
Theoretical

ELSEVIER Theoretical Computer Science 140 (1995) 53-71

Computer Science

Translations between modal logics of reactive systems*

F. Laroussinie, S. Pinchinat, Ph. Schnoebelen*

Lifia-hag, 46 Au. F&x Viallet, F-38000 Grenoble, France

Abstract

We propose meaning-preserving translations between La, L, and Lsb (three modal logics in
full agreement with branching bisimulation), thus proving that they all have the same expressiv-
ity. The translations can be implemented and have potential applications in the automated
analysis of reactive systems.

In this work the main difficulty is that La uses both forward and backward modalities,
whereas Lu and Lab only have forward modalities. The technique we developed to cope with
this, is an adaptation in a branching-time framework of the methods underlying Gabbay’s
separation theorem for PTL (Gabbay, 1987). This technique is powerful and has been applied
successfully to related problems.

1. Introductioo

Modal logic is an important tool in the analysis, specification and verification of
reactive systems [22]. Among many other applications, logics like the
Hennessy-Milner logic (shortly, HML) have been used as a benchmark for semantic
equivalences [12], as the specification language used in model checking tools [2], and
as a language in which to explain why two systems are not semantically equivalent
[14]. A classical result of modal characterization of semantic equivalences is the
adequacy theorem of Hennessy and Milner stating that in a (finitely branching)
transition system, two states p and 4 are bisimilar, written pc*q, iff they satisfy the
same HML formulae, written p sHHMLq, where

This fundamental result is a strong point in favor of bisimulation equivalence as the
key semantic equivalence for CCS [17, 191. It also helps to explain the concepts

*This article extends our earlier work presented in Proc. AMAST’93, Enschede, NL, June 1993.
* Corresponding author. Email {fl,spinchi,phs} @lifia.imag.fr.

0304-3975/95/$09.50 0 1995-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(94)00204-5

54 F. Laroussinie et al/ Theoretical Computer Science 140 (1995) 53-71

underlying bisimulation equivalence. Following the direction exemplified in [12],
many other behavioral equivalences have been characterized through modal logics:
see [18,1,13,21,3,5, lo] among many others.

Here, we are mostly interested in modal logics with past-time (backward) modali-
ties. A few exist. They have been used (among other applications) to capture noncon-
tinuous properties of generalized transition systems (JT in [13]) to characterize
history-preserving bisimulation in causality-based models (LP in [3]) and to charac-
terize branching bisimulation by mimicking back-and-forth z-bisimulation (LB in

C51).
In particular, regarding LB, we want to compare it (in terms of expressivity) with Lu

and Lsb, two modal logics with only forward modalities, which also characterize
branching bisimulation. The existing literature [S, lo] establishes that they have the
same distinguishing power:

p GL,q iff p EL,q iff p ELSbq

because, Writing eb for branching bisimulation, p ~~q iff psbq for any

LE{LB, L”, J%b}.
Formally speaking, these results do not compare the expressivity of the LB, Lu and

Lsb logics. One usually says that two logics L and L’ have the same expressivity when
any formula of one logic has an equivalent (in some formal sense) in the other logic.
(When the equivalent formula can be effectively computed, we say that there exists
a translation algorithm.) While it is very common in other fields, this particular
question has not received much attention in the field of modal logics for reactive
systems. Regarding LB, Lu and Lsb, this article shows, through three translation

theorems of the general form L 3 L’, that they can all be translated into any other. Our
translation theorems use specific techniques we developed for branching-time tem-
poral logics with past [16]. Usually, the main technical difficulty is to establish
a so-called separation theorem.

Our motivations are not only theoretical. The translations we describe are con-
structive, easy to implement, and potentially useful in the automated analysis of
reactive systems. For example, by showing how to translate HMLbf (HML with
past-time connectives) into its future-time fragment HML, we show how to easily
expand the input language of any software tool (e.g. a verifier) handling HML

properties. Similarly, the translations between LB, Lu and Lsb can be combined with
the diagnostic mechanism of [15] (which uses Lu to explain why two systems are not
branching-bisimilar) to offer explanations in different modal languages.

All the logics we consider in this article are variants of HML:
l HMLbf is a back-and-forth version of HML in a framework with only visible labels,
l Lu is a version of HML with an “until” modality, in a framework with invisible

labels (z’s),
l Lsb is a weaker Lu inspired from the definition of semi-branching bisimulation,
l LB is a version of HMLbf incorporating 7’s.

F. Laroussinie et al/ Theoretical Computer Science 140 (1995) 53-71 55

In Section 2 we recall the technical framework (transition systems and modal logics
with backward modalities) in a setting with no invisible (a.k.a. r) label. We discuss the
expressivity and translation issues in this basic setting (Section 3) where it is already
possible to give a first translation theorem (Section 4). Interesting in its own right, this
theorem also has pedagogical virtues, as it exemplifies the approach we use in the
remainder of the article. Then we move (Section 5) to systems with z-steps and logics
for branching bisimulation. We present a few preliminary results in Section 6 and
extablish the three main translation theorems in Sections 7 and 8.

