Proposition 4.8. Model checking TCTL over DKSs is ∆p
2-hard.

Proof. By Lemma 4.7, I is a positive instance iff SI , xn |= ϕ2n−1. Observe
that SI and ϕ2n−1 can be built in logspace from I. Thus SNSAT, a ∆

p
2-

complete [LMS01], reduces to TCTL model checking. ut

12 F. Laroussinie, N. Markey, and Ph. Schnoebelen

Theorem 4.9. Model checking TCTL over DKSs is ∆p
2-complete.

Proof. Combine Props 4.4 and 4.8. ut

Remark 4.10. Theorem 4.9 can be strengthened in various ways. E.g. note that
SI is a tight DKS. Further, we used the EX modality in ϕk but this is not nec-
essary (and could be replaced by EF≤0). Moreover SI contains transitions with
null duration but it is easy to adapt the construction and show that Theo. 4.9
still holds over tight DKSs with strictly positive durations.

5 When are exact durations harder over DKSs?

Comparing Theorems 4.2 and 4.9 shows that allowing subscripts “= c” makes
model checking TCTL over DKSs significantly harder. There exist other situa-
tions where exact duration subscripts make problems harder. For example:

– In small-step DKSs, model checking TCTL and TCTL≤,≥ are both PTIME-
complete3 but satisfiability is harder for TCTL than for TCTL≤,≥ [EMSS92].

– Over Timed Automata, exact duration subscripts do not make model check-
ing harder for TCTL (PSPACE-complete for TCTL [ACD93]), but they do
for the linear time temporal logic MITL [AFH96].

In this section we consider how exact duration subscripts do or do not increase
the cost of model checking when the models are DKSs and the logic is a timed
variant of classic temporal logics like LTL or CTL∗.

We will write TLTL, TCTL∗ and TCTL+ for the timed variants of the logics
LTL, CTL∗ and CTL+ (definitions omitted, see [Eme90]) and will let TLTL≤,≥,
etc., denote the fragments where exact duration is not allowed.

5.1 Model checking TLTL over DKSs

TLTL formulae are path formulae and are interpreted over runs in a DKS. As
usual in this case, we consider existential model checking, that is the problem of
deciding for a DKS S, a state q and a formula ϕ, whether there exists a path
from q verifying ϕ.

Theorem 5.1. 1. Model checking TLTL over DKSs (and ssDKSs) is
EXPSPACE-complete.
2. Model checking TLTL≤,≥ over DKSs (and ssDKSs) is PSPACE-complete.

Proof. 1. EXPSPACE-hardness: it is possible to describe with an TLTL formula
the accepting runs of a Turing Machine that runs in space 2n. As usual, a run
of the TM is seen as a sequence of instantaneous descriptions (i.d.). Here each
i.d. has length 2n. One easily writes that any two consecutive i.d.’s agree with
the TM rules by means of the F=2n modality, a modality of size O(n).

3 More precisely, model checking full TCTL can be done in time O(|S|3 · |ϕ|) while
model checking TCTL≤,≥ can be done in time O(|S| · |ϕ|) [LST00].

On model checking durational Kripke structures 13

Membership in EXPSPACE: this can be seen as a special case of the
EXPSPACE upper bound for TPTL [AH94], a logic more expressive than TLTL
interpreted over “timed state graphs” (a model in which one can encode DKSs).

2. PSPACE-hardness: comes from PSPACE-hardness of LTL model checking.
Membership in PSPACE: [AFH96] shows that model checking MITL<,> (a

logic equivalent to TLTL≤,≥) over Timed Automata can be done in PSPACE.
Since Timed Automata easily encode DKSs, the upper bound follows. ut

5.2 Model checking TCTL
∗ over DKSs

Theorem 5.2. 1. Model checking TCTL∗ over DKSs (and ssDKSs) is
EXPSPACE-complete.
2. Model checking TCTL∗

≤,≥ over DKSs (and ssDKSs) is PSPACE-complete.

