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Abstract. We consider model-checking algorithms for durational probabilistic
systems, which are systems exhibiting nondeterministic, probabilistic and
discrete-timed behaviour. We present two semantics for durational probabilistic
systems, and show how formulae of the probabilistic and timed temporal logic
PTCTL can be verified on such systems. We also address complexity issues, in
particular identifying the cases in which model checking durational probabilistic
systems is harder than verifying non-probabilistic durational systems.

1 Introduction

Model checking is an automatic method for guaranteeing thata mathematical model of
a system satisfies a formula representing a desired property[7]. Many real-life systems,
such as multimedia equipment, communication protocols, networks and fault-tolerant
systems, exhibitprobabilistic behaviour, leading to the study ofprobabilistic model
checkingof probabilistic and stochastic models [19, 13, 8, 5, 4, 3, 14]. Similarly, it is
common to observe complexreal-timebehaviour in such systems. Model checking of
discrete-time systems against properties of timed temporal logics, which can refer to
the time elapsed along system behaviours, has been studied extensively in, for example,
[11, 6, 16].

In this paper, we aim to study model-checking algorithms fordiscrete-time prob-
abilistic systems, which we calldurational probabilistic systems. Our starting point is
the work of Hansson and Jonsson [13], which considered modelchecking for discrete-
time Markov chains (in which transitions always take duration 1) against properties of
a probabilistic, timed temporal logic, and that of de Alfaro[10], which extended the
approach of Hansson and Jonsson to Markov decision processes in which transitions
can be of duration 0 or of duration 1. We extend this previous work by considering
systems in which state-to-state transitions take arbitrary, natural numbered durations,
in the style of durational transition graphs [16, 17]. We present two semantics for dura-
tional probabilistic systems: thecontinuous semanticsconsiders intermediate states as
time elapses, whereas thejump semanticsdoes not consider such states. In this paper,
we restrict our attention tostrongly non-Zenodurational probabilistic systems, in which
positive durations elapse in all loops of the system.
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The temporal logic that we use to describe properties of durational probabilistic
systems is PTCTL (Probabilistic Timed Computation Tree Logic). The logic PTCTL

includes operators that can refer to bounds on exact time, expected time, and the prob-
ability of the occurrence of events. For example, the property “a request is followed
by a response within 5 time units with probability 0.99 or greater” can be expressed
by the PTCTL propertyrequest → P≥0.99(trueU≤5response). Similarly, the prop-
erty “the expected amount of time which elapses before reaching an alarm state is not
more than 60” can be expressed asD≤60(alarm). The logic PTCTL extends the prob-
abilistic temporal logic PCTL [13, 5], the real-time temporal logic TCTL [1], and the
performance-oriented logic of de Alfaro [10] (a similar logic has also been studied in
the continuous-time setting [15]).

After introducing durational probabilistic systems and PTCTL in Section 2, we
present model-checking algorithms for both of the aforementioned semantics in Sec-
tion 3. The novelty of these algorithms is that their runningtime is independent of the
timing constants used in the description of the durational probabilistic system, and their
program complexityis polynomial. Instead, to apply the previous methods of de Al-
faro, Hansson and Jonsson to durational probabilistic systems, we would have to model
explicitly intermediate states as time passes (even for thejump semantics), hence result-
ing in a blow-up of the size of the state space. The presented algorithms are restricted
to temporal modalities with upper or lower time bounds; we show in Section 4 that
the problem of model checking durational probabilistic systems against PTCTL formu-
lae in which exact time bounds are used (that is, of the form= c) is PSPACE-hard,
even for “qualitative” probabilistic properties in which the probability thresholds refer
to 0 or 1 only. We also show the NP-hardness and co-NP-hardness of model checking
fully probabilistic durational systems against general “quantitative” probabilistic prop-
erties including arbitrary probability thresholds and upper time bounds (of the form
≤ c). On the positive side, model checking qualitative probabilistic properties of fully
probabilistic, strongly non-Zeno durational probabilistic systems is∆p

2-complete and
PSPACE-complete for the jump and continuous semantics, respectively, and model
checking qualitative properties excluding exact time bounds is in PSPACE for general
strongly non-Zeno durational probabilistic systems with the jump semantics.

2 Durational Probabilistic Systems

2.1 Syntax of Durational Probabilistic Systems

LetAP be a countable set of atomic propositions, which we assume tobe fixed through-
out the remainder of the paper. LetI be the set of finite intervals overN. Given a set
X, Dist(X) denotes the set of discrete probability distributions overX.

Definition 1. A durational probabilistic system(DPS)D = (Q, qinit , D, L) comprises
a finite set of statesQ with an initial stateqinit ∈ Q; a finite durational probabilistic,
nondeterministic transition relationD ⊆ Q×I×Dist(Q) such that, for each stateq ∈
Q, there exists at least one tuple(q, , ) ∈ D; and a labelling functionL : Q → 2AP .

Intuitively, the behaviour of a durational probabilistic system comprises of repeat-
edly letting time pass then taking a state-to-state transition (which we sometimes call



an action transition). The intervalρ of some(q, ρ, µ) ∈ D specifies the duration of
the corresponding transition. On entry to a stateq ∈ Q, there is a nondeterministic
choice of a triple(q, ρ, µ) ∈ D. Then the system chooses, again nondeterministically,
the amount of time that elapses, where the chosen amount mustbelong toρ. Finally, the
system movesprobabilisticallyto a next stateq′ ∈ Q with probabilityµ(q′).

The size|D| of D is |Q| + |D| plus the size of the encoding of the timing constants
and probabilities used inD. The timing constants (lower and upper bounds of transi-
tions’ intervals) are written in binary, and where, for each(q, ρ, µ) ∈ D, the values
µ(q′) are written as fixed-precision binary numbers.

