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Abstract. We consider model-checking algorithms for durational pigilistic
systems, which are systems exhibiting nondeterministiobabilistic and
discrete-timed behaviour. We present two semantics foatahural probabilistic
systems, and show how formulae of the probabilistic andditeenporal logic
PTcTL can be verified on such systems. We also address complesitgssin
particular identifying the cases in which model checkingational probabilistic
systems is harder than verifying non-probabilistic dunaai systems.

1 Introduction

Model checking is an automatic method for guaranteeingatmathematical model of
a system satisfies a formula representing a desired prd@griiany real-life systems,
such as multimedia equipment, communication protocolsyorés and fault-tolerant
systems, exhibiprobabilistic behaviour, leading to the study pfobabilistic model
checkingof probabilistic and stochastic models [19, 13, 8, 5, 4, 3, Hmilarly, it is
common to observe complegal-timebehaviour in such systems. Model checking of
discrete-time systems against properties of timed tenpagacs, which can refer to
the time elapsed along system behaviours, has been studigdizely in, for example,
[11,6,16].

In this paper, we aim to study model-checking algorithmsdigcrete-time prob-
abilistic systems, which we cadlurational probabilistic system®ur starting point is
the work of Hansson and Jonsson [13], which considered nabaadking for discrete-
time Markov chains (in which transitions always take dunatl) against properties of
a probabilistic, timed temporal logic, and that of de Alfai®], which extended the
approach of Hansson and Jonsson to Markov decision pracessehich transitions
can be of duration 0 or of duration 1. We extend this previooskwy considering
systems in which state-to-state transitions take arlgjtraatural numbered durations,
in the style of durational transition graphs [16, 17]. Wesam two semantics for dura-
tional probabilistic systems: theontinuous semantiaonsiders intermediate states as
time elapses, whereas thanp semanticsloes not consider such states. In this paper,
we restrict our attention tstrongly non-Zendurational probabilistic systems, in which
positive durations elapse in all loops of the system.

* Supported in part by MIUR-FIRB Perf.



The temporal logic that we use to describe properties oftiunal probabilistic
systems is PCcTL (Probabilistic Timed Computation Tree Logic). The logitdTL
includes operators that can refer to bounds on exact tinpeated time, and the prob-
ability of the occurrence of events. For example, the priyp&r request is followed
by a response within 5 time units with probability 0.99 orajes” can be expressed
by the PrcTL propertyrequest — P>.99(t r ueU<sresponse). Similarly, the prop-
erty “the expected amount of time which elapses before irgan alarm state is not
more than 60" can be expressedIss, (alarm). The logic PrcTL extends the prob-
abilistic temporal logic BTL [13, 5], the real-time temporal logiccrL [1], and the
performance-oriented logic of de Alfaro [10] (a similar iodpas also been studied in
the continuous-time setting [15]).

After introducing durational probabilistic systems andcPL in Section 2, we
present model-checking algorithms for both of the aforeinerd semantics in Sec-
tion 3. The novelty of these algorithms is that their runniinge is independent of the
timing constants used in the description of the durationath@bilistic system, and their
program complexitys polynomial. Instead, to apply the previous methods of de A
faro, Hansson and Jonsson to durational probabilistiesystwe would have to model
explicitly intermediate states as time passes (even fguthp semantics), hence result-
ing in a blow-up of the size of the state space. The presemgeditms are restricted
to temporal modalities with upper or lower time bounds; wevelin Section 4 that
the problem of model checking durational probabilistictegss against FcTL formu-
lae in which exact time bounds are used (that is, of the ferm) is PSPACE-hard,
even for “qualitative” probabilistic properties in whiche probability thresholds refer
to 0 or 1 only. We also show the NP-hardness and co-NP-hasarfenodel checking
fully probabilistic durational systems against generaldutitative” probabilistic prop-
erties including arbitrary probability thresholds and eptime bounds (of the form
< ¢). On the positive side, model checking qualitative prolisii properties of fully
probabilistic, strongly non-Zeno durational probabitistystems isAL-complete and
PSPACE-complete for the jump and continuous semanticpeotisely, and model
checking qualitative properties excluding exact time lusuis in PSPACE for general
strongly non-Zeno durational probabilistic systems wiith jump semantics.

2 Durational Probabilistic Systems

2.1 Syntax of Durational Probabilistic Systems

Let AP be a countable set of atomic propositions, which we assuilbe fized through-
out the remainder of the paper. LEtbe the set of finite intervals ovét. Given a set
X, Dist(X) denotes the set of discrete probability distributions o¥er

Definition 1. A durational probabilistic syste(®PS)D = (Q, ¢init, D, L) comprises
a finite set of state@ with an initial stateg;,;: € @; a finite durational probabilistic,
nondeterministic transition relatio® C @ x Z x Dist(Q) such that, for each statee
Q, there exists at least one tugle, -, ) € D; and a labelling functionl. : Q — 24F.

Intuitively, the behaviour of a durational probabilistigsteem comprises of repeat-
edly letting time pass then taking a state-to-state tramms{ivhich we sometimes call



an action transitior). The intervalp of some(q, p, u) € D specifies the duration of
the corresponding transition. On entry to a state @, there is a nondeterministic
choice of a triple(q, p, 1) € D. Then the system chooses, again nondeterministically,
the amount of time that elapses, where the chosen amounbelosig top. Finally, the
system moveprobabilisticallyto a next state’ € @ with probability 1.(¢").

The size|D| of D is |Q| + | D] plus the size of the encoding of the timing constants
and probabilities used if». The timing constants (lower and upper bounds of transi-
tions’ intervals) are written in binary, and where, for edghp, 1) € D, the values
u(q") are written as fixed-precision binary numbers.