2. Logics with backward modalities

We consider a fixed set A = {a, b, . . . } of labels. A labeled transition system (LTS) is

an edge-labeled graph (Q,+) where Q = {p, q, . . . } is a set of states and -+ E Q x A x Q
is the transition relation. We assume a fixed LTS S.

2.1. Syntax

HMLbr (read “HML back-and-forth”) is HML augmented with past-tense (back-
ward) modalities. It was introduced in [S] for systems with r’s (but observe that
HMLbf is a subset of Jr defined in [13]).

Definition 2.1. HMLbr formulae are built according to the following grammar:

HMLbf3f; g ::= T I lfI_fAs I (a>fI <a>f

where a is any action from A.

HML is the fragment of HMLbf where the (a) modalities are not allowed.

We usef,g,a,/J,cp,@, . . . to denote HMLbr formulae and we use the standard abbrevi-

ations: fv g, I, [a]f(for 1 (a)lf) and mf (for -r (a)lf).

2.2. Semantics

A modal logic with backward modalities states properties of a run

x=[qrJ 1 q1... I qn] of S. A run like R is a partial computation of S starting from
a state q. and currently in state qn. This partial computation can be expanded (if qn is
not a final state) and we write rr s n’ when run n’ is rr with a transition qn % qn+ 1
added. If n > 0 the run has a past (a history) and the backward modalities in HMLbf
can be used to state properties of this past.

56 F. Laroussinie et al / Theoretical Computer Science 140 (1995) 53-71

Definition 2.2. For a run 7~ of some LTS S and an HMLbf formula f, we define when
z+ s f (reads “7~ satisfies f”) by induction on the structure off:

al=T always,

ZPlf ifi ~#f;

n+fAg iff nbjaand zbg,

nI=<a)f iff there is a 7~ 5~’ s.t. 7~’ +f;

nk(a>f iff there is a 71’ %c s.t. z’ kf:

(The “s” subscript is omitted whenever no confusion can arise.) In this framework,
there is some asymmetry between past and future because (1) past is finite, while future
need not be, and (2) past is “deterministic”, or fixed by the history, while future is
branching.

3. Equivalent formulae and translations between logics

In practice, we use HMLbf to express properties of states (mainly the initial state of
the system) rather than runs. For a state ~EQ, the derived notion 4 kf is given by

[q] is just state q seen as a run, with no past. We say that states p and q satisfy the same
HMLbf formulae, written p E HMLbr q, when p +fo q +ffor allfeHMLbf. De Nicola
and Vaandrager [S] mention that p =HML,q iff p~q because (strong) bisimulation
coincides with (strong) back-and-forth bisimulation [4]. This entails

P EHMLq ifi P EHMLbrq. (1)

In the following, we are looking for a finer comparison between the expressive powers
of HML and HMLbf. We consider whether formulae of HML,, can be translated into

HML. Of course, a formula like (a)T, which says that the last step was a-step cannot
be written in HML where only properties about the possible futures can be expressed.
But when we express properties of states (without a past), we know that we never have

qj= (a)T. Thus, in a certain sense, (a)T (an HMLbf formula) can be correctly
translated into I (an HML formula).

This requires some definitions.

Definition 3.1. Two formulae are globally equivalent, written fzf’, ifs z+ f~ n + f
for all runs A in all LTS’s.

They are initially equivalent, writtenf = i f’, iff q +=f o q +f’ for all states q in all
LTS’s.

F. Laroussinie et al/ Theoretical Computer Science 140 (1995) 53-71 57

For example, we have (a)T =i I but (a)T f 1. Clearly,f=f’ impliesf=if but
the converse is not true as seen above.

When we just say “equivalent”, we mean “globally equivalent”. Global equi-
valence is the natural notion of equivalence on formulae [7]. It is a congruence: if
f-f’ withf a subformula of h (that is, h is some h[f]) then h=h[f’]. This does not
hold for si which is only a congruence w.r.t. boolean combinators and backward
modalities.

Now we can define what is a translation between two logics.

Definition 3.2. A logic L can be translated (resp. initially translated) into L’, written
L sBL' (resp. L~i L') iff for any feL there is af’EL’ with f=y (resp. f =if').

Clearly, L dg L' implies L li L'. Also L pi L' implies E ,_, E Ed. In both cases, the
reverse implication is not true in general.

One trivial example is HML sg HMLbr, which holds because HMLs HMLbf. We
now investigate the reverse direction.

4. From HMLbr to HML.

Theorem 4.1. HMLbfsiHML.

Proof. The proof is in two steps: we first “separate” HMLbr formulae modulo =, and
then translate separated formulae into initially equivalent HML formulae. This
requires some preparation.

Say a formula is pure-past (resp. pure-future) if it does not contain forward (resp.
backward) modalities. Say it is separated if no backward modality occurs in the scope
of a forward modality (and write HML rfp for the fragment of HMLbr that contains
only separated formulae).

Here is the Separation Lemma for HMLbr.

Proposition 4.2.

HMLbf$HMLEp. (2)

Proof. We show that any f in HMLbf is equivalent to a separated f ‘. The proof is done
by structural induction on f: The cases when f has the form T, g1 A g2, or lg are
obvious.

f=(u)g: g can be separated (by induction hypothesis) into some g’. Then
f =f’ dzf (a>g’ is separated.
f= (u)g: g can be separated (by induction hypothesis) into some g’. There are two
subcases.