Durational fully probabilistic systems.A durational fully probabilistic system(DFPS)
is a DPS where there is exactly one tuple(q, ρ, ) ∈ D for any stateq, and whereρ is a
singleton. In such a system there is no non-deterministic choice.

Strong non-Zenoness.A DPSD = (Q, qinit , D, L) is strongly non-Zenoif, for each
stateq ∈ Q, there does not exist a sequence of transitions(q0, ρ0, µ0)...(qn, ρn, µn) of
D such thatq0 = q, µi(qi+1) > 0 for all 0 ≤ i < n, µn(q0) > 0, andρi is of the
form [0; ] for all 0 ≤ i ≤ n. Note that this property can easily be checked for a DPS.
The concept of strong non-Zenoness is taken from previous work for timed automata
[18]. The algorithms and the complexity results we show in this paper only deal with
strongly non-Zeno DPSs.

2.2 Semantics of Durational Probabilistic Systems

We give a formal semantics to durational probabilistic system in terms oftimed Markov
decision processes.

Definition 2. A timed Markov decision processes(TMDP)M = (S, sinit ,→, lab) com-
prises a finite set of statesS with an initial statesinit ∈ S; a finite timed probabilis-
tic, nondeterministic transition relation→⊆ S × N × Dist(S) such that, for each
states ∈ S, there exists at least one tuple(s, , ) ∈→; and a labelling function
lab : S → 2AP .

A special case of a timed Markov decision process is atimed Markov chain(TMC),
in which, for each states ∈ S, there exists exactly one tuple(s, , ) ∈→. The size
of TMDPs and the notion of strong non-Zenoness are defined as for DPSs, because a
TMDP can be regarded as a DPS for which the intervals labelling transitions are all
singletons.

The transitions from state to state of a TMDP are performed intwo steps: given that
the current state iss, the first step concerns a nondeterministic selection of(s, d, ν) ∈→,
whered corresponds to the duration of the transition; the second step comprises a prob-
abilistic choice, made according to the distributionν, as to which state to make the
transition to (that is, we make a transition to a states′ ∈ S with probabilityν(s′)). We

often denote such a transition bys
d,ν
−−→ s′, and writes

d,ν
−−→ to indicate that there exists

(s, d, ν) ∈→. If s
d,ν
−−→ s′ is such thatν(s′) = 1, then for simplicity we writes

d
−→ s′.



An infinite or finitepathof the timed Markov decision processM is defined as an
infinite or finite sequence of transitions, respectively, such that the target state of one
transition is the source state of the next. We usePathfin to denote the set of finite paths
of M, andPath ful the set of infinite paths ofM. If ω is finite, we denote bylast(ω) the
last state ofω. For any pathω, let ω(i) be its(i + 1)th state. LetPath ful(s) refer to

the set of infinite paths commencing in states ∈ S . For an infinite pathω = s0
d0,ν0

−−−→

s1
d1,ν1

−−−→ · · · , the accumulated duration alongω until theith state, denotedTime(ω, i),
is equal to

∑

0≤j<i dj .
In contrast to a path, which corresponds to a resolution of nondeterministic and

probabilistic choice, anadversaryrepresents a resolution of nondeterminismonly. For-
mally, an adversary of a timed Markov decision processM is a functionA mapping
every finite pathω ∈ Pathfin to a transition(last(ω), d, ν) ∈→. Let Adv be the
set of adversaries ofM. For any adversaryA ∈ Adv , let PathA

ful denote the set of

infinite paths resulting from the choices of distributions of A, and letPathA
ful(s) =

PathA
ful ∩Pathful(s). Then, for a states ∈ S, we define the probability measureProbA

s

overPathA
ful(s) in the standard way [19].

Note that, by defining adversaries as functions from finite paths, we permit adver-
saries to be dependent on the history of the system. Hence, the choice made by an
adversary at a certain point in system execution can depend on the sequence of states
visited, the nondeterministic choices taken, and the time elapsed in each state, up to that
point.

As for non-probabilistic systems [17], we can define severalsemantics of time for
DPSs. Consider a transition of durationd between two DPS statesq andq′. The first
semantics, called thejump semantics, assumes that moving fromq to q′ takesd time
units and that there are no intermediate states: if the system is inq at timet, then it is in
q′ at timet + d and there is no position for timet + 1. . .t + d − 1. This semantics cor-
responds to a kind of cost or reward automata where every transition has a weight. We
will also consider thecontinuoussemantics, which involves waiting ind − 1 interme-
diate positions, each corresponding to the passage of one time unit, before performing
the action transition and arriving inq′. This last semantics is close to the one used for
timed automata and is generally more natural to model systems; for example, it is more
convenient when considering parallel composition becausetime progresses smoothly.

Jump semantics.The jumpsemantics of a DPSD = (Q, qinit , D, L) is defined as the
TMDP Mj(D) = (S, sinit ,→, lab), where:

– S = Q andsinit = qinit ;
– (s, d, µ) ∈→ if and only if there exists(s, ρ, µ) ∈ D andd ∈ ρ;
– lab(s) = L(s) for all s ∈ S.

Continuous semantics.Let δmax(q) be the maximal delay possible in stateq of a dura-
tional probabilistic system. Thecontinuoussemantics of a DPSD = (Q, qinit , D, L) is
defined as the TMDPMc(D) = (S, sinit ,→, lab), where:

– S = {(q, i) | 0 ≤ i < δmax(q)} andsinit = (qinit , 0);



– → is the smallest set of transitions satisfying the followingrules:
• (q, 0)

0,ν
−−→ if there exists(q, ρ, µ) ∈ D such that0 ∈ ρ, and whereν(q′, 0) =

µ(q′) for eachq′ ∈ Q;

• (q, i)
1
−→ (q, i + 1) if i + 1 < δmax(q);

• (q, i)
1,ν
−−→ if there exists(q, ρ, µ) ∈ D such thati+1 ∈ ρ, and whereν(q′, 0) =

µ(q′) for eachq′ ∈ Q;
– for each(q, i) ∈ S, let lab(q, i) = L(q).

