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Abstract 

We extend the classical hierarchy of branching-time temporal logics between UB and CTL* 
by studying which additional expressive power (if any) stems from the incorporation of past- 
time modalities. In addition, we propose a new temporal combinator, N for “From Now On”, 
that brings new and interesting expressive power. In several situations, nontrivial translation 
algorithms exist from a temporal logic with past to a pure-future fragment. These algorithms 
have important practical applications, e.g., in the field of model-checking. 

0. Introduction 

Temporal logics have long been recognized as a very convenient formalism with 

which to reason about concurrent and reactive systems [8,2 11. In computer science, 

most theoretical studies of temporal logics only use future-time constructs. This is in 

contrast with the temporal logics studied by linguists, philosophers, . ., where past-time 

and future-time have been on an equal footing [23]. 

This situation is surprising because computer scientists recognize that past-time con- 

structs can be very useful when it comes to express certain properties. For example, 

using “ 0 ” for “at all future moments” and “0 --I” for “at some past moment”, it is 

easy to state that “in all cases the occurrence of a problem must have been preceded 

by a cause”, i.e., “no problem will ever occur without a cause”, which is an important 

safety property one ofien uses (under some form). One just writes: 

q (problem + 0 -‘cause) (1) 

Finally, the usefulness of past-time constructs is most apparent in the classification of 

temporal properties [28,20,5]. 

However, it has been shown that formulas using past-time constructs can often be 

replaced by equivalent pure-future formulas [13, 181. For example, (1) is equivalent to 

l(lcause U problem) (2) 
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which uses the “Until” construct U. (We state in the next section in which formal 

sense these two formulas are equivalent.) The underlying motto is that past-time brings 

additional expressivity from a practical, but not from a theoretical viewpoint. Clearly, 

a formulation like (1) is much more natural than the clumsier (2). This is even more 

obvious when one tries to express a statement like q (problem + V -‘(causelA 0 --I 

cause2)) without past-time. 

Another reason why past-time is often omitted in theoretical studies is that very effi- 

cient model-checking algorithms exist for state-based logics like CTL (with or without 

fairness) [8,7], while it is not clear how to adapt this technology to (history-based) 

logics with past. Some existing results (e.g. [15]) consider model-checking for PTL 
with past, but this problem is already PSPACE-complete for pure-future PTL [24]. 

This raises the following question: “Is it possible to combine the great convenience 

of past-time for specification with the efJiciency of CTL model-checking for vertjica- 
tion?” Rather than try to adapt the existing technology to, e.g., CTL +Past, which 

we believe is a very difficult problem, we argue that a translation-based approach is 

feasible [ 161. By only requiring the addition of a translating interface, such an approach 

would allow to reuse the very efficient model-checking tools that have been built after 

years of improvement [3]. Of course, this approach requires the use of a logic with 

past that can be translated into, e.g., CTL. 
When we surveyed the available past-elimination results in the literature, we found: 

PTL + Past can be translated into PTL [13, 121. This is the standard result in the 

field. 

The linear-time propositional p-calculus, Lu + Past can be translated into the usual 

pure-future p-calculus [26]. ’ 

CTL’ + Past can be translated into CTL’ [14]. This is a simple corollary of Gabbay’s 

proof for PTL. 
PTL \ X + Past can be translated into PTL \ X [22]. This uses rewrite rules similar 

to Gabbay’s rules. 

Finally, apart from [26] all of these (and some more, e.g. [4]) are just variants of 

Gabbay’s result for PTL. And they do not solve our problem. For example, if we 

want to add past-time constructs to a (state-based) branching-time logic-like CTL, the 

literature only tells us how to translate CTL + Past into CTL*. This is not satisfac- 

tory, for we consider CTL precisely because it admits a very efficient model-checking 

procedure, while this is not the case with CTL’. Therefore, knowing that CTL + Past 

can be translated into CTL would be, from a practical viewpoint, a very interesting 

addition to the results we mentioned. 

This is exactly what we investigate in this article. We address general questions 

of the form “Which past-time combinators can be added to branching-time temporal 
logics like CTL, ECTL, . . . without compromising the possibility to translate back 

’ In fact, [26] gives a translation from some kind of backward-and-forward Biichi automata into usual Biichi 

automata, so that one has to translate From the p-calculus into Biichi automata, and vice versa. 
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into CTL, ECTL, . . . ?” We consider the classical branching-time hierarchy from UB 

to CTL* [lo, 1 l] and systematically try to add past-time constructs. 

A second motivation for this study is the introduction of a new temporal combinator, 

“N” for “From Now On” or “Henceforth”. N is very useful in some situations where 

we want to restrict the scope of past-time combinators. This new combinator can also 

be eliminated (i.e., translated into pure-future constructs) in some situations. 