58 F. Laroussinie et al/ Theoretical Computer Science 140 (1995) 53-71

- Assumeg’hastheform(bl)cp,/\.../\(b,)cp,r\l(cl)cp;r\...r\l(c,)cp:.~~+
where $’ is pure future. Write ci,, . . . , Cik for the ~1)s that are equal to a. Then

fog” and g” is separated.
- In the general case, g’ can be put in disjunctive normal form Vi Aj gi,j where every

9i.j has the form (b)cp, l(b)cp, (b)cp or l(b)cp. The gi,;s are separated.

fc<a>dEVi<a> (Aj Si,j) and each (a) (Aj gi,j) falls in the previous subcase and
can be separated. Cl

Remark 4.3. In a linear-time framework, Gabbay [S, 93 uses a different, less general,
definition of separated formulae: a formula is separated (in Gabbay’s sense) if it is
a boolean combination of pure-past and pure-future formulae. Our definition is
required in branching-time frameworks (see [16]). For example, (2) does not hold for

Gabbay’s definition of separated formulae: (a) (b)T has no equivalent as a boolean
combination of pure-past and pure-future HMLbf formulae.

Now we conclude the proof of Theorem 4.1 with the following proposition.

Proposition 4.4. HMLFP 3i HML.

Proof. Use (a)fsi I to eliminate (modulo=i) all backward modalities since they
are not in the scope of a forward modality. 0

5. Modal logics for branching bisimulation

We now move to a setting where invisible steps are allowed. Such steps are
a fundamental way of modeling the abstraction operation required for the hierarchical
description of systems [17, 193. We write r for this invisible label and
consider transition systems labeled over AZdzf Au(z). We write ~=xJ’ when there is
a sequence q 5 .-- A q’. That is, =E- is the transitive and reflexive closure of J+. In
this setting, a very natural equivalence is branching bisimulation [ll, lo]. De Nicola
and Vaandrager [S] introduce Lu and LB, two modal logics characterizing branching
bisimulation.

LB is a version of HMLbf adapted to systems with invisible moves.

F. Laroussinie et al/ Theoretical Computer Science 140 (1995) 53-71 59

Definition 5.1. The formulae of LB are built according to the following grammar:

where k is any label from AEdAfA”{e}.

We use [[k]] f and [[k]] f as standard abbreviations.
The semantics of the new modalities is given by the following definition.

Definition 5.2.
A+ ((a>>f iff there is a X=S 5 =SK’ s.t. rr’+f;

x k ((s))f iff there is a 7~ =z. IL’ s.t. A’ + J;

z+<u))fiffthereisarr’=-:*ns.t.z’bJ

n + ((c)f iff there is a 7~’ =z. rr’ s.t. R’ +f:

Clearly, the inspiration behind LB is the definition of back-and-forth weak bisimula-
tion [4], which coincides with branching bisimulation.

Beside boolean manipulations, we often use the following basic equivalences be-
tween La formulae.

5.2. Lu

LU has no backward modalities but it has a so-called “until” modality which
extends the simple forward modality of LB.

Definition 5.4. The formulae of LU are built .according to the following grammar:

Lu3_6 g ::= T I lf I f~s I f<k)g,

with keA,.

60 F. Laroussinie et al/ Theoretical Computer Science 140 (199.5) 53-71

The semantics is given by the following definition.

Definition 5.5.

x+f(a)g iff 3n>O, rc=noArrl A,... ~n,_l~71,s.t.~,I=gand7ci~ffori<n,

Then, the LU formula f(a)g requires that f hold continuously until some moment
when g will be true immediately after an a step. The inspiration behind LU is the
definition of branching bisimulation [111. L,‘s “until” modality is stronger than LB’s

forward modalities. Indeed, we have

(3)

while we do not see any way of expressing “until” as a combination of ((.>> and ((.>>
(and believe that no solution exists).

The only distributive property of “until” is

(4)

5.3. Lsb

van Glabbeek [lo] proposed a weaker version of an “until” modality that does not
express continuous copying.

Definition 5.6. The formulae of L,, are built according to the following grammar:

Ls+f,g :I= T I 3 I fAs I .fPb,

with kcA,.

Definition 5.7.

A +f{a}g iff there is a ?I =E- rr’ 3 n” s.t. rc” kg and n’ + f,

it +f{s}g iff there is a 71 =S rc’ s.t. R’ + fand

(n’ + g or there is a 71’ 5 A” with z” kg).

Clearly, the inspiration behind Lsb is the definition of semi-branching bisimulation

[111, which coincides with branching bisimulation. When 7~ k f{a} g, we do not state

F. Laroussinie et all Theoretical Computer Science 140 (1995) 53-71 61

any property of the intermediary states runs between 7~ and rc’. This gives technical
simplicity: in order to satisfyf(k}g, it is only necessary to satisfyfin one future place.
This explains why

(fvf’)(k}g~~{k}gvf’{k}g (5)

is valid. Lu offers no such property. Clearly, Lsb is weaker than Lu and indeed Lsb is
readily translated into Lu through

f{k)g=<sXf~f(k)g) (6)

entailing Lsb Se Lu.