Observe that the semantics of a DFPS is a TMC, and that the semantics of a strongly
non-Zeno DPS is also strongly non-Zeno. The size of the transition relation ofMj(D)
may be exponential in|D| because it is linearly-dependent on the magnitude of the
timing constants (encoded in binary) of the DPS. However, the number of states of
Mj(D) andD is the same. This contrasts withMc(D), where the number of statesand
the number of transitions may be exponential in|D|. Another difference between the
semantics is that the TMDPMc(D) only contains durations in{0, 1}.

2.3 Probabilistic Timed Temporal Logic

In this section, we recall how the branching-time temporal logic CTL can be extended
with constraints on time, probability and expected time. First we recall the probabilistic
temporal logic PCTL [13, 5], in which the standard universal and existential path quanti-
fiersAϕ andEϕ of CTL are replaced with a probabilistic quantifier of the formP./λ(ϕ),
whereϕ is a formula interpreted over paths,./∈ {<,≤,≥, >} is a comparison operator
andλ ∈ [0; 1] is a probability. Timing constraints, expressed using subscripts on “un-
til” path formulae (with the syntaxU∼c, where∼∈ {≤, =,≥}), were introduced in the
temporal logics RTCTL [11] and TCTL [1]. Finally, an expected-time operatorD./ζ(Φ),
where./∈ {<,≤,≥, >} is a comparison operator andζ ∈ R≥0 is a non-negative real,
was studied in the discrete-time context by de Alfaro [10] and Andova et al. [2].

We combine the above mentioned temporal logics to obtain thetemporal logic
PTCTL (Probabilistic Timed Computation Tree Logic), which extends the identically-
named logic of [15] with the “next” temporal modality and theexpected-time operator.

Definition 3. The formulae ofPTCTL are given by the following grammar:

Φ ::= P | Φ ∧ Φ | ¬Φ | P./λ(XΦ) | P./λ(ΦU∼cΦ) | D./ζ(Φ)

whereP ∈ AP is an atomic proposition,./∈ {<,≤,≥, >}, ∼∈ {≤, =,≥} are com-
parison operators,λ ∈ [0; 1] is a probability,c ∈ N is a natural number, andζ ∈ R≥0

is a positive real.

We define PTCTL[≤,≥] as the sub-logic of PTCTL in which subscripts of the form
= c are not allowed in “until” modalitiesU∼c. The size|Φ| is defined in the standard
way, with constants written in binary.

Given an infinite pathω of a TMDP and a PTCTL formulaΦ, let Tω,Φ = min{i |
ω(i) |= Φ} be the index of the first state ofω which satisfiesΦ, and letTω,Φ = ∞
if ω(i) 6|= Φ for all i ∈ N. Then, for a given adversaryA ∈ Adv and states ∈ S

of the TMDP, we letExpectedTimeA
s (Φ) = EA

s {Time(ω, Tω,Φ)}, whereEA
s {·} is the

expectation, defined in the standard way, with respect to theprobability measureProbA
s .



Definition 4. Given a TMDPM = (S, sinit ,→, lab) and aPTCTL formulaΦ, we define
the satisfaction relation|=M of PTCTL as follows:1

s |=M P iff P ∈ lab(s)
s |=M Φ1 ∧ Φ2 iff s |=M Φ1 ands |=M Φ2

s |=M ¬Φ iff s 6|=M Φ

s |=M D./ζ(Φ) iff ExpectedTimeA
s (Φ) ./ ζ, ∀A ∈ Adv

s |=M P./λ(ϕ) iff ProbA
s {ω ∈ PathA

ful(s) | ω |=M ϕ} ./ λ, ∀A ∈ Adv

ω |=M XΦ iff ω(1) |=M Φ

ω |=M Φ1U∼cΦ2 iff ∃i ∈ N s.t.Time(ω, i) ∼ c , ω(i) |=M Φ2

andω(j) |=M Φ1 ∀0 ≤ j < i .

Model checking.The model-checking problem for a PTCTL formula Φ and a TMDP
M with initial statesinit is to decide whethersinit |=M Φ, which we abbreviate to
M |= Φ. The model-checking problem forΦ, a DPSD and a semanticssem ∈ {j, c} is
to decide whetherMsem(D) |= Φ. The complexity results will be expressed in terms of
the size|D| + |Φ|. However, we will also consider theprogram complexitywhere one
fixes the formula and measures the complexity as a function ofthe size|D| only. As the
system is assumed to be large whereas the formula is assumed to be small, the program
complexity is often considered to be a more significant estimate of the feasibility of
verification in practice.

3 Model Checking for Durational Probabilistic Systems

Our approach is to introduce in Section 3.1 a model-checkingalgorithm for strongly
non-Zeno timed Markov decision processes, which will then be used in Section 3.2 as
a basis for model-checking algorithms for durational probabilistic systems.

3.1 Model Checking Timed Markov Decision Processes

Although our model-checking algorithm for TMDPs presentedbelow uses the anal-
ogous algorithm of de Alfaro [9] in order to verify the expected-time operator, the
methods and complexities for the probabilistic, time-bounded operators are new, and,
for strongly non-Zeno TMDPs, improve on previous results [13, 10] as their running
time is not dependent on the magnitude of the time constants used in the transitions of
the TMDP. More precisely, the previous methods are defined for systems in which the
maximal time duration is 1, necessitating the modelling of longer time durations via
intermediate states, hence blowing-up the size of the statespace.