Here is the plan of the article: we define PCTL’ (CTL* + Past) in Section 1, and the 

relevant fragments (PTL, CTL, . .) in Section 2. Section 3 discusses and motivates ini- 

tial equivalence, the correctness criterion we use for our expressivity problems. Then 

Sections 4 and 5 state fundamental expressivity results of past-time combinators in 

branching-time logics. The new “From Now On” combinator is motivated and intro- 

duced in Section 6 where our expressivity results are extended. Some proofs have been 

relegated to an Appendix when they disturb the exposition. 

1. Temporal logics with Past 

1.1. Syntax 

We define PCTL* (for “CTL* with Past”) as an extension of CTL’ [ 1 l] with past- 

time combinators. (Our definition differs slightly from the PCTL* used in [14] as we 

explain later.) We assume a given set Prop = {a, b, . . . ,problem, cause,. . .} of atomic 

propositions. 

Definition 1.1 (Syntax of PCTL*). The formulas of PCTL” are given by the following 

grammar 

PCTL* 3 f,g ::= a 1 fAg / lf ( Ef ( f Ug I Xf 1 f Sg ) X-‘f 

where a E Prop. 

Here S is the “Since” combinator, a past-time variant of U (“Until”). X-’ is “Pre- 

viously”, a past-time variant of X (“Next”). We use the standard abbreviations T, I, 
fvg, .f @ 8, . . . and 

FfgfTUf F-If Ef TSf 
Af sf 1ETf 

Gf gf TFTf G-If gf 7F-‘7f 
?J (kf GFf 

gf zfFGf 

(3) 

F and G corresponds to the 0 and u notations sometimes used in modal logics. In 

PCTL*, (1) is written G(problem + F-‘cause). 

Though we did not make the usual (unnecessary) distinction between “state” and 

“path” formulas, PCTL* includes as fragments the CTL and CTL’ branching-time 
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temporal logics, as well as the PTL linear-time temporal logic. In all the following, “a 
logic” means “a fragment of PCTL*“. 

A pure-future formula is a formula in which no X-’ and S occur. Then CTL” is 
the fragment of PCTL* containing all pure-future formulas. A state formula is a pure- 
future formula that starts with a A or E quantifier. A linear-time formula is a formula 
without any E (or A) quantifier. 

1.2. Semantics 

Temporal logics are interpreted in Kripke structures: 

Definition 1.2. A Kripke structure S is a tuple S = {Qs, Rs, Es), where Qs = (p, (a,. . .} 
is a set of states, Rs C Qs x Qs is a total 2 accessibility relation, and 1s : Qs -+ 2prop 

is a labeling of the states with propositions. 

A run in a structure S is any infinite sequence of states 40.41 . . . s.t. qiRqi+, for 
i = O,... We write IIs = {z, . . . } for the set of all runs (in 8) starting from q, and 

n(s) for the set of all runs in S. For any i, z(i) (gf qi), d (gf qi.qi+l . , .), and nl; 

(gf 40.41. . . qi_1) are resp. the ith state, the ith suffix and the ith prefix of x. 
A PCTL* formula expresses properties of a moment in a run. Formally, we define, 

for any x E Kl(5) and any n = 0, 1,2,. . . when a formula f E PCTL.* is true of run n 
at time n, written n,n /=:s f. We often drop the “5”’ subscript when it is clear from 
the context. 

Definition 1.3 (Semantics of PCTL*). We define z,n,n /=s f by induction on the struc- 
ture off: 

n,n I=a iff a E I(7c(n)), 
n,nkfAg iffz,nbfaandn,n+g, 

n,n I== lf iffx,n Ff, 
7~98 /== Ef iff there exists a 12 E 17(s) with rc’1, = aln s-t. z’, n + f, 
n,n + fug iff there is a ,%>a s-t. n,k /= g and a,i + f for all n<i < k, 

7c,n/=Xf iff n,n+l/= f, 
7t,n k fSg iff there is a O<k<‘n s.t, a,k + g and rc,z’ +f for all k < i<n, 

7t,n k X-If iff n > 0 and x,n - 1 /= f. 

Informally, z(n) is the present state. The prefix rcl, is the past and x” is a selected 
future. a means “u holds now”, f U g means “g will hold at some point in the (selected) 
future, and f holds in the meantime”, Xf means “f holds at the next moment”, X-If 
means “f did hold at the previous moment”, f S g means “g did hold in the past and 
f has been holding ever since that moment”, Ef means that “the present admits a 

2 Restricting to structures with a total accessibility relation is a technical simplification that does not change 

any of our expressivity resuks. 
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possible future for which f h$ds”, pf means that “f will hold infinitely many times 

in the (selected) future” and G f means that “f will hold at all but finitely many times 

in the (selected) future”. 