For technical reasons, we introduce L,,[23], a logic built by combining all
modalities of Lu and LB (and Lsb), so that all three logics are fragments of a common
superset:

L,u3f, g :I= T I lf I f~s I <k>f I Wf I f(k)g I f{klg,

with keA,. (Clearly, some modalities are redundant in LBu because of (3) and (6).)
We can then use generic concepts for our three modal logics by just referring to LB”.

For example, the modal height of a formula is defined (as the maximal number of
nested modalities) for all LBu formulae.

Considering that Ed,, Ed. and E Inb (and Ed.,) coincide, a natural question is
whether any of the three logics can be translated into another. This question has
already been addressed for Lu and LB [6,23] but complete answers have not yet been
offered.

The rest of the article is devoted to the proof that Lu -& Lsb 5, LB and LB li Lu.
Using Lsb as an intermediary logic between Lu and LB greatly simplified our earlier
proof.

6. o- and o-formulae

This section develops some useful concepts for the following sections. The aim is to
study a specific class of formulae which behave well in the left-hand sides of L,‘s
“until” modalities in the sense that they enjoy distributivity properties not satisfied by
arbitrary formulae.

Definition 6.1. An LBu formula fis a o-formula iff for all A, K’ in all LTS’s, n +f and
K’ * a imply n’ ,I= f: It is a o-formula iff for all rr, R’ in all LTS’s n + f and n = A’ imply

n‘l=$

62 F. Laroussinie et al/ Theoretical Computer Science 140 (1995) 53-71

Thus, when a u-formula (resp. o-formula) holds of some 71, it holds in all r-
successors (resp. z-predecessors) of rc. This is why for any q -formulaef” and g” and
any o-formulae f * and g”,

We write informally fEo (resp. fEo) when f is a o-formula (resp. a o-formula). A given
formula may well be both a n- and a o-formula (witness T and I) or none.

The following properties are useful.

Lemma 6.2. For allf, gELBU and all kEA,,
(a) fE0 iSpifE0,

(b) fEo elfgo,

(c)JgEo impliesfAg,fvgEo,

(d)f,gEo implies fAg, fvgen,

O-4 fE o iflf = @>f,

(f)ffo Wf= CCaL
(g) wf, ccwf-~

(h) CCkllf, Wf=,

(9 f {k)g-.

Proof. (a)-(d) are clear from the definition, whereas (e) is left to the reader as a simple
exercise. To prove (f), combine (b) and (e). To prove (g), combine (e) and Lemma 5.3(c)
and (g). Use duality to prove (h). Finally, to prove (i), combine (6) and (g). 0

Points (e) and (f) above may help understand our choice of terminology. With
Lemma 6.2(i) above, we have the following important corollary.

Corollary 4.3. Any fELsb is a boolean combination of o-formulae in Lsb.

A similar result is true for LB also (witness Lemma 6.2(g) and (h)) but not for Lu
(witness (1 T(a)T)(b)T).

7. From Lu to LB

All Lu formulae (in fact, all LB” formulae, see Theorem 8.11) can be translated into
LB. In this section, we show how to go from L, to Lsb and then from Lsb to LB.

Theorem 7.1. Lu 5 g Lsb .

F. Laroussinie et al / Theoretical Computer Science 140 (1995) 53-71 63

Proof. We show, by structural induction on f, that any feL, can be translated into an
equivalent formula in Lsb. The interesting case is when f is some g(k)h. Then, by
induction hypothesis, g and h can be translated into g’ and h’ in Lsb. Using Corollary
6.3, we can write g’ in disjunctive normal form and assume

where, for i= 1, . . . , n, f;E o and g:Em. We now reason by induction on n.
l First consider the simpler case where n= 1. We use

(f”~g”)(~)h’=(g~r\(fO{~}h’)) v h

(7)

(8)

and immediately obtain Lsb formulae.

l Now in the general case where n> 1, we use

(~(ftn,P,)(u)h~-~~(g~A(f~{u}h~vf~{&}((~~(f~Ag~))(u)h~))), (9)

i#j

(~~(f~Agl,)(&)h~~~v~~(g~Af~{&}((~(f~Ag~))(&)h’)), WV

i#j

which can be translated by ind. hyp.
We let the reader check that (7)-(10) hold when f;eo and g;En for all i. As an

indication, we can give the intuition behind (9): assume z+ (Vf= I (f p A gp)) (a) h.

Then there is a path n = x0 ... -I, rc, Z, 11’ with R’ l= h s.t. any n,(O <s < r) satisfies one of
the f p A gp’s. In particular, II k f; A g: for some j (and then rrS + gy for s =O, . . . , r).
Now there are two cases:
l either ao, xr all satisfy fj A g;, and then x l= gs A (f g {a} h), as for (7),
l or there is a 0~s <r s.t. 71, # fj. We pick the smallest such s. Then, because

fjOeo, none of 7rS, 7r,+1, . . . ,R, satisfies fj”. Therefore they all satisfy

(Vi+j(fPA&))(u)h. 0

Theorem 7.2. Lsb Ss LB.

Proof. We show that any fELsb can be translated into an equivalent formula in LB.