Durational fully probabilistic systemsA durational fully probabilistic systefDFPS)
is a DPS where there is exactly one tufijep, ) € D for any state;, and where is a
singleton. In such a system there is no non-deterministicceh

Strong non-Zenones#A DPSD = (Q, ¢init, D, L) is strongly non-Zendf, for each
stateg € @, there does not exist a sequence of transiti@aspo, 10)---(¢n, Pn, tin) Of

D such thatgy = ¢, pi(gir1) > 0forall 0 < i < n, u,(g) > 0, andp; is of the
form [0; ] for all 0 < ¢ < n. Note that this property can easily be checked for a DPS.
The concept of strong non-Zenoness is taken from previouk fwo timed automata
[18]. The algorithms and the complexity results we show is gaper only deal with
strongly non-Zeno DPSs.

2.2 Semantics of Durational Probabilistic Systems

We give a formal semantics to durational probabilistic egsin terms ofimed Markov
decision processes

Definition 2. Atimed Markov decision process@&MDP)M = (S, s;pit, —, lab) com-

prises a finite set of states with an initial states;,;; € S; a finite timed probabilis-
tic, nondeterministic transition relatior~C S x N x Dist(S) such that, for each
states € S, there exists at least one tuple, _,.) €—; and a labelling function
lab: S — 24P,

A special case of a timed Markov decision processtimad Markov chaif{TMC),
in which, for each state € S, there exists exactly one tuple, _,.) €—. The size
of TMDPs and the notion of strong non-Zenoness are definedrd3RSs, because a
TMDP can be regarded as a DPS for which the intervals lalgethiansitions are all
singletons.

The transitions from state to state of a TMDP are performadnsteps: given that
the current state is the first step concerns a nondeterministic selectidn @f, v) €—,
whered corresponds to the duration of the transition; the secamcmprises a prob-
abilistic choice, made according to the distributionas to which state to make the
transition to (that is, we make a transition to a stdte .S with probability v (s")). We

often denote such a transition byd’—”> s’, and writes 27, to indicate that there exists
(s,d,v) e—. If s 2% & is such that(s') = 1, then for simplicity we writes % s'.



An infinite or finite path of the timed Markov decision proced4 is defined as an
infinite or finite sequence of transitions, respectivelglsthat the target state of one
transition is the source state of the next. We Bséh g, to denote the set of finite paths
of M, andPathy,; the set of infinite paths d¥l. If w is finite, we denote byust(w) the
last state ofv. For any pathv, letw(i) be its (¢ + 1)th state. LetPaths,(s) refer to

do,vo

the set of infinite paths commencing in state S . For an infinite pathv = sg ——

di,v1

s1 —— -- -, the accumulated duration aloaguntil theith state, denotedime(w, 1),
is equal toy ; ; d;.

In contrast to a path, which corresponds to a resolution ofdeterministic and
probabilistic choice, andversaryrepresents a resolution of nondeterminisnty. For-
mally, an adversary of a timed Markov decision prockkss a functionA mapping
every finite pathw € Pathg, to a transition(last(w),d,v) €—. Let Adv be the
set of adversaries d¥l. For any adversaryd € Adv, let Pathﬁl denote the set of
infinite paths resulting from the choices of distributiorfs4 and IetPath}tl(s) =
Pathﬁd N Pathg,(s). Then, for a state € S, we define the probability measureob?!

over Path},(s) in the standard way [19].

Note that, by defining adversaries as functions from finithgave permit adver-
saries to be dependent on the history of the system. Heneeshthice made by an
adversary at a certain point in system execution can depetikeosequence of states
visited, the nondeterministic choices taken, and the tilesed in each state, up to that
point.

As for non-probabilistic systems [17], we can define seveeahantics of time for
DPSs. Consider a transition of duratidrbetween two DPS statesandq’. The first
semantics, called themp semantics, assumes that moving frgrno ¢’ takesd time
units and that there are no intermediate states: if thesyistén ¢ at timet, then itis in
q' attimet + d and there is no position for time+ 1...¢ + d — 1. This semantics cor-
responds to a kind of cost or reward automata where evergiti@mhas a weight. We
will also consider theontinuoussemantics, which involves waiting ih— 1 interme-
diate positions, each corresponding to the passage of meeutiit, before performing
the action transition and arriving iff. This last semantics is close to the one used for
timed automata and is generally more natural to model systiEmexample, it is more
convenient when considering parallel composition bectimeeprogresses smoothly.

Jump semanticsThejumpsemantics of a DP® = (Q, ginit, D, L) is defined as the
TMDP M;(D) = (S, Sinit, —, lab), where:

- 5= Q andsinit = Qinit»
— (s,d, n) €— if and only if there existss, p, 1) € D andd € p;
— lab(s) = L(s) foralls € S.

Continuous semanticd.et d,,.x(¢) be the maximal delay possible in statef a dura-
tional probabilistic system. Theontinuoussemantics of a DP®H = (Q, ginit, D, L) is
defined as the TMDR (D) = (S, sinit, —, lab), where:

-S5= {(Q77/) ‘ 0 < 1< 6max(q)} andsinit = (anmo),



— — is the smallest set of transitions satisfying the followintgs:

e (¢q,0) 2%, if there exists(q, p, ) € D such thaD € p, and where/(¢’,0) =
u(q’) foreachy’ € Q;

o (¢,i) 5 (qi+1)if i+ 1< Smax(q);

e (q,1) =¥, ifthere existq, p, ) € D suchthat+1 € p, and where/(¢’,0) =

u(q’) for eachy’ € Q;

— foreach(q,i) € S, letlab(q,i) = L(q).