Before presenting the algorithm, we introduce some notation. The algorithm relies
on computing a topological order on the states of the TMDP, sothat reachability via
0 transitions is reflected in the order: for two statess, s′ ∈ S, let s �0 s′ if and only

if there exists a transitions′
0,ν
−−→ whereν(s) > 0. Then we order the states inS

1 When clear from the context, we omit theM subscript from|=M.



P≤λ(Φ1U≤cΦ2) : for i := 0 to c

for j := 0 to n

if sj |= Φ2 then letf(sj , i) := 1
else

if sj 6|= Φ1 ∨ Φ2 then letf(sj , i) := 0

else letf(sj , i) := max
(sj ,d,ν)∈→

X

s′∈S

ν(s′) · f(s′, i − d)

P≤λ(Φ1U=cΦ2) : for eachs |= Φ2 let f(s, 0) := 1

for i := 0 to c

for j := 0 to n

if sj 6|= Φ1 ∨ Φ2 then letf(sj , i) := 0

else letf(sj , i) := max
(sj ,d,ν)∈→

X

s′∈S

ν(s′) · f(s′, i − d)

P≤λ(Φ1U≥cΦ2) : for eachs ∈ S

let f(s, 0) := sup
A∈Adv

Prob
A
s {ω ∈ Path

A
ful(s) | ω |= Φ1UΦ2}

for i := 0 to c

for j := 0 to n

if sj 6|= Φ1 ∨ Φ2 then letf(sj , i) := 0

else letf(sj , i) := max
(sj ,d,ν)∈→

X

s′∈S

ν(s′) · f(s′, max(0, i − d))

Fig. 1. The algorithms for computingP≤λ(Φ1U∼cΦ2)

according to�0 to obtain a sequences0s1...sn wheren = |S| − 1, si+j 6�0 si for
each0 ≤ i < n, 1 ≤ j ≤ n − i, and each state inS appears exactly once in the
sequence. The fact that such a sequences0s1...sn exists follows from the fact thatM is

strongly non-Zeno. Computing the order can be done in timeO(|S| + |
0
−→ |) where

|
0
−→ | = Σ(s,0,ν)∈→|ν| and|ν| = |{s′ | ν(s′) > 0}|. In the algorithm below, we will

always iterate over the states of the TMDP in such a way as to respect the topological
order, in order to propagate the computed probabilities correctly through the states.

Proposition 1. Let M = (S, sinit ,→, lab) be a strongly non-Zeno TMDP andΦ be
a PTCTL formula in which the maximal constant in its time-bound subscripts iscmax .
Deciding whetherM |= Φ can be done in timeO(|Φ| ·((|S| · | → |·cmax )+poly(|M|))).

Proof. The cases for the atomic propositions, Boolean combinations and next formulae
are standard, and therefore we concentrate on the model-checking algorithm for PTCTL

formulae of the formP./λ(Φ1U∼cΦ2) andD./ζ(Φ
′). We restrict our attention to the

cases in which./ is ≤. The cases for≥ are obtained directly by substitutingmin for
max, andinf for sup in the following procedures, and the cases for./∈ {<, >} follow
similarly. We assume that arithmetical operations can be performed in constant time.

Until formulae.We consider three different procedures (see Figure 1) depending
on the form of∼. Recall that we use a topological order for enumerating the states
s0s1...sn in order to respect�0.

In each of the procedures, a function of the formf : S×Z → [0; 1] is utilized, with
the intuition that, for0 ≤ i ≤ c, the states satisfies the path formulaΦ1U∼iΦ2 with



maximum probabilityf(s, i). Naturally, the aim is to calculatef(s, c) for each state
s ∈ S. In each of the three cases, for eachi < 0 and eachs ∈ S, we assume that we have
f(s, i) = 0. One can prove by induction overi thatf(s, i) = supA∈Adv ProbA

s {ω ∈

PathA
ful(s) | ω |= Φ1U∼iΦ2} for each states ∈ S and each0 ≤ i ≤ c. Hence, we

conclude thats |= P≤λ(Φ1U∼cΦ2) if and only if f(s, c) ≤ λ. The complexity of the
first two procedures, where∼ is≤ or =, is O(c · |S| · | → |).

When∼ is ≥, our algorithm first requires that we compute, for each states ∈
S, the probabilitysupA∈Adv ProbA

s {ω ∈ PathA
ful(s) | ω |= Φ1UΦ2} (the maximum

probability of satisfying the un-subscripted formulaΦ1UΦ2). Following Bianco and de
Alfaro [5], these probabilities can be computed inO(poly(|M|)) time. Therefore, the
complexity of the third procedure isO((c · |S| · | → |) + poly(|M|)).

Expected-time formulae.For formulae of the formD./ζ(Φ
′), we can utilize the algo-

rithm of de Alfaro [9] (TMDPs are a special case of de Alfaro’smodel), which reduces
to a linear programming problem, with time complexitypoly(|M|).

Overall complexity.We obtain an overall time complexity ofO(|Φ| · ((|S| · | → | ·
cmax ) + poly(|M|))). Note that the time complexity can be expressed in terms of the
maximum branching degree of the transitions of the TMDP. More precisely, ifbmax =
max( , ,ν)∈→ |{s | ν(s) > 0}| then we can write the complexity asO(|Φ| · ((bmax ·
| → | · cmax ) + poly(|M|))). ut

3.2 Extension to Strongly Non-Zeno Durational Probabilistic Systems

We now show how the algorithms of Section 3.1 can be used to define PTCTL model-
checking algorithms for DPSs. One idea would be to apply these algorithms directly to
the semantic TMDP of a DPS; however, in both semantics, the corresponding TMDPs
are exponential in the size of original DPS . We avoid this in the case of PTCTL[≤,≥]
by utilizing specific TMDP constructions for both of the semantics.