This semantics is Ockhamist [23,27] in the sense that it views the past as jixed 
(and finite) and only considers nondeterminism in the future. This is in contrast with 

e.g. the CTL*+Past from [25] where it is possible to quantify over all potential ways 

of reaching a given state. We claim that the Ockhamist viewpoint is more suited to the 

specification of reactive systems behaviour, because it considers states in a computation 

tree, while the non-Ockhamist viewpoints consider machine states (where past is not 

very meaningful). 

Notice also that our semantics considers a cumulative past, where the history of the 

current situation increases with time and is never forgotten. This contrasts with the 

definition from [14] where one has 

n,n k Ef iff there is a rc’ E II(n(n)) s.t. n’, 0 k f 

We believe our definition is more natural and, because a non-cumulative past is some- 

times handy, we present in Section 6 a larger logic, NCTL’, which allows both view- 

points. 

Now for a formula f we define derived truth concepts: 

nksf gf n,Oksf reads “run 71 satisjies f” 

q /=s f gf 7t /=s f for all rc E n(q) “state q satis$es f” 

S + f Sf z ks f for all 71 E II(s) “structure S satisjes f” 

k9 f gf z,n /=s f for all (7r,n) “f is (globally) valid” 

in all Kripke structures S 

k, f sf S + f for all Kripke structures S “f is (initially) valid” 

kg f entails k; f but the converse is not true, and in fact kgf iff bj Gf. As indicated 

by our definition of S k f, it is the “ki”, so-called anchored [ 191, notion of validity 

that interests us here, as is usual in computer science [8]. 

The following proposition is a formal justification that an Ockhamist viewpoint is 

sensible. 

Proposition 1.4. Two states q,q’ (in a jinite Kripke Structure) satisfy the same 
PCTL’ formulas ifs they are bisimilar. 

This generalizes Theorem 3.2 of [2] where a formal definition of the well-known 

notion of bisimilarity can be found. The proof is an easy corollary of our Theorem 3.12. 

In general, this proposition does not hold for logics with a non-Ockhamist viewpoint. 

Definition 1.5. (1) We say that two formulas f and g are equivalent, written f = g, 

when for all (z,n) in all structures, z,n k f iff TC, n k g. 
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(2) We say that f and g are initially equivalent, written f Si g, when for all rc in 

all structures, rc + f iff n + g. 

Thus f c g when /==9 f w g, and f Zi g when +i f H g. Clearly, f E g entails 

f --i g but the converse is not true. Here is a simple example: X-IT =i I because no 

run satisfies X-IT at its starting point. But of course X-‘T $ _L because for any run 

rc with length at least 2, we have rt, 1 k X-IT. Similarly, G(problem + F-‘cause) 

is initially equivalent and not globally equivalent to (2). s 

When we use temporal logics to reason about programs, it is customary to consider 

initial validity as the basic concept. Specifications refer to the runs of a program, 

starting from some initial states. Therefore, we are content to replace a given formula 

f by an equivalent f ‘, using “initial equivalence” as the relevant notion. The interest 

with global equivalence is that it is substitutive: if f E f’ then f can be replaced by 

f’ in any temporal context, yielding equivalent formulas. That is, = is a congruence 

w.r.t. all temporal combinators. On the other hand, _i is only a congruence w.r.t. 

boolean combinators (and X-’ and S). 

Considering initial equivalence as the correctness criterion allows to eliminate past- 

time combinators, according to 

X_‘f E_i I, 

f sg -_i g. (4) 

but, because + is not substitutive in temporal contexts, these simplification rules cannot 

be used in all situations. 

2. A menagerie of temporal logics 

Many fragments of CTL* have been used and investigated. In fact, CTL* was first 

proposed as a logic which included all other previously proposed temporal logics. 

Emerson and Halpem introduced a very convenient device to denote such fragments. 

Following them, we write B(C, , . .) the fragment of CTL’ where C, . . . are the only 

allowed linear-time combinators, and where every occurrence of a linear-time com- 

binator must be under the immediate scope of an E or A quantifier (the “B” is for 

“branching”). For example: 

l B(X, F) is the UB logic from [I]. AFXa is not in UB while AFAXa is. 
l B(X, U): This is the CTL logic from [6]. A[a U EXb] is in CTL but not in UB 

where only F and X can be used. 

l B(X, U,r): This is the ECTL (“Extended CTL”) logic from [l 11. E ?a is in ECTL 
but not in CTL. 