Observe that the semantics of a DFPS is a TMC, and that thensieshaf a strongly
non-Zeno DPS is also strongly non-Zeno. The size of the ittanselation ofM; (D)
may be exponential ifiD| because it is linearly-dependent on the magnitude of the
timing constants (encoded in binary) of the DPS. Howevex, rtimber of states of
M; (D) andD is the same. This contrasts with, (D), where the number of statasd
the number of transitions may be exponentia|Ziy. Another difference between the
semantics is that the TMDM (D) only contains durations if0, 1}.

2.3 Probabilistic Timed Temporal Logic

In this section, we recall how the branching-time tempasgld CtL can be extended
with constraints on time, probability and expected timestiive recall the probabilistic
temporal logic B TL [13, 5], in which the standard universal and existentiahmatanti-
fiersAy andE¢p of CTL are replaced with a probabilistic quantifier of the fdPm, (),
wherey is a formula interpreted over pathse {<, <, >, >} is a comparison operator
and\ € [0;1] is a probability. Timing constraints, expressed using sbpts on “un-
til” path formulae (with the synta¥..., where~€ {<, =, >}), were introduced in the
temporal logics RCTL [11] and TcTL [1]. Finally, an expected-time operatg. (),
wherexie {<,<,>,>} is a comparison operator agds R is a non-negative real,
was studied in the discrete-time context by de Alfaro [10] Amdova et al. [2].

We combine the above mentioned temporal logics to obtainteheporal logic
PTcTL (Probabilistic Timed Computation Tree Logic), which exdsrihe identically-
named logic of [15] with the “next” temporal modality and tbepected-time operator.

Definition 3. The formulae oPTCTL are given by the following grammar:
Pu=P|DPND| D | Popr(XD) | Poor(PUc®) | D (@)

whereP € AP is an atomic propositionxe {<,<,>, >}, ~e {<,=,>} are com-
parison operatorsj € [0;1] is a probability,c € N is a natural number, and € R>
is a positive real.

We define RcTL[<, >] as the sub-logic of RcTL in which subscripts of the form
= ¢ are not allowed in “until” modalitied).... The size|®| is defined in the standard
way, with constants written in binary.

Given an infinite patlw of a TMDP and a PcTL formula®, let T, 4 = min{i |
w(i) = @} be the index of the first state of which satisfiesp, and letT,, s = oo
if w(i) £ @ for all i € N. Then, for a given adversary € Adv and states € S
of the TMDP, we letEapected TimeZ (&) = E2{ Time(w, T, 4)}, whereE2{-} is the
expectation, defined in the standard way, with respect tprihigability measuré’rob;“.



Definition 4. Givena TMDPM = (S, s,it, —, lab) and aPTCTL formula®, we define
the satisfaction relatiori=y of PTcTL as follows:!

sEmP iff P € lab(s)
S':M D1 NDy iff S'ZM &, ands ’:M Dy
s Em P iff spem @

s Em Doge (@) iff Ezpected Time’ () > ¢, VA € Adv
s = Poar () iff ProbMw e Pathf;l(s) |wEwm e} <\, VA € Adv
w ':M XP iff w(l) ':M (0]
wEM P1U L D; iff 30 € Ns.tTime(w,i) ~ ¢, w(i) Em P2
andw(j) Em P17 VO<j<i.

Model checking.The model-checking problem for arBTL formula® and a TMDP

M with initial states,,;; is to decide whethes,,;; Em @, which we abbreviate to
M [= @. The model-checking problem fdr, a DPSD and a semanticgem € {j, c} is

to decide whethek,.,,, (D) = @. The complexity results will be expressed in terms of
the size|D| + |®|. However, we will also consider throgram complexityvhere one
fixes the formula and measures the complexity as a functitimeo§izel D| only. As the
system is assumed to be large whereas the formula is assarbhedinall, the program
complexity is often considered to be a more significant esténof the feasibility of
verification in practice.

3 Model Checking for Durational Probabilistic Systems

Our approach is to introduce in Section 3.1 a model-checklggrithm for strongly
non-Zeno timed Markov decision processes, which will therubed in Section 3.2 as
a basis for model-checking algorithms for durational pholistic systems.

3.1 Model Checking Timed Markov Decision Processes

Although our model-checking algorithm for TMDPs presenbatdow uses the anal-
ogous algorithm of de Alfaro [9] in order to verify the expeditime operator, the
methods and complexities for the probabilistic, time-laech operators are new, and,
for strongly non-Zeno TMDPs, improve on previous result3, [l0] as their running
time is not dependent on the magnitude of the time constaetd im the transitions of
the TMDP. More precisely, the previous methods are definedyfstems in which the
maximal time duration is 1, necessitating the modellingarfgler time durations via
intermediate states, hence blowing-up the size of the spmtee.

Before presenting the algorithm, we introduce some natafibe algorithm relies
on computing a topological order on the states of the TMDRhab reachability via
0 transitions is reflected in the order: for two states' € S, lets ¢ s’ if and only

if there exists a transition’ —% wherev(s) > 0. Then we order the states i

L When clear from the context, we omit thé subscript from=p.