Proposition 2 (DPS with jump semantics).Let D = (Q, qinit , D, L) be a strongly
non-Zeno durational probabilistic system andΦ be aPTCTL[≤,≥] formula in which
the maximal constant in the subscripts iscmax . Deciding whetherMj(D) |= Φ can be
done in timeO(|Φ| · ((|Q| · |D| · cmax ) + poly(|D|))).

Proof (sketch).We define a TMDPMr
j(D) = (S, sinit ,→

r, lab) corresponding to a
restricted version of the jump semantics ofD whereS, sinit , andlab are defined as for
the standard jump semantics, and(s, d, µ) ∈→r if and only if there exists(s, [l; u], µ) ∈
D and eitherd = l or d = u. Then, for any states ∈ S, we can show thats |=Mj(D) Φ

if and only if s |=Mr
j
(D) Φ: the minimum and maximum probabilities and expectations

depend only on the minimum and maximum durations on transitions. ut

Proposition 3 (DPS with continuous semantics).Let D = (Q, qinit , D, L) be a
strongly non-Zeno durational probabilistic system andΦ be aPTCTL[≤,≥] formula in
which the maximal constant in the subscripts iscmax . Deciding whetherMc(D) |= Φ

can be done in timeO((|Φ|3 · |D|3 · cmax ) + poly(|Φ| · |D| · |D|)).

Proof (sketch).We write the continuous semantics ofD as Mc(D) = (S, sinit ,→,

lab). Our aim is to label every state(q, i) of Mc(D) with the set of subformulae ofΦ



which it satisfies. For each stateq ∈ Q, we construct a setSat[q, ξ] of intervals such
thatα ∈ Sat[q, ξ] if and only if (q, α) |= ξ. For reasons of space, we explain only the
general ideas behind the verification of subformulaeΨ of the formP./λ(Φ1U∼cΦ2) and
D./ζ(Φ

′). For this, we assume that we have already computed the setsSat[ , ] for Φ1,
Φ2 andΦ′.

As in Proposition 2, we construct a restricted TMDP which represents partially the
states and transitions ofMc(D) but which will be sufficient for computing the sets
Sat[q, Ψ ]. The size of the restricted TMDP will ensure a procedure running in time
polynomial in|D|.

For the intervalρ = [l; u], let ρ − 1 be the interval[max(0, l − 1); max(0, u − 1)].
For each stateq ∈ Q, we build the minimal set of intervalsInt(q) =

⋃

j=1..k[αj ; βj)
such that:

– for any i, we havei ∈ Int(q) if and only if i ∈ Sat[q, Φ1] ∪ Sat[q, Φ2], and every
interval ofInt(q) verifies eitherΦ1 ∧ Φ2, Φ1 ∧ ¬Φ2 or ¬Φ1 ∧ Φ2;

– for anyj, we haveαj < βj , andβj ≤ αj+1 if j + 1 ≤ k;
– the intervals arehomogeneous for action transitions: for any(q, ρ, ) ∈ D, we have

[αj , βj) ⊆ ρ − 1 or [αj , βj) ∩ ρ − 1 = ∅;
– the interval[0; 1) is treated separately: if0 ∈ Sat[q, Φ1] ∪ Sat[q, Φ2], then[0; 1) is

the first interval ofInt(q).

Letting Dq = {(q, , ) | (q, , ) ∈ D}, we clearly have|Int(q)| ≤ 2 · (|Sat[q, Φ1]| +
|Sat[q, Φ2]| + |Dq|) + 1. Let ν be asub-distributionon a setS if ν : S → [0; 1]
and

∑

s∈S ν(s) ≤ 1, and letSubDist(S) be the set of all sub-distributions on the set
S. Next, we buildMI = (QI , ,→I , labI), which is a variant of a TMDP in which
sub-distributions may be used in addition to distributions. The set of states ofMI is
QI = {(q, [α; β)) | q ∈ Q and[α; β) ∈ Int(q)}, and the set of timed probabilistic,
nondeterministic transitions→I⊆ S × N × SubDist(S) is the smallest set defined as
follows.

(Action transition) For any(q, ρ, µ) ∈ D and[α; β) ∈ Int(q), if [α; β) ⊆ ρ− 1, then:

if [α; β) = [0; 1): we have the transition(q, [α; β))
0,ν
−−→I if 0 ∈ ρ, and the transi-

tion (q, [α; β))
1,ν
−−→I if 1 ∈ ρ;

if [α; β) 6= [0; 1): we have the transitions(q, [α; β))
1,ν
−−→I and(q, [α; β))

β−α,ν
−−−−→I ;

whereν ∈ SubDist(QI) is the (sub-)distribution such that, for each(q′, [α′; β′)) ∈
QI , we have:

ν(q′, [α′; β′)) =

{

µ(q′) if [α′; β′) = [0; 1) and[0; 1) ∈ Int(q′)
0 otherwise.

(Time successor)For any [α; β) and [α′; β′) in Int(q), if β = α′ then we have

(q, [α, β))
β−α
−−−→I (q, [α′; β′)).

Finally, for each(q, [α; β)) ∈ QI , we letlabI(q, [α; β)) ⊆ {Φ1, Φ2} depending the
inclusion of[α; β) w.r.t. Sat[q, Φ1] andSat[q, Φ2].

The TMDPMI has the following important property: for any state(q, [α; β)) of
MI , we have that(q, α) |=Mc(D) P./λ(Φ1U∼cΦ2) if and only if (q, [α; β)) |=MI



P./λ(Φ1U∼cΦ2). This can be shown by using the same kind of arguments we used
for proving Proposition 2.

Then using the above construction ofMI , we can apply the algorithm of Section 3.1
to decide, for each(q, [α; β)) ∈ QI , whether(q, α) |=Mc(D) P./λ(Φ1U∼cΦ2) (the pres-
ence of sub-distributions does not affect the results of thealgorithm). Now note that, for
each functionf considered in Section 3.1, we compute a value for each state(q, [α; β))
and each0 ≤ i ≤ c. Hence we can decide whether(q, α) |=Mc(D) P./λ(Φ1U∼iΦ2)
also for all 0 ≤ i < c. We can use these results to compute the satisfaction sets
Sat[q, P./λ(Φ1U∼cΦ2)] for each stateq ∈ Q.