This is done by induction on the modal height off, and then by structural induction
onf:

The interesting case is when f is some g(k) h. We know (Corollary 6.3) that g is
a boolean combination of o-formulae. Then, thanks to (5) and Lemma 6.2, it is enough
to only consider formulae of the general from (f” A go) {k} h, with ~OEO and gOEn. We

64 F. Laroussinie et al/ Theoretical Computer Science 140 (1995) 53-71

(11)

(f” A 9”) {E} h = ‘@> (f” A 9’ A <E> (h A [c&ll(h Vf”))) (12)

and there only remains to replacefo, g” and h by their LB equivalent. (Again, we let the
reader check that (11) and (12) are valid wheneverfEo, gen.) 0

Corollary 7.3. Lu SB LB.

8. From LB to Lu

The problem of translating LB into Lu was considered in [23] where a partial
solution is proposed. Our approach was developed independently and uses the
separation techniques we exemplified in Section 4. This section establishes Theorem
8.1 as a corollary of Proposition 8.2, a Separation Lemma for LB”.

Theorem 8.1. LB li Lu.

Proposition 8.2

LBU&Li%, (13)

where Lg: denotes the set of separated LBU formulae, i.e. of formulae with no backward
modality under the scope of a forward modality.

The proof of Proposition 8.2 uses a set of valid equalities over LBu formulae that are
gathered in the following lemma. These equalities are sufficient to rewrite any LBU

formula into an equivalent separated formula.

Lemma 8.3. For all LBU formulae ~1, fi, cp, q’, $, . . . , and labels a, bEA, kEA,, we have

(14)

(15)

(16)

(17)

“a’(‘b” A BE

I if a#b,

(a<&)(+ A a(a>p)) v (o)J/ A a(a)/?) if a=b.
(18)

F. Laroussinie et al/ Theoretical Computer Science 140 (1995) 53-71 65

a(a)(l((b>>$ A 8)~ a’?!!
if a#b,

l<E>+~(a~l~)(a>/I ifa=b.
(19)

(20)

(21)

(22)

= (<bN A (cp v B)(k)4 v (1 ON A (rp’ v B) (k)ah (23)

((@>‘h A Cp) ” (1 <@‘k A Cp’) ” B) (8) (@>ti A a)

= <&>I(I A (Cp V fl)<E) a V 1 <E>+ A (1 ti A (Cp’ V P))(E) ($ A (4~ V b) (8) a), (24)

((@>‘h A d” (l’t+>‘h A Cp’)” b) <E)(l <E>‘h “a)

Proof. All equivalences are proved by case analysis, considering the different ways
a given formula may be satisfied by a given run. We just give a detailed proof of (22),
the most complex equality, and leave the other proofs to the reader.

We first prove the “ * ” direction. For this, assume that R !=((<s>>$ A cp) V

(-I ((E))$ A cp’) v B)(k) a. For simplicity, assume k is some visible a. Then there is some

a=zO&rrlZ+ . ..~._l~~x,s.t.~,~aandKi~(((E))~Acp)~(1((E))~A(p’)V~forall
i <n. We distinguish three cases (illustrated in Fig. 1).

Case 1: If rco +((E))I,+, then all xls (O<i< n) satisfy ((E))$ and then must satisfy

cpvB, so that nl=:((s>$A((PvB)<k)a.
Case 2: Otherwise rro ~=-I((E))I,+. We have two subcases.

Case 2.1: Assume all 7~‘s (0 < i < n) satisfy le. Then they all satisfy -I ((E))+ and

then must all satisfy cp’ v /I. So that x +i ((&))JI A (-I t,b A (cp’ v B))(k)a.

Case 2.2: Otherwise the x;s satisfy 1((s))+ for all i=O, . . . , m- 1 where R,
(with 0 <m < n) is the first run in the sequence to satisfy $. Then the remaining IL;S

(m < i<n) satisfy ((a))$. In this case, rti must satisfy rp’ v B if 0 < itm, or cp v /.I if

mGi<n.Becausea,+ ~,wehavea~l<&))~~(1~~((~‘v~))(&)(~~(~v~)(k)a).
Clearly, these three cases cover all possibilities. If now we assume k = E, the same

reasoning applies except that there is one more possibility: rr may satisfy the left-hand

66 F. Laroussinie et all Theoretical Computer Science I40 (1995) 53-71

Case 1:

----- 0
\ 1

k a Lo A --- L, o& --- Lo_ l
/ -

((O)@ I ova

Case 2.1:

=o F (MM -11

___ e-0 .I'
LoA--- 1, .T- --- A.-. ‘k a

-
T’((f))$ I r’vb

Case 2.2:

no F ((E))dJ -cl

0 1 , Gnt=11
----- --- 1, 0 -A k a --- Lo- 0

. / -
-((dbb I P’VP -

l(d)$ I VP

side of (22) by satisfying CL In this case z+ c(k)a for any c. As it also satisfies

((E>+ v 1 ((E))$, it must satisfy the disjunction ((E))$ A (cp v /I)(k) CI v

1 ((E))$ A (1$ A (cp’ v /I))(k)cc and then the right-hand side of (22).