PS)\(¢1USC¢2) : fori:=0toc
forj:=0ton
if S; ): @, then |etf(8j, Z) =1
else
if Sj l;é &1V P, then |etf(8j, ’L) =0
else letf(s;,1) := - %V(s’) f(s'i—d)
Pcx(P1U=cP2) : foreachs = P, let f(s,0) :=1
T fori:=0toc
forj:=0ton
if Sj bé D1V Dy then |etf(8j,i) =0
. / !’ -
else letf(s;, 1) := (Sj}n,ax - Z v(s) - f(s'yi—d)

P<x(@1U>.P2) :  foreachs € S
let f(s,0) := sup Prob{{w € Pathjy(s) | w = $1Uds}
fori:=0toc e
forj:=0ton
if s; £ @1V &y thenletf(s;,i):=0
else letf(s;,4) := max Z v(s") - f(s',max(0,i — d))

si,d,v)E—
(= ) s’eS

Fig. 1. The algorithms for computinB< (®1U~.®2)

according to-( to obtain a sequences;...s, wheren = |S| — 1, s;y; %o s; for
each0 < ¢ < n,1 < j < n — i, and each state i§ appears exactly once in the
sequence. The fact that such a sequepee...s,, exists follows from the fact tha¥l is

strongly non-Zeno. Computing the order can be done in tigs| + | 2 |) where

| % | = Seomelvlandly| = [{s'| v(s") > 0}|. In the algorithm below, we will
always iterate over the states of the TMDP in such a way assfzer the topological
order, in order to propagate the computed probabilitiesectly through the states.

Proposition 1. Let M = (S, synit, —, lab) be a strongly non-Zeno TMDP an#l be
a PtcTL formula in which the maximal constant in its time-bound suilps$s is ¢4 -
Deciding whetheM |= @ can be done intim&(|2|- ((|S]-| — | ¢maz ) + poly(|M]))).

Proof. The cases for the atomic propositions, Boolean combinsitioidl next formulae
are standard, and therefore we concentrate on the modekiohealgorithm for BcTL
formulae of the formP.qy(21U..®2) and Dy (¢'). We restrict our attention to the
cases in whichx is <. The cases fob are obtained directly by substitutingin for
max, andinf for sup in the following procedures, and the casesfer {<, >} follow
similarly. We assume that arithmetical operations can bpued in constant time.

Until formulae. We consider three different procedures (see Figure 1) dipgn
on the form of~. Recall that we use a topological order for enumerating thtes
8081...85, iN order to respect.

In each of the procedures, a function of the fofmS x Z — [0; 1] is utilized, with
the intuition that, for0 < i < ¢, the states satisfies the path formuk&; U.;®- with



maximum probabilityf (s, 7). Naturally, the aim is to calculaté(s, c) for each state
s € S.Ineach of the three cases, for each 0 and eacly € .S, we assume that we have
f(s,7) = 0. One can prove by induction ovethat f(s,i) = sup 4c 4g, Prob2{w €
Path;}d(s) | w = @1U; P2} for each states € S and eacl) < i < ¢. Hence, we
conclude thas = P<($1U...P2) if and only if f(s,¢) < A. The complexity of the
first two procedures, whereis < or=,isO(c- |S|-| — |).

When ~ is >, our algorithm first requires that we compute, for each state
S, the probabilitysup 4 ¢ 44, Probi{w € Path}y,(s) | w = ¢1Ud,} (the maximum
probability of satisfying the un-subscripted formdlaU®,). Following Bianco and de
Alfaro [5], these probabilities can be computed(Xipoly(|M|)) time. Therefore, the
complexity of the third procedure @((c - |S|- | — |) + poly(|M])).

Expected-time formulad-or formulae of the forn,. ('), we can utilize the algo-
rithm of de Alfaro [9] (TMDPs are a special case of de Alfansiedel), which reduces
to a linear programming problem, with time complexigly (|M|).

Overall complexityWe obtain an overall time complexity &f(|®| - ((|S] ]| — | -
cmaz) + poly(IM]))). Note that the time complexity can be expressed in termseof th
maximum branching degree of the transitions of the TMDP.&mecisely, ifb, 0. =
max(__,ye— [{s | v(s) > 0}| then we can write the complexity &3(|?| - ((bmaz -
| = | Cmaz) + poly(IM]))). O

3.2 Extension to Strongly Non-Zeno Durational Probabilisic Systems

We now show how the algorithms of Section 3.1 can be used taal€ficTL model-
checking algorithms for DPSs. One idea would be to applyetladgorithms directly to
the semantic TMDP of a DPS; however, in both semantics, thesponding TMDPs
are exponential in the size of original DPS . We avoid thishie ¢ase of PCTL[<, >]
by utilizing specific TMDP constructions for both of the senties.

Proposition 2 (DPS with jump semantics).LetD = (Q, ¢init, D, L) be a strongly
non-Zeno durational probabilistic system asdbe aPTcTL[<, >] formula in which
the maximal constant in the subscripts:js,,. Deciding whetheM; (D) = & can be
done in imeO(|@| - ((|Q| - [D| - ¢mas) + poly(|DY))).

Proof (sketch)We define a TMDPI\/I;(D) = (S, Sinit, —", lab) corresponding to a
restricted version of the jump semanticsIdivheres, s;,:;, andlab are defined as for
the standard jump semantics, grdd, ;1) €e—" if and only if there exist$s, [[; u], u) €

D and eithed = [ or d = u. Then, for any state € S, we can show that =y, (py @

if and only if s FM;(D) &: the minimum and maximum probabilities and expectations
depend only on the minimum and maximum durations on tramsiti O

Proposition 3 (DPS with continuous semantics)Let D = (Q, ¢init, D, L) be a
strongly non-Zeno durational probabilistic system ahtle aPTCTL[<, >] formula in
which the maximal constant in the subscripts,is,... Deciding whetheM (D) = &
can be done in tim&((|®|3 - |D|? - ¢inaz) + poly(|®| - |D| - |D|)).