Proof. A direct consequence of Theorem 5.1: the techniques from [EL87] produce
an algorithm for TCTL∗ under the form of a simple polynomial-time labeling
algorithm that calls an oracle for TLTL model checking. Hence model check-
ing belongs to PEXPSPACE, that is EXPSPACE. The same reasoning applies to
TCTL∗

≤,≥ and yields a a PPSPACE, that is a PSPACE algorithm. ut

5.3 Model checking TCTL
+ over DKSs

CTL+ is the extension of CTL in which boolean combinations of path for-
mulae are allowed to appear under a path quantifier [Eme90]. For example,
A(F<3 req1 ⇒ F<5 req2) is a TCTL+ formula.

Theorem 5.3. Model checking TCTL+ and TCTL+
≤,≥ over DKSs (and ssD-

KSs) is ∆p
2-complete.

Proof. ∆p
2-hardness comes from ∆

p
2-hardness of (untimed) CTL+ model check-

ing [LMS01]. Membership in ∆
p
2 is a consequence on Lemma 5.4, an extension

of Lemma 4.5. ut

Lemma 5.4. Model checking formulae of the form E
(
∧

i Pi U∼ci
P ′
i ∧

∧

j ¬(Pj U∼cj
P ′
j)

)

over DKSs is NP-complete.

Proof (Idea). Only membership in NP needs be proved. This is done by combin-
ing ideas from Lemmas 4.5 and 4.6, where we show how it is possible to witness
the existence of a path through its Parikh image (and a few additional bits of
information), and ideas from CTL+ model checking, where a witness simply indi-
cates in what order the different PiUP

′
i modalities are eventually satisfied along

the path, with the choice of nodes that appear at these satisfaction points. ut

Therefore, unlike the classical untimed case where model checking is harder
for CTL+ than for CTL, there is essentially no complexity cost for using TCTL+

instead of TCTL over DKSs.

14 F. Laroussinie, N. Markey, and Ph. Schnoebelen

6 Conclusion

Figure 3 summarizes our results on the complexity of model checking quan-
titative temporal logics over DKSs. A general pattern is that exact durations

TCTL+

TCTL∗

TLTL

TCTL

≤,≥, =

≤,≥

≤,≥, =

≤,≥

≤,≥, =

≤,≥

≤,≥, =

≤,≥

∆
p
2-complete (Th. 4.9)

EXPSPACE-complete (Th. 5.2.1)

PSPACE-complete (Th. 5.2.2)

EXPSPACE-complete (Th. 5.1.1)

PSPACE-complete (Th. 5.1.2)

PTIME-complete
∆

p
2-complete (Th. 4.9)

PTIME-complete (Th. 4.2)

ssDKSs (
0/1
−→) tight DKSs (

n
−→), DKSs (

ρ
−→)

Fig. 3. The complexity of model checking over DKSs

make model checking harder. Polynomial-time model checking is possible if
one considers TCTL and forbids exact durations or restricts to small-step DKSs.

We see two main directions for future work. First, it appears that DKSs can
be seen as Timed Automata where only one clock is used and this clock is reset
with every transition. It would be interesting to see if our results generalize to
Timed Automata with one clock but without the reset restriction.

The second direction is to investigate alternate semantics for DKSs. Our

assumption that steps in a DKS are all q
d
−→ q′ for d ∈ ρ has practical, not

philosophical, motivations: it makes technicalities and notations simpler. But
DKSs could be given alternate semantics.

For example, one could assume that an edge q
d
−→ q′ is a succinct description

of d edges between q and q′, visiting d− 1 intermediary states. Here time flows
more smoothly. The behavior is the same but the temporal logic can refer to
more observation points (so that its meaning is modified). Another possibility is
to consider that an interval ρ = [n, n′] in a transition (q, ρ, q′) ∈ R states that
the system must wait at least n time units and at most n′ before making the
choice to move from q to q′. This impacts the branching behavior of S.

These two variant semantics may or may not be preferable. The complexity
of model checking is similar: it is PTIME-complete for TCTL≤,≥, and PSPACE-
complete for TCTL (proofs will appear in the full version of this paper).

On model checking durational Kripke structures 15

References

[ACD93] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time.
Information and Computation, 104(1):2–34, 1993.

[AFH96] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality.
Journal of the ACM, 43(1):116–146, 1996.