Now, it should be clear that if 71 satisfies the right-hand side of (22), then we

are necessarily in one of these three (or four, if k =E) cases, so that

71 k ((@>I// A cp) v (1 <s>+ A cp’) ” /I) <k)a. 0

We can now turn to the separation theorem for LB”, that is we describe how

equalities (14)-(25) allow to rewrite any L BU formula into an equivalent separated

formula. Basically, (14)-(25) are sufficient to pull out any occurrence of a backward

modality from the (immediate) scope of a forward modality. But this may bury other

subformulae under several layers of forward modalities. Therefore, the main difficulty

is to find a strategy ensuring termination. For this we use an approach inspired from

[8,16]. The rewriting strategy is decomposed into a succession of lemmas dealing with

more and more general cases.

As a technical simplification, we consider in this section that “until” is the only

forward combinator in LB”, thanks to (3) and (6). We also use LBu contexts, that is LBu

formulae with variables serving as place-holders. Typically,f[x] denotes a context

fwhere x may occur (possibly several times). Thenf [q] is the LBu formula obtained

by replacing all occurrences of x with cp inf[x]. We writef[xl, . . . ,x,1 =g[xr, . . . ,x,1

when f[qi, . . . , (PJ zg [vi, . . . , cp,] for all cpl,. . . E LB”. The notions of “pure-future”,

“separated”, . . . ,formula directly extend to contexts.

F. Laroussinie et al/ Theoretical Computer Science 140 (1995) 53-71 61

Lemma 8.4. Zff[x] is a pure-future L BU context, then f [((E))x] is equivalent to some

separated f’[x, ((E))x] with f’[x, y] pure-future.

Proof. By structural induction on f[x]. The only interesting case is when f[x]
is an until-formula (that is, of the form fr [x] (k)f, [xl). By induction hypothesis,

there are pure-future f; [x, y] and f;[x, y] s.t. f[((s>>x] is equivalent to

f; Cx, Wxl (k)f; Cx, ~4Q1, which we denote by f”[x]. Because the

fi[x, ((E))x]‘s are separated for i= 1,2, all occurrences of ((E))x in f”[x] are
immediately under the topmost “until” and some boolean combinators. We use the
valid equalities from Lemma 8.3 to rewrite f”[x] into an equivalent separated
formula. There are a few special cases.

Case 1: If ((E))x only occurs in the right-hand side of the “until”, it is enough to put
this right-hand side in disjunctive normal form, use (4), the distributivity law, to deal
with disjunctions, and equalities (14) and (15), or, depending on k, (16) and (17), to

obtain a separated f’[x, <E>x] with f’[x, y] pure-future.

Case 2: If ((E))x only occurs in the left-hand side of the “until”, we use boolean
manipulations to collect all these occurrences and put f”[x] under the general form

with pure-future cp, cp’, /3. Here we use (22) to obtain a separatedf’cx, ((E))x].

Case 3: If ((E>x occurs in both sides of the “until”, there are two subcases:
l if k # E, the distributivity law and equalities (14) and (15) are sufficient to eliminate

right-hand side occurrences of ((8))~ so that we are back to Case 2.
l if k = E, this strategy does not work because (16) will bury CI under two nested untils.

That is why we developed the more complicated equalities (24) and (25) which,
together with the distributivity law, will yield the answer we sought. 0

A similar result is the following lemma.

Lemma 8.5. Zff[x] is a pure-future L BU context and beA is a visible label, then - -
f[((b>>x] is equivalent to somef’[x, ((b>x, ((E))x] withf’[x, y, z] pure-future and where
y does not appear under the scope of “until” modalities.

Proof. By induction on the structure off[x]. This follows the same steps we use for
Lemma 8.4. Note that in y[x,y,z], z may appear under until modalities, so that - -
f’[x, ((b))x, ((C))X] is not necessarily separated. For this proof, this means that we

may introduce new occurrences of ((c))x (in pure-future contexts) and do not have to
worry with any such occurrence that is already present.

Let us consider the induction step, assuming that f[x] is an until-formula of the

formf, [x](k>fi [xl. We look at f[((b>>x]. By induction hypothesis, it is equivalent

68 F. Laroussinie et al / Theoretical Computer Science 140 (1995) 53-71

to some f; [x, 0)x, <0)x (k)fh[x, 0)x, 0)x] where all occurrences of

((b))x are immediately under the topmost until (and some boolean combinators).

Case 1: If ((b>x only appears in the right-hand side of the “until”, we use the
distributivity law and equalities (18)-(21). Observe that (18) and (19) may introduce

new occurrences of ((c))x.

Case 2: If ((b))x only occurs in the left-hand sides of the “until”, we use (23).

Case 3: In the general situation where ((b)) x occurs in both sides of the “until”, we

use (23) to extract the ((b))x’s from the left-hand side, and then (18)-(21) to extract
them from the right-hand side. 0

Now we can merge Lemmas 8.4 and 8.5 into the following result.

Lemma 8.6. Iff[x] is a pure-future LBU context, thenf[((k>>x] is equivalent to some --
separated f’[x, ((k))x, ((E))x] with f’[x, y, z] pure-future.