Proof (sketch)We write the continuous semantics Bfas M (D) = (S, Sinit, —»
lab). Our aim is to label every stafe, i) of M.(D) with the set of subformulae @b



which it satisfies. For each stajec @, we construct a seat|q, £ of intervals such
thata € Sat[q, £] if and only if (¢, ) |= &. For reasons of space, we explain only the
general ideas behind the verification of subformwleaf the formPy.q» (?1U.$2) and
Dyoc (7). For this, we assume that we have already computed thé&segts_| for @,

&5 andd’.

As in Proposition 2, we construct a restricted TMDP whictrespnts partially the
states and transitions &fl.(D) but which will be sufficient for computing the sets
Sat[q, ¥]. The size of the restricted TMDP will ensure a procedure ingin time
polynomial in|D|.

For the intervap = [I;u], let p — 1 be the intervalmax(0,! — 1); max(0,u — 1)].
For each state € @, we build the minimal set of intervalsit(q) = U,_; [c;:5;)
such that:

— for anyi, we havei € Int(q) if and only if i € Sat[g, 1] U Sat[q, $2], and every
interval ofInt(q) verifies eithed; A @o, D1 A ~Po OF =Py A Do;

— foranyj, we haver; < 3;, andg; < a1 if j+1 < K;

— the intervals ardomogeneous for action transitiarfer any (g, p, -) € D, we have
[0, B5) € p—1orfag,B;) Np—1=0;

— the interval[0; 1) is treated separately: f € Sat[q, 1] U Sat[q, 2], then[0; 1) is
the first interval ofint(g).

Letting D? = {(q,-,-) | (q,-,-) € D}, we clearly havéint(q)| < 2 - (|Sat[g, §1]| +
|Sat[q, @2]| + |D?]) + 1. Let v be asub-distributionon a setS if v : S — [0;1]
and) sv(s) < 1, and letSubDist(S) be the set of all sub-distributions on the set
S. Next, we buildM; = (Q;, -, —,labs), which is a variant of a TMDP in which
sub-distributions may be used in addition to distributiohise set of states dfl; is

Qr = {(¢,[;8)) | ¢ € Qand[o; ) € Int(q)}, and the set of timed probabilistic,
nondeterministic transitions>;C S x N x SubDist(.9) is the smallest set defined as
follows.

(Action transition) For any(q, p, 1) € D and|e; 8) € Int(q), if [a; 3) C p— 1, then:
if [a; 8) = [0;1): we have the transitiofy, [«; 5)) ifoe p, and the transi-
tion (g, [a; B)) ~57if 1 € p;
if [o; B) # [0;1): we have the transitiong, [a; 3)) L and(q, [«; 3)) brev, .

wherev € SubDist(Q;) is the (sub-)distribution such that, for ea@h, [o/; 3')) €
Qr, we have:

v ramy o () if [ 87) = [0;1) and[0; 1) € Int(q")
w4, [o'5 6) = {g ! otherwise. !

(Time successor)For any [«; 3) and [o/; 3') in Int(q), if 3 = <« then we have
(¢, [0, 8)) =51 (g, [0 3).
Finally, for each(q, [a; 8)) € Q1, we letlab;(q, [o; 8)) C {P1, P2} depending the
inclusion of[«; B) w.r.t. Sat[g, $1] andSat|q, P2].

The TMDP M; has the following important property: for any stdtg [«; 5)) of
M;, we have that(q,a) FEu (o) Pear(P1UcP2) if and only if (¢, [a;3)) Fum,



Poox(P1UP2). This can be shown by using the same kind of arguments we used
for proving Proposition 2.

Then using the above construction\df, we can apply the algorithm of Section 3.1
to decide, for eacly, [o; 3)) € Q1, whether(q, ) F=wm, (p) Poax (P1U~P2) (the pres-
ence of sub-distributions does not affect the results ohterithm). Now note that, for
each functionf considered in Section 3.1, we compute a value for each gtdie; 3))
and eacl) < i < c¢. Hence we can decide whether, o) =m, (D) Poax(P1U~iP2)
also for all0 < 7 < ¢. We can use these results to compute the satisfaction sets
Sat[q, Pear (@1U.P2)] for each statg € Q.

One approach would be, for each point< v < 3, and for each statgy, [«; 3)),
to iterate over the individual values ¢f however, the size of intervals; 3) in Int(q)
for a given statg are dependent on the size of constants appearing in therttergals
p of the transitiongq, p, -) € D. We instead iterate over the size of the subseriged
in the temporal logic formula. More precisely, for eachetat [«; 5)) of M;, we have
two cases.

(g, [o; B)) has a time-successor state(l.e. there exists a state, [3; 5')) € Q;.) Then
deciding whethery € Sat[g, Pogx ($1U~.P2)] for eacha < v < @ can depend
both on whetheP. ) (®:U.P2) is satisfied in(q, «) and on the satisfaction of
Pear (P1U~;P2) (for somei) in (g, ). For eachl < j < min(c, § — «), we let
B —j € Sat[g, Poax(@1U~P2)] if and only if (¢, o) Fm, (D) Poar(P1U~c®2)) V
((2,8) BEm.(p) Poar(@1U~c—;92)). Intuitively, the second conjunct corresponds
to letting time pass and eventually moving (i@ 3): if the formula with a sub-
scriptc — j is satisfiedj time units in the future, then the analogous formula with
subscripte will be satisfied now. The first conjunct corresponds to tgkin action
transition: from the homogeneity of intervals with resgeciction transitions, such
a transition is available throughout the interval.

If 83—« > ¢, thenforeachy < j < 8 — cwe letj € Sat[q, Pogr (P1U~P2)] if
and only if (¢, o) Fwm, (D) Poar(@1U~cP2).