[AH92] R. Alur and T. A. Henzinger. Logics and models of real time: A survey. In
Real-Time: Theory in Practice, Proc. REX Workshop, Mook, NL, June 1991,
volume 600 of Lecture Notes in Computer Science, pages 74–106. Springer,
1992.

[AH93] R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressive-
ness. Information and Computation, 104(1):35–77, 1993.

[AH94] R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM,
41(1):181–203, 1994.

[AL99] L. Aceto and F. Laroussinie. Is your model checker on time? In Proc. 24th
Int. Symp. Math. Found. Comp. Sci. (MFCS ’99), Szklarska Poreba, Poland,
Sep. 1999, volume 1672 of Lecture Notes in Computer Science, pages 125–
136. Springer, 1999.

[Alu91] R. Alur. Techniques for Automatic Verification of Real-Time Systems. PhD
thesis, Stanford Univ., August 1991. Available as Tech. Report STAN-CS-
91-1378.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
1999.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms.
MIT Press, 1990.

[CY92] C. Courcoubetis and M. Yannakakis. Minimum and maximum delay prob-
lems in real-time systems. Formal Methods in System Design, 1(4):385–415,
1992.

[EL87] E. A. Emerson and Chin-Laung Lei. Modalities for model checking: Branch-
ing time logic strikes back. Science of Computer Programming, 8(3):275–306,
1987.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 16, pages
995–1072. Elsevier Science, 1990.

[EMSS92] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative
temporal reasoning. Real-Time Systems, 4(4):331–352, 1992.

[ET97] E. A. Emerson and R. J. Trefler. Generalized quantitative temporal reason-
ing: An automata-theoretic approach. In Proc. 7th Int. Joint Conf. Theory
and Practice of Software Development (TAPSOFT ’97), Lille, France, Apr.
1997, volume 1214 of Lecture Notes in Computer Science, pages 189–200.
Springer, 1997.

[ET99] E. A. Emerson and R. J. Trefler. Parametric quantitative temporal rea-
soning. In Proc. 14th IEEE Symp. Logic in Computer Science (LICS ’99),
Trento, Italy, July 1999, pages 336–343. IEEE Comp. Soc. Press, 1999.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to
the Theory of NP-Completeness. Freeman, 1979.

[Hen98] T. A. Henzinger. It’s about time: real-time logics reviewed. In Proc. 9th Int.
Conf. Concurrency Theory (CONCUR ’98), Nice, France, Sep. 1998, volume
1466 of Lecture Notes in Computer Science, pages 439–454. Springer, 1998.

16 F. Laroussinie, N. Markey, and Ph. Schnoebelen

[Kre88] M. W. Krentel. The complexity of optimization problems. Journal of Com-
puter and System Sciences, 36(3):490–509, 1988.

[Lew90] H. R. Lewis. A logic of concrete time intervals (extended abstract). In Proc.
5th IEEE Symp. Logic in Computer Science (LICS ’90), Philadelphia, PA,
USA, June 1990, pages 380–389. IEEE Comp. Soc. Press, 1990.

[LMS01] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking CTL+

and FCTL is hard. In Proc. 4th Int. Conf. Foundations of Software Science
and Computation Structures (FOSSACS 2001), Genova, Italy, Apr. 2001,
volume 2030 of Lecture Notes in Computer Science, pages 318–331. Springer,
2001.

[LST00] F. Laroussinie, Ph. Schnoebelen, and M. Turuani. On the expressivity and
complexity of quantitative branching-time temporal logics. In Proc. 4th Latin
American Symposium on Theoretical Informatics (LATIN’2000), Punta del
Este, Uruguay, Apr. 2000, volume 1776 of Lecture Notes in Computer Sci-
ence, pages 437–446. Springer, 2000.

[Ost90] J. S. Ostroff. Deciding properties of timed transition models. IEEE Trans-
actions on Parallel and Distributed Systems, 1(2):170–183, 1990.

[Pap84] C. H. Papadimitriou. On the complexity of unique solutions. Journal of the
ACM, 31(2):392–400, 1984.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[Sto76] L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer

Science, 3(1):1–22, 1976.
[Wag87] K. W. Wagner. More complicated questions about maxima and minima, and

some closures of NP. Theoretical Computer Science, 51(1–2):53–80, 1987.