Proof. If k = E, this is directly Lemma 8.4. If k = b # E, we use Lemma 8.5 to get some

f’[x,((b>>x, 0)x] where there only remains to extract all occurrences of

((6))~ from the “until” modalities, which is possible thanks to Lemma 8.4. 0

We can build on this basic step.

Lemma 8.7. Zf f[x,, . . . ,x,1 is a pure-future LBU formula, then

f [(0)x,, . . . ,0)x,] is equivalent to some separated f’[xI, 0)x1, __-
GBx1, a.*, x., G,b,, WX,I wheref’Cxi,yI,zI, . . . ,x.,Y~,z.~ is Pure-future.

Proof. By induction on n and using Lemma 8.6. 0

Lemma 8.8. Zff [x1, . . . , x,] is a pure-future LBU formula and ifl(lI, . . . , t+b,, are pure-past
LBU formulae, then f [r,kl, . . . , I)“] is equivalent to a separated formula.

Proof. By induction on the maximum number of nested backward modalities in the
$i’s, and using Lemma 8.7. 0

Lemma 8.9. If f [x1, . . . , x,] is a pure-future LB,, formula and if $t, . . . , tin are separ-
ated LBU formulae, then f [t,kl, . . . , 1~5.1 is equivalent to a separated formula.

Proof. The t,G;s may contain forward modalities in the scope of (nested) backward
modalities. So that f is some f [t,kl [fi, 1, . . . , fi,kl], . . . , t,bn[f., t, . . . , f.,J] where the
&‘s are pure-future and where the Ii/i [zi, 1, . . . , z~,~~]‘s are pure-past.

WeapplyLemma8.8tofCIC/1Czl,l,...,z~,tll,...,~,C~.,1,...,~,,k,lla~dgetasep-
aratedf’Czl,l,...,z,,k,l. Thenf=f’CfI,, , . . . , fn,,J which is separated. Cl

F. Laroussinie et all Theoretical Computer Science 140 (1995) 53-71 69

LB

9
-g LBU

Fig. 2.

We can now prove Proposition 8.2: we show, by structural induction, that anyfin
LBu is equivalent to a separated formula. The induction step is obvious in all cases
except whenf has the formf, (k)f,, where we have to use Lemma 8.9.

The next step is simply the following proposition.

Proposition 8.10. LFi di Lu.

Proof. Proceed as in the proof of Proposition 4.4, using ((a))cp=i l_ and

<sB(P =i(P. 0

Now the proof of Theorem 8.1 is simply obtained as

LB= LBu 3, Lzili Lu-

Incidentally, we can now generalize Theorem 7.2 with the following theorem.

Theorem 8.11. LBu Sg LB.

Proof. Consider f~ LB,. Thenf is equivalent to some freLg$ (Proposition 8.2). f’ is

separated and thus has the form $[ql, . . . , cp,] where *[x1, . . . ,x,] is pure-past
(and then in LB) and the cp;s are pure-future (and then in L,). Theorems 7.1 and 7.2
imply that the cp;s are (globally) equivalent to some cpf’s in LB. Finally,

f=@C&l,4u~LB. 0

Fig. 2 summarizes all the translation results we established in the branching
bisimulation framework. Clearly, no arrow (save those derived by transitivity) can be
added because this would require translating (in the strong, “global equivalence”,
sense) a logic with backward modalities into a logic with only forward modalities.

9. Conclusion

In this article we proved that LB, Lu and Lsb (three modal logics which have been
proposed as characterizations of branching bisimulation) have the same expressivity.

70 F. Laroussinie et al/ Theoretical Computer Science 140 (1995) 53-71

We gave effective translations between the three logics. The main technical difficulty
lies in the fact that Lu and L,, only have forward modalities while LB has both forward
and backward modalities.

An important question remains to be investigated: what is the relative succinctness

of the three logics? All the translations we gave potentially lead to combinatorial
explosion. This seems inescapable for the translations from LB to Lg6 and from Lu to
Lsb. Regarding the (straightforward) translation from Lsb to Lu, the combinatorial
explosion disappears if we consider formulae as acyclic graphs rather than trees.
Regarding the translation from Lsb to L B, the same “graph versus tree” difficulty
combines with the combinatorics of boolean conjunctive normal forms. Clearly,
formally establishing nonpolynomial lower bounds on relative succinctness would
prove that none of LB and Lu really subsumes the other. This would be a very strong
argument in favor of using (say) L BU as the natural modal logic for branching
bisimulation.

More generally, translations between modal logics of reactive systems have
not been subject to much investigation in the literature. This is partly due to the
fact that few behavioral equivalences enjoy several distinct modal characteri-
zations (in this regard, branching bisimulation was a welcome exception.) We
believe many interesting translation problems can be investigated when modal
logics with backward modalities are considered. For example, the logic Lp from [3]
can be translated into a variant of HMLbf with modalities for pomset observations
[20]. An interesting open problem regards HML with recursion, where we do not
expect to develop translation algorithms based on rewrite rules. As an indication, let
us mention that the linear-time p-calculus with backward modalities can be translated
(modulo -i) into the pure-future fragment [24] but the proof uses automata-theoretic
techniques and it is not clear how to develop a translation operating on logic
formulae.

Acknowledgment

It is pleasure to acknowledge the very helpful suggestions, remarks, ques-
tions , . . . , contributed by F. Vaandrager, R. van Glabbeek, G. Scollo and the anony-
mous referees at various stages of this work.