(g, [o; B)) does not have a time-successor statén this case, for each < j < 3, we
letj € Sat[g, Poax (P1U~:P2)] if and only if (¢, o) Fm, (D) Poar (P1U~cP2).

We then merge adjacent intervals Sat[q, Pugy (21 U~.®2)]. Analogously to the
non-probabilistic case [17], the size of this set is bourtte@at[q, D1 ]|+ |Sat[q, Ps]|+
|D?|, and one can show thiat[q, ¥]| < || - | DY for any PrcTL[<, >] formula?.

Observe thatQ| < > .o lInt(q)] < [Poan(@1U~cP2)| - [D|, and| —; | <
|Qrl]-(14]D|). Recalling that the algorithm of Section 3.1 runs in ti@e:-|Q;|-| —71 |)
when~ is <, we conclude that properties of the foifa, (¢ U<.$2) can be verified
in time O(c « |Pux (1U<.®2)|? - | D|?). Similarly, when~ is >, the corresponding
algorithm of Section 3.1 runs in tim@((c- |Q|-| —1 |) + poly(|M[])). The size of the
TMDP M; is no greater thaf@);|-2-|D|, and hence is no greater th@x » ($1U>.P2)|-
|D|-2-|D|. Hence, the algorithm when is > runs in imeO((c - |Pur ($1U>.P2)|? -
|DI*) + poly(|Poax ($1Usc®2) | - | D] - D).

These arguments can also be adapted for formilag(®’). For a states of a
TMDP with a set of adversarietdv, lete} (&') = sup 4 44, Expected Time2 (¢') and
lete; (¢) = inf ¢ aqo ExpectedTime? (#'). In analogy with the case of properties of



the form Py (#1U.®>), for each statéq, [a; 3)) € Q, we havee(fb[a;ﬁ))(qi’) =
e(fm)( ") ande, (. ﬁ))(qﬁ’) = €(g.0) (@'). We apply the algorithm of de Alfaro [9] to
M; to computeetm) (¢') inthe case oD<(¥') ande, (') in the case 0D (9').
To determine the valuetq+ ?') ande, (@') for eacha < y < j3, we have
two cases as above. (§, [«; )) has a time—successor state, then for ehch j <
min(c,  — a), we Iete (05— J)@) = max(e/ (d'),e ( 5 (®') + j), and similarly

(g,2)
(@) = min(e, ,(),e, 5 (D) +4). if B—a>c thenforeach < j <

€(0.6-7) (.8)

B —cwelete! . (P) = e, ,(¥)ande, (D) = e ().
On the other hand, ifg, [«; 3)) does not have a time-successor state, then for each
a<j<pwelete) () =ef (P)ande; (P) =e, ().

Then we can compare the obtained vaIues*Dande to the threshold to decide
whetherj € Sat[g, Dy (9)]. We merge adjacent intervals3$at|q, Dy (¢')] to obtain
the final satisfaction sets; as in the non-probabilistieddd], the size of this set is
bounded by D?| + |Sat[q, ?']| + 1.

Verification of theD,.. (') operator can be done in polynomial time in the size of
M;, and therefore our procedure takes tipaéy(|Diqc (9)| - | D] - |D])).

Overall complexityWe obtain an overall time complexity 6f((|?|>:|D|?-cas ) +
poly(|®| - |D| - [D])). o

These two propositions imply that the program complexitynuddel checking
PrcTL[<, >] for the jump and continuous semantics is in P. This contraits the
case of timed automata (with or without probability), whatgorithms are based on
the region graph and are exponential in the size of the system

4 Complexity of Model Checking Durational Probabilistic
Systems

In this section we consider upper and lower bounds on the ity of model check-
ing strongly non-Zeno DPSs. In particular we aim at comggtirese results with those
obtained for (non-probabilistic) durational systems, ebndurational transition graphs
(DTG) [17]. A DTG consists of a state s&ft initial states,,;;, and a labelling function
[; in contrast to a DPS, however, the transition relation thefform—C S xZ x .S. We
know that model checkingdTL over DTGs isAb-complete (resp. PSPACE-complete)
with the jump semantics (resp. continuous semantics)hEurtore, model checking
TcTL[<, >] can be done in polynomial time for both semantics. We nowtiflecases

in which the addition of probability makes model checkingdea than in the non-
probabilistic case, even for restricted sub-logics oEPL.

Complexity with probabilities 0/1First we consider PcTL’/!, the “qualitative” sub-
logic of PrcTL in which we allowP., operators with € {0, 1} only, and in which
theDy.. operator is excluded.

Theorem 1 (Durational fully probabilistic systems).Model checkind®tcTL%/! over
a strongly non-Zeno durational fully probabilistic systésna Af-complete (resp.
PSPACE-complete) problem for the jump (resp. continucaisesitics.
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Proof. This result derives mainly from the complexity of model dkiag over DTGs.
Indeed, the general idea is to reduce model checkingraffE®/! over a strongly non-
Zeno DFPSD = (Q, ginit, D, L) to TCTL model checking over the DTGS, s;,,:¢, —,
1) defined as followsS = Q, sinit = init, | = L and (s, p,s’) €— iff we have
(s,p, 1) € D andu(s") > 0. We replace PcTL/! subformulae by TTL counterparts
in the following way P~ () is replaced b¥p, while P> (X®) (resp P> (€1 U< P2),
P>1(P1U=D2)) is replaced byAXd (resp. A(P1U<.P2), A(P1U—.P2)). Finally,
P>1(P1U>.P2) is replaced bA(P1U > Po, ua, ), WherePg s, IS a new atomic propo-
sition that holds for states satisfyiiifg., ($1 U®,). The standard €L model-checking
algorithm [5], which runs in polynomial time, can be usedabédl states bys, ys, -
Note that these reductions are possible because the DFR®nglg non-Zeno. For
the remaining PcTL%/! formulae, as we are considering fully probabilistic system
we haveP.;1(p) = —P>1(p) andP<o(¢) = —Pso(yp). The overall transformation
providesAL-membership (resp. PSPACE-membership) for the® model checking
over DPS in the jump semantics (resp. continuous semantics)

With regard to the hardness results, we adapt the proofs fosddTGs with the
same transformation of formulae as described above. O

Note that, following the results of [17] and using the tratisins of the proof of
Theorem 1, we can find a polynomial-time algorithm for modelaking DFPSs against
formulae of FrcTL%/! without subscripts= ¢ in until modalities, both for the jump and
continuous semantics.