One approach would be, for each pointα < γ < β, and for each state(q, [α; β)),
to iterate over the individual values ofγ; however, the size of intervals[α; β) in Int(q)
for a given stateq are dependent on the size of constants appearing in the time intervals
ρ of the transitions(q, ρ, ) ∈ D. We instead iterate over the size of the subscriptc used
in the temporal logic formula. More precisely, for each state (q, [α; β)) of MI , we have
two cases.

(q, [α; β)) has a time-successor state.(I.e. there exists a state(q, [β; β′)) ∈ QI .) Then
deciding whetherγ ∈ Sat[q, P./λ(Φ1U∼cΦ2)] for eachα < γ < β can depend
both on whetherP./λ(Φ1U∼cΦ2) is satisfied in(q, α) and on the satisfaction of
P./λ(Φ1U∼iΦ2) (for somei) in (q, β). For each1 ≤ j ≤ min(c, β − α), we let
β − j ∈ Sat[q, P./λ(Φ1U∼cΦ2)] if and only if ((q, α) |=Mc(D) P./λ(Φ1U∼cΦ2)) ∨
((q, β) |=Mc(D) P./λ(Φ1U∼c−jΦ2)). Intuitively, the second conjunct corresponds
to letting time pass and eventually moving to(q, β): if the formula with a sub-
scriptc − j is satisfiedj time units in the future, then the analogous formula with
subscriptc will be satisfied now. The first conjunct corresponds to taking an action
transition: from the homogeneity of intervals with respectto action transitions, such
a transition is available throughout the interval.
If β − α > c, then for eachα < j < β − c we letj ∈ Sat[q, P./λ(Φ1U∼cΦ2)] if
and only if(q, α) |=Mc(D) P./λ(Φ1U∼cΦ2).

(q, [α; β)) does not have a time-successor state.In this case, for eachα < j < β, we
let j ∈ Sat[q, P./λ(Φ1U∼cΦ2)] if and only if (q, α) |=Mc(D) P./λ(Φ1U∼cΦ2).

We then merge adjacent intervals inSat[q, P./λ(Φ1U∼cΦ2)]. Analogously to the
non-probabilistic case [17], the size of this set is boundedby |Sat[q, Φ1]|+|Sat[q, Φ2]|+
|Dq|, and one can show that|Sat[q, Ψ ]| ≤ |Ψ | · |Dq| for any PTCTL[≤,≥] formulaΨ .

Observe that|QI | ≤
∑

q∈Q |Int(q)| ≤ |P./λ(Φ1U∼cΦ2)| · |D|, and | →I | ≤
|QI |·(1+|D|). Recalling that the algorithm of Section 3.1 runs in timeO(c·|QI |·| →I |)
when∼ is ≤, we conclude that properties of the formP./λ(Φ1U≤cΦ2) can be verified
in time O(c · |P./λ(Φ1U≤cΦ2)|

2 · |D|3). Similarly, when∼ is ≥, the corresponding
algorithm of Section 3.1 runs in timeO((c · |QI | · | →I |)+poly(|MI |)). The size of the
TMDPMI is no greater than|QI |·2·|D|, and hence is no greater than|P≤λ(Φ1U≥cΦ2)|·
|D| · 2 · |D|. Hence, the algorithm when∼ is≥ runs in timeO((c · |P./λ(Φ1U≥cΦ2)|

2 ·
|D|3) + poly(|P./λ(Φ1U≥cΦ2)| · |D| · |D|)).

These arguments can also be adapted for formulaeD./ζ(Φ
′). For a states of a

TMDP with a set of adversariesAdv , lete+
s (Φ′) = supA∈Adv ExpectedTimeA

s (Φ′) and
let e−s (Φ′) = infA∈Adv ExpectedTimeA

s (Φ′). In analogy with the case of properties of



the formP./λ(Φ1U∼cΦ2), for each state(q, [α; β)) ∈ QI , we havee+
(q,[α;β))(Φ

′) =

e+
(q,α)(Φ

′) ande−(q,[α;β))(Φ
′) = e−(q,α)(Φ

′). We apply the algorithm of de Alfaro [9] to

MI to computee+
(q,α)(Φ

′) in the case ofD≤ζ(Φ
′) ande−(q,α)(Φ

′) in the case ofD≥ζ(Φ
′).

To determine the valuese+
(q,γ)(Φ

′) ande−(q,γ)(Φ
′) for eachα < γ < β, we have

two cases as above. If(q, [α; β)) has a time-successor state, then for each1 ≤ j ≤
min(c, β − α), we lete+

(q,β−j)(Φ
′) = max(e+

(q,α)(Φ
′), e+

(q,β)(Φ
′) + j), and similarly

e−(q,β−j)(Φ
′) = min(e−(q,α)(Φ

′), e−(q,β)(Φ
′) + j). If β − α > c, then for eachα < j <

β − c we lete+
(q,j)(Φ

′) = e+
(q,α)(Φ

′) ande−(q,j)(Φ
′) = e−(q,α)(Φ

′).
On the other hand, if(q, [α; β)) does not have a time-successor state, then for each

α < j < β, we lete+
(q,j)(Φ

′) = e+
(q,α)(Φ

′) ande−(q,j)(Φ
′) = e−(q,α)(Φ

′).

Then we can compare the obtained values ofe+ ande− to the thresholdζ to decide
whetherj ∈ Sat[q, D./ζ(Φ

′)]. We merge adjacent intervals inSat[q, D./ζ(Φ
′)] to obtain

the final satisfaction sets; as in the non-probabilistic case [17], the size of this set is
bounded by|Dq| + |Sat[q, Φ′]| + 1.