References

Cl1

PI

SD. Brookes and W.C. Rounds, Behavioural equivalence relations induced by programming logics,
in: Proc. ZOth SCALP, Barcelona, Lecture Notes in Computer Science, Vol. 154 (Springer, Berlin,
1983) 97-108.

R. Cleaveland, J. Parrow and B. Steffen, The concurrency workbench: a semantics-based tool for the
verification of concurrent systems, ACM Trans. Programming Languages and Systems 15(l) (1993)
3&72.

F. Laroussinie et al/ Theoretical Computer Science 140 (1995) 53-71 71

[3] R. De Nicola and G.L. Ferrari, Observational logics and concurrency models, in: Proc. 10th ConJ
Found. of Software Technology and Theor. Comp. Sci. Bangalore, India, Lecture Notes in Computer
Science, Vol. 472 (Springer, Berlin, 1990) 301-315.

[4] R. De Nicola, U. Montanari and F. Vaandrager, Back and forth bisimulations, in: Proc. CONCUR
‘90, Amsterdam, Lecture Notes in Computer Science, Vol. 458 (Springer, Berlin, 1990) 152-165.

[S] R. De Nicola and F Vaandrager, Three logics for branching bisimulation (extended abstract), in: Proc.
5th IEEE Symp. Logic in Computer Science, Philadelphia, PA (1990) 118-129.

[6] R. De Nicola and F. Vaandrager, Three logics for branching bisimulation, Research Report SI-92/07,

Dipartimento di Science dell’Informazione, Universiti di Roma “La Sapienza”, November 1992;

J. ACM, to appear.

[7] E.A. Emerson, Temporal and modal logic, in: J. van Leeuwen, ed., Handbook of Theoretical Computer
Science, Vol. B, Ch. 16 (Elsevier, Amsterdam, 1990) 995-1072.

[S] D. Gabbay, The declarative past and imperative future: Executable temporal logic for interactive
systems, in: Proc. Temporal Logic in Specification, Altrincham, UK, Lecture Notes in Computer

Science, Vol. 398 (Springer, Berlin, 1987) 409448.

[9] D. Gabbay, A. Pnueli, S. Shelah and J. Stavi, On the temporal analysis of fairness, in: Proc. 7th ACM
Symp. Principles of Programming Languages, Las Vegas, Nevada (1980) 163-173.

[lo] R.J. van Glabbeek, The linear time-branching time spectrum II: the semantics of sequential systems

with silent moves, in: Proc. CONCUR ‘93, Hildesheim, Germany, Lecture Notes in Computer Science,

Vol. 715 (Springer, Berlin, 1993) 66-81.
[11] R.J. van Glabbeek and W.P. Weijland, Branching time and abstraction in process algebra,

in: Information Processing 89, Proc. IFIP 11th World Computer Congress, San Francisco (North-

Holland, Amsterdam, 1989) 613418.

[12] M. Hennessy and R. Milner, Algebraic laws for nondeterminism and concurrency, J. ACM 32 (1985)

137-161.

[13] M. Hennessy and C. Stirling, The power of the future perfect in program logics, Inform. and Control 67
(1985) 23-52.

[14] M. Hillerstriim, Verification of CCS processes, MSc. Thesis, Aalborg University, 1987.

[15] H. Korver, Computing distinguishing formulas for branching bisimulation, in: Proc. CAV ‘91
Aalborg, Lecture Notes in Computer Science, Vol. 575 (Springer, Berlin, 1991) 13-23.

[16] F. Laroussinie and Ph. Schnoebelen, A hierarchy of temporal logics with past, in: Proc. STACS ‘94,
Caen, France, Lecture Notes in Computer Science, Vol. 775. (Springer, Berlin, 1994) 47-58.

[17] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science, Vol. 92

(Springer, Berlin, 1980).

[18] R. Milner, A modal characterisation of observable machine-behaviour, in: Proc. CAAP ‘81, Genoa,

Lecture Notes in Computer Science, Vol. 112 (Springer, Berlin, 1981) 25-34.

[19] R. Milner, Communication and Concurrency (Prentice Hall, Englewood Cliffs, NJ, 1989).

[20] S. Pinchinat, F. Laroussinie, and Ph. Schnoebelen, Logical characterizations of truly concurrent
bisimulation, Tech. Report 114, LIFIA-IMAG, Grenoble, March 1994.

[21] A. Pnueli, Linear and branching structures in the semantics and logics of reactive systems, in: Proc.
12th SCALP, Nafplion, Lecture Notes in Computer Science, Vol. 194 (Springer Berlin, 1985) 15-32.

[22] C. Stirling. Modal and temporal logics, in: S. Abramsky, D. Gabbay and T. Maibaum, eds., Handbook
of Logic in Computer Science (Oxford Univ. Press, Oxford, 1992) 477-563.

[23] F. Vaandrager, Translating back and forth logic to HML with until operator, Unpublished note,
1992.

[24] M. Vardi, A temporal fixpoint calculus, in: Proc. 15th ACM Symp. Principles of Programming
Languages, San Diego, CA (1988) 250-259.