Next, we address model checking of general, nondeterriamfSs.

Theorem 2 (Durational probabilistic systems).Model checking strongly non-Zeno
durational probabilistic systems with the jump semantieq1) PSPACE-hard for
PTcTLY/!, and (2) in PSPACE foPTCTLY/![<, >].

Proof. (1) We reduce a quantified version of the subset-sum proldahedQ-subset-
sum to a PrctL%! model-checking problem on strongly non-Zeno DPSs. As QBF ca
be reduced to Q-subset-sum, this suffices to show PSPAGHss. An instance of
Q-subset-sum contains a finite sequencef integersey, . . ., z,, an integelG and a
sequence of quantifie@y, ..., 9, in {3,V}. The instancd is positive iff there exists
a setZ of subsets ofX s.t. () Yycx'x = G forany X’ € Z and (ll) for anyY € Z,
if Q; =V, then there exist§” € Zstz; € Y & z; € Y/ forany; < i and
x; €Y' & x; € Y. Assume w.l.o.g. that is even andQy; 1 = V, Qo410 = 3 for
all0 < i < §. Then we consider the DPB; described in Figure 2. The dashed lines
correspond to non-deterministic choices, and the numhbgyarentheses correspond to
the duration of the transitions which they label.

Now assumey = —P<1(F-¢P) (whereF... = trueU..., and wherey, is the
only state labelled withP): that is, there exists an adversary such that the probabili



of satisfyingF_g P from ¢ is 1. In terms ofI, for any existential quantifier id,
it is possible to make a decision leading to a subset withtgxére sumG. Then
qo E —P<1(F=¢P) if and only if the instancd is positive.

(2) The PSPACE membership is shown as follows. For reascssaaie we consider
only the cas@-.(®;U<.P2). Because the DPS is strongly non-Zeno, it suffices to ver-
ify that for any adversary there exists a path satisfybat) <.®,. We use the following
algorithm which runs in polynomial space.

First note thay |= P~o($1U<qP2) entailsg = P~ (P1U<q+1P2). For every state
g we will compute the minimad] s.t. P~.o($1U<4P2) holds forg. First we definel’[¢]
aso (resp.o<) if ¢ = @, (resp.g = &1). Then, foranyj =0, 1,..., ¢, we try to update
T|q] for g = q1, ..., qn if T[q] has not yet been defined (where we enumerate the states
in the topological order-(). UpdatingT’[q] to j is done if, for any(q, p, i) € D, there
exists at least one stagés.t.;u(¢') > 0 andT'[¢'] > j — d, whered, is the maximal
duration inp. Finally it remains to label a stateby P~ ($1U<.P») iff T[q] < c. A
similar procedure can be used to verify the other properties O

For the continuous semantics, it is clear that model checRircTL is PSPACE-
hard. These results show that strongly non-Zeno DFPSs aterder to verify against
PtcTLY! than non-probabilistic durational systems againstiT, and that combining
probabilities and non-determinism induces a complexitylp for the jump seman-
tics compared to the non-probabilistic case.

Complexity of fullPTcTL. If we move from the sub-logic ®eTL/! to the logic in
which the operatolP., is permitted to have rational € [0; 1], we observe a com-
plexity blow-up. It is sufficient to consider the simple faska P » (F<.P) in the fully
probabilistic case with the jump semantics.

Proposition 4. Model checkind> » (F<.P) over durational fully probabilistic systems
with the jump semantics is NP-hard.

Proof (sketch)The proof consists in reducing th€-th largest subset problem, which
is NP-hard [12, p. 225], to the problem of model checking anfda of the form
P> (F<.P) on a DFPS with the jump semantics. An instadasf /-th largest subset
problem is a finite seX = {z,...,z,} of natural numbers and two integekS and
B. The problem consists in asking whether there are at I€afistinct subset’ C X
s.t.).cx = < B. Consider an adaptation of the DPS of Figure 2 where we rephac
non-deterministic choices in statgg 1, for 0 < ¢ < 3, by distributions with proba-
bilities % and recall that, is the only state labelled witR. This provides a DFPS that
satisfiesP, x (F<pP)ifand only if I is a positive instance. O

A corollary is that model checkingTTL[<, >] is NP-hard and coNP-hard over
durational fully probabilistic systems with the jump sertiesx Note that this problem
is the simplest problem within our framework referring taqtitative temporal proper-
ties. It entails that considering simple timing constraiahd quantitative probabilistic
properties in the same model checking problem leads to Néabas, whereas consid-
eringeithersimple timing constraints (as in [1 4y quantitative probabilistic properties
(as in [5]) allows for efficient model checking.