Verification of theD./ζ(Φ
′) operator can be done in polynomial time in the size of

MI , and therefore our procedure takes timepoly(|D./ζ(Φ
′)| · |D| · |D|)).

Overall complexity.We obtain an overall time complexity ofO((|Φ|3 ·|D|3 ·cmax )+
poly(|Φ| · |D| · |D|)). ut

These two propositions imply that the program complexity ofmodel checking
PTCTL[≤,≥] for the jump and continuous semantics is in P. This contrastswith the
case of timed automata (with or without probability), wherealgorithms are based on
the region graph and are exponential in the size of the system.

4 Complexity of Model Checking Durational Probabilistic
Systems

In this section we consider upper and lower bounds on the complexity of model check-
ing strongly non-Zeno DPSs. In particular we aim at comparing these results with those
obtained for (non-probabilistic) durational systems, namely durational transition graphs
(DTG) [17]. A DTG consists of a state setS, initial statesinit , and a labelling function
l; in contrast to a DPS, however, the transition relation is ofthe form→⊆ S×I×S. We
know that model checking TCTL over DTGs is∆p

2-complete (resp. PSPACE-complete)
with the jump semantics (resp. continuous semantics). Furthermore, model checking
TCTL[≤,≥] can be done in polynomial time for both semantics. We now identify cases
in which the addition of probability makes model checking harder than in the non-
probabilistic case, even for restricted sub-logics of PTCTL.

Complexity with probabilities 0/1.First we consider PTCTL0/1, the “qualitative” sub-
logic of PTCTL in which we allowP./λ operators withλ ∈ {0, 1} only, and in which
theD./ζ operator is excluded.

Theorem 1 (Durational fully probabilistic systems).Model checkingPTCTL0/1 over
a strongly non-Zeno durational fully probabilistic systemis a ∆

p
2-complete (resp.

PSPACE-complete) problem for the jump (resp. continuous) semantics.
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Fig. 2. The durational probabilistic systemDI

Proof. This result derives mainly from the complexity of model checking over DTGs.
Indeed, the general idea is to reduce model checking of PTCTL0/1 over a strongly non-
Zeno DFPSD = (Q, qinit , D, L) to TCTL model checking over the DTG(S, sinit ,→,

l) defined as follows:S = Q, sinit = qinit , l = L and (s, ρ, s′) ∈→ iff we have
(s, ρ, µ) ∈ D andµ(s′) > 0. We replace PTCTL0/1 subformulae by TCTL counterparts
in the following way:P>0(ϕ) is replaced byEϕ, whileP≥1(XΦ) (resp.P≥1(Φ1U≤cΦ2),
P≥1(Φ1U=cΦ2)) is replaced byAXΦ (resp. A(Φ1U≤cΦ2), A(Φ1U=cΦ2)). Finally,
P≥1(Φ1U≥cΦ2) is replaced byA(Φ1U≥cPΦ1UΦ2

), wherePΦ1UΦ2
is a new atomic propo-

sition that holds for states satisfyingP≥1(Φ1UΦ2). The standard PCTL model-checking
algorithm [5], which runs in polynomial time, can be used to label states byPΦ1UΦ2

.
Note that these reductions are possible because the DFPS is strongly non-Zeno. For
the remaining PTCTL0/1 formulae, as we are considering fully probabilistic systems,
we haveP<1(ϕ) ≡ ¬P≥1(ϕ) andP≤0(ϕ) ≡ ¬P>0(ϕ). The overall transformation
provides∆p

2-membership (resp. PSPACE-membership) for the PTCTL model checking
over DPS in the jump semantics (resp. continuous semantics).

With regard to the hardness results, we adapt the proofs usedfor DTGs with the
same transformation of formulae as described above. ut

Note that, following the results of [17] and using the translations of the proof of
Theorem 1, we can find a polynomial-time algorithm for model checking DFPSs against
formulae of PTCTL0/1 without subscripts=c in until modalities, both for the jump and
continuous semantics.

Next, we address model checking of general, nondeterministic DPSs.

Theorem 2 (Durational probabilistic systems).Model checking strongly non-Zeno
durational probabilistic systems with the jump semantics is (1) PSPACE-hard for
PTCTL0/1, and (2) in PSPACE forPTCTL0/1[≤,≥].

Proof. (1) We reduce a quantified version of the subset-sum problem,calledQ-subset-
sum, to a PTCTL0/1 model-checking problem on strongly non-Zeno DPSs. As QBF can
be reduced to Q-subset-sum, this suffices to show PSPACE-hardness. An instanceI of
Q-subset-sum contains a finite sequenceX of integersx1, . . . , xn, an integerG and a
sequence of quantifiersQ1, . . . ,Qn in {∃, ∀}. The instanceI is positive iff there exists
a setZ of subsets ofX s.t. (I) Σx∈X′x = G for anyX ′ ∈ Z and (II) for anyY ∈ Z,
if Qi = ∀, then there existsY ′ ∈ Z s.t. xj ∈ Y ⇔ xj ∈ Y ′ for any j < i and
xi ∈ Y ′ ⇔ xi 6∈ Y . Assume w.l.o.g. thatn is even andQ2i+1 = ∀,Q2i+2 = ∃ for
all 0 ≤ i < n

2 . Then we consider the DPSDI described in Figure 2. The dashed lines
correspond to non-deterministic choices, and the numbers in parentheses correspond to
the duration of the transitions which they label.

Now assumeq0 |= ¬P<1(F=GP ) (whereF∼c ≡ trueU∼c , and whereqn is the
only state labelled withP ): that is, there exists an adversary such that the probability



of satisfyingF=GP from q0 is 1. In terms ofI, for any existential quantifier inI,
it is possible to make a decision leading to a subset with exactly the sumG. Then
q0 |= ¬P<1(F=GP ) if and only if the instanceI is positive.