Table 1. Complexity results for model checking durational probiabii systems

Fully prob. DPS DPS
jump sem. cont. sem. jump sem. cont. sem.
PTCTLY![<, >]| P-complete]  P-complete P-hard P-hard
in PSPACE |in EXPTIME("

PTcTLY/*| AL-complet¢PSPACE-complet® SPACE-hard PSPACE-hard
in EXPTIME| in EXPTIME
PTCTL[<, >] NP-hard and coNP-hard
in EXPTIME"

PrcTL| A%-hard PSPACE-hard |PSPACE-hard PSPACE-hard
in EXPTIME| in EXPTIME |in EXPTIME| in EXPTIME

For the general case where we have non-determinism, ptitesénd RrcTL for-
mulae, we conjecture that model checking is EXPTIME-coiteplerom the algorithms
of Section 3 and the complexity results for@rL%/*, we obtain the following corollary.
Note that the EXPTIME-membership comes from a direct apfibo of the algorithm
described in Proposition 1 td; (D) or M.(D).

Corollary 1. Model checkind®TCTL over durational probabilistic systems in the jump
or continuous semantics is PSPACE-hard and it can be donXRTEME.

5 Conclusion

In this paper we introduced durational probabilistic systea model to describe prob-
abilistic, non-deterministic and timed systems. We shola@sl model checking can be
done over this model, paying attention to complexity isstiable 1 summarizes the re-
sults we presented in the paper. First, note that model aingclan be done efficiently
for fully probabilistic systems and qualitativer®TL%/* properties without the exact
time-bound subscript ¢. However, as in the non-probabilistic case, adding the ex-
act time-bound induces a complexity blow-up. This motisdtee use of PCTL[<, >]
where the subscripts in until formulae are restrictect@ and > ¢ constraints. For
this logic, even with quantitative properties, we have ni@thecking algorithms run-
ning in time polynomial in|®| - |D| and linear inc,,,., the maximal timing constant
of the formula, as described in Proposition 2 and PropeosiBioand indicated by the
(1) superscripts in the table. The precise polynomial dependb®kind of DPS and
the choice of semantics. The formula’s time constants azedsad in binary, and hence
these algorithms belong to EXPTIME; nevertheless the d@hlgus should be interest-
ing in practice, because they are polynomigli. In future work, we will consider the
precise complexity of the non-complete model-checkindlenms listed in the table.

References

1. R. Alur, C. Courcoubetis, and D. L. Dill. Model-checkingdense real-timelnformation
and Computation104(1):2—34, 1993.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. S. Andova, H. Hermanns, and J.-P. Katoen. Discrete-tawamds model-checked. Proc.
1st Int. Workshop on Formal Modeling and Analysis of Timest&8ys (FORMATS 2003)
volume 2791 oLNCS pages 88—104. Springer, 2004.

. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. éltatiecking algorithms for
continuous-time Markov chaindEEE Transactions on Software Engineerir&9(6):524—
541, 2003.

. C. Baier and M. Kwiatkowska. Model checking for a probistiit branching time logic with
fairness.Distributed Computingl1(3):125-155, 1998.

. A. Bianco and L. de Alfaro. Model checking of probabilistind nondeterministic systems.
In Proc. 15th Conf. on Foundations of Software Technology amebfetical Computer Sci-
ence (FSTTCS’95yolume 1026 oL NCS pages 499-513. Springer, 1995.

. S.Campos, E. M. Clarke, W. R. Marrero, M. Minea, and H. islta Computing quantitative
characteristic of finite-state real-time systemsPtac. IEEE Real-Time Systems Symposium
(RTSS’94)pages 266—270. IEEE Computer Society Press, 1994.

. E. M. Clarke, O. Grumberg, and D. Pel@dodel checkingMIT Press, 1999.

. C. Courcoubetis and M. Yannakakis. The complexity of philistic verification. Journal
of the ACM 42(4):857-907, 1995.

. L. de Alfaro. Formal verification of probabilistic system&hD thesis, Stanford University,

Department of Computer Science, 1997.

L. de Alfaro. Temporal logics for the specification of foemance and reliability. IfProc.

14th Annual Symp. on Theoretical Aspects of Computer SESTACS'97)volume 1200

of LNCS pages 165-176. Springer, 1997.

E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasanafitative temporal reasoning.

Real Time Systené(4):331-352, 1992.

M. R. Garey and D. S. Johnso@omputers and Intractability: A Guide to the Theory of

NP-Completenes$reeman, 1979.

H. A. Hansson and B. Jonsson. A logic for reasoning abmé &nd reliability. Formal

Aspects of Computing(5):512-535, 1994.

M. Kwiatkowska. Model checking for probability and timerom theory to practice. In

Proc. 18th Annual IEEE Symposium on Logic in Computer Sei¢bkCS’03) pages 351—

360. IEEE Computer Society Press, 2003.

M. Kwiatkowska, G. Norman, R. Segala, and J. Sprostotoratic verification of real-time

systems with discrete probability distributiof$ieoretical Computer Scienc@86:101-150,

2002.

F. Laroussinie, N. Markey, and P. Schnoebelen. On mdueking durational Kripke struc-

tures (extended abstract). Proc. 5th Int. Conf. Foundations of Software Science and

Computation Structures (FOSSACS 2008Jume 2303 of NCS pages 264-279. Springer,

2002.

F. Laroussinie, N. Markey, and P. Schnoebelen. Efficiereéd model checking for discrete

time systems. Submitted, 2004.

S. Tripakis. Verifying progress in timed systems.Phac. 5th AMAST Workshop on Real-

Time and Probabilistic Systems (ARTS'98)lume 1601 of NCS pages 299-314. Springer,

1999.

M. Y. Vardi. Automatic verification of probabilistic coarrent finite-state programs. In

Proc. 16th Annual Symp. on Foundations of Computer ScidFO€6'85) pages 327-338.

IEEE Computer Society Press, 1985.