(2) The PSPACE membership is shown as follows. For reasons ofspace we consider
only the caseP>0(Φ1U≤cΦ2). Because the DPS is strongly non-Zeno, it suffices to ver-
ify that for any adversary there exists a path satisfyingΦ1U≤cΦ2. We use the following
algorithm which runs in polynomial space.

First note thatq |= P>0(Φ1U≤dΦ2) entailsq |= P>0(Φ1U≤d+1Φ2). For every state
q we will compute the minimald s.t.P>0(Φ1U≤dΦ2) holds forq. First we defineT [q]
as0 (resp.∞) if q |= Φ2 (resp.q 6|= Φ1). Then, for anyj = 0, 1, . . . , c, we try to update
T [q] for q = q1, . . . , qn if T [q] has not yet been defined (where we enumerate the states
in the topological order�0). UpdatingT [q] to j is done if, for any(q, ρ, µ) ∈ D, there
exists at least one stateq′ s.t.µ(q′) > 0 andT [q′] ≥ j − dρ wheredρ is the maximal
duration inρ. Finally it remains to label a stateq by P>0(Φ1U≤cΦ2) iff T [q] ≤ c. A
similar procedure can be used to verify the other properties. ut

For the continuous semantics, it is clear that model checking PTCTL is PSPACE-
hard. These results show that strongly non-Zeno DFPSs are not harder to verify against
PTCTL0/1 than non-probabilistic durational systems against TCTL, and that combining
probabilities and non-determinism induces a complexity blow-up for the jump seman-
tics compared to the non-probabilistic case.

Complexity of fullPTCTL. If we move from the sub-logic PTCTL0/1 to the logic in
which the operatorP./λ is permitted to have rationalλ ∈ [0; 1], we observe a com-
plexity blow-up. It is sufficient to consider the simple formula P≥λ(F≤cP ) in the fully
probabilistic case with the jump semantics.

Proposition 4. Model checkingP≥λ(F≤cP ) over durational fully probabilistic systems
with the jump semantics is NP-hard.

Proof (sketch).The proof consists in reducing theK-th largest subset problem, which
is NP-hard [12, p. 225], to the problem of model checking a formula of the form
P≥λ(F≤cP ) on a DFPS with the jump semantics. An instanceI of K-th largest subset
problem is a finite setX = {x1, . . . , xn} of natural numbers and two integersK and
B. The problem consists in asking whether there are at leastK distinct subsetsX ′ ⊆ X

s.t.
∑

x∈X′ x ≤ B. Consider an adaptation of the DPS of Figure 2 where we replace the
non-deterministic choices in statesq2i+1, for 0 ≤ i < n

2 , by distributions with proba-
bilities 1

2 , and recall thatqn is the only state labelled withP . This provides a DFPS that
satisfiesP≥ K

2n
(F≤BP ) if and only if I is a positive instance. ut

A corollary is that model checking PTCTL[≤,≥] is NP-hard and coNP-hard over
durational fully probabilistic systems with the jump semantics. Note that this problem
is the simplest problem within our framework referring to quantitative temporal proper-
ties. It entails that considering simple timing constraints and quantitative probabilistic
properties in the same model checking problem leads to NP-hardness, whereas consid-
eringeithersimple timing constraints (as in [17])or quantitative probabilistic properties
(as in [5]) allows for efficient model checking.



Table 1.Complexity results for model checking durational probabilistic systems

Fully prob. DPS DPS
jump sem. cont. sem. jump sem. cont. sem.

PTCTL0/1[≤,≥] P-complete P-complete P-hard P-hard
in PSPACE in EXPTIME(†)

PTCTL0/1 ∆
p
2-completePSPACE-completePSPACE-hardPSPACE-hard

in EXPTIME in EXPTIME
PTCTL[≤,≥] NP-hard and coNP-hard

in EXPTIME(†)

PTCTL ∆
p
2-hard PSPACE-hard PSPACE-hardPSPACE-hard

in EXPTIME in EXPTIME in EXPTIME in EXPTIME

For the general case where we have non-determinism, probabilities and PTCTL for-
mulae, we conjecture that model checking is EXPTIME-complete. From the algorithms
of Section 3 and the complexity results for PTCTL0/1, we obtain the following corollary.
Note that the EXPTIME-membership comes from a direct application of the algorithm
described in Proposition 1 toMj(D) or Mc(D).

Corollary 1. Model checkingPTCTL over durational probabilistic systems in the jump
or continuous semantics is PSPACE-hard and it can be done in EXPTIME.

5 Conclusion

In this paper we introduced durational probabilistic systems, a model to describe prob-
abilistic, non-deterministic and timed systems. We showedhow model checking can be
done over this model, paying attention to complexity issues. Table 1 summarizes the re-
sults we presented in the paper. First, note that model checking can be done efficiently
for fully probabilistic systems and qualitative PTCTL0/1 properties without the exact
time-bound subscript= c. However, as in the non-probabilistic case, adding the ex-
act time-bound induces a complexity blow-up. This motivates the use of PTCTL[≤,≥]
where the subscripts in until formulae are restricted to≤ c and≥ c constraints. For
this logic, even with quantitative properties, we have model checking algorithms run-
ning in time polynomial in|Φ| · |D| and linear incmax, the maximal timing constant
of the formula, as described in Proposition 2 and Proposition 3, and indicated by the
(†) superscripts in the table. The precise polynomial depends on the kind of DPS and
the choice of semantics. The formula’s time constants are encoded in binary, and hence
these algorithms belong to EXPTIME; nevertheless the algorithms should be interest-
ing in practice, because they are polynomial in|D|. In future work, we will consider the
precise complexity of the non-complete model-checking problems listed in the table.
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