3 To be precise (2) is not sufficient. G(problem + F-’ cause) =i ~(-xause U (problem A xause)) is 

correct. 
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B(C, . . . , -I, A) denotes a fragment enlarging B(C, . . .) inasmuch as it allows boolean 

combinators to appear between the linear-time combinators C, . . and the branching- 

time quantifier on top of it. For example: 

l B(X, F, --I, A) (also called UB+) allows E[FwIF~ =+ Xc]. 

l B(X, U, -I, A) (also called CTL+) allows A[(a U b)VXc]. 

l B(X, U,F, 7, A) is the ECTL+ logic that roughly corresponds to the CTF logic 

introduced in [9]. 

Now, because for any branching-time formulas f, g, . . we have EX-‘f = X-If, 

E(fSg) = fSg, etc., we do not enforce the use of a E or A immediately on top of past- 

time combinators in a B(C, . . .) fragment. For example, we consider that X-’ (E(F-’ a)U 

F-lb) is a B(U,X-‘, S) formula. 

This (syntactic) classification of relevant fragments of PCTL* can be linked to se- 

mantic notions through the following 

Definition 2.1. 

l A formula f is a future-formula iff the truth of f at (rr, n) in S only depends on 

the future n(n)n(n + 1). . ., i.e. if rc” = rP implies rr,n +sf ($ d,m /=sf. 

l f is a present-formula iff the truth of f at (rc, n) in S only depends on the current 

state, i.e. if n(n) = n’(m) implies 71, n +s f H d,m +sf 
l ,f is a branching-time formula iff the truth off at (rc, n) in S does not depend of the 

selected future, i.e. if z(O)...z(n) = d(O)...d(m) implies rc,n bsf H d,m ksf. 

Clearly, any present-formula is a future-formula and a branching formula. 

Proposition 2.2. (1) Any pure-future formula is a future-formula. 

(2) Any state formula is a present-formula. 

Proposition 2.3. A logic of the form B(C, . . . , 7, A) only contains branching-time for- 
mulas. 

3. Compared expressivity 

When we discuss comparative expressivity between two temporal logics LI and Lz, 
two notions can be used: 

Definition 3.1. (1) L1 is less4 expressive than L2, written L1 -& Lz, if for any f, E LI 
there is a f2 E ~2 s.t. f I s f2. 

4 or equally 
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(2) Ll is initially less expressive than Lz, written L1 5i Lz, if for any f 1 E Ll there 

is a fi E L2 s.t. f1 -; f2. 

Clearly, L1 C L2 implies L1 ig L2. Also, L1 & L2 implies L1 3i L2. In both cases 

the converse is not true in general. As usual we denote by “4*” and “z*” the strict 

ordering and the equivalence relation induced by “&“. 

Also, for pure-future logics, both “$” and “5i” coincide. For pure-future logics, 

the classical hierarchy result has been established in [ 10, 111: 

UB < UB+ < CTL z CTL+ 4 ECTL 4 ECTL+ + CTL* 

When logics with past-time are considered, the most relevant result is the Separation 

Theorem for PTL. 

Theorem 3.2 (Gabbay [13]). Any PPTL formula can be rewritten into an equivalent 
totally separated formula (that is, a boolean combination of pure-past and pure-future 

PPTL formulas. ) 

See [12] for a proof. The immediate corollary is 

Corollary 3.3. PPTL =i PTL. 

Proof. With totally separated formulas, (4) allows to fully remove past-time constructs 

(modulo Ei). El 

There is a branching-time equivalent to this last result: 

Theorem 3.4 (Hafer and Thomas [14]). PCTL* Ei CTL*. 

(The proof in [14] applies to their definition of PCTL* but it can be adapted without 

any difficulty to our definition.) 

4. Temporal logics with X-’ and S 

Let us write PCTL for “CTL + Past”, i.e. B(X, U,X-‘, S). The question which 

initiated our study was “does PCTL Gi CTL?“. The answer is unfortunately: 

PCTL $i CTL 

This section investigates why. 

One problem is that the simple addition of X-i gives a logic which cannot be 

(initially) less expressive than ECTL+ which is the largest relevant fragment of CTL* 
for which efficient model-checking exists. 

Theorem 4.1. ECTL+ & B(F, X-‘) 
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Proof. The CTL* formula EG(&Xa) has no ECTL+ equivalent [ll] but it is initially 
equivalent to the B(F,X-‘) formula EG(d/X-‘uv-YX-‘T). Cl 

The simple addition of S brings similar problems. 

Theorem 4.2. ECTL+ gi UB + S ‘IZf B(X, F, S). 

Proof. The CTL” formula E(s V aUb)Ur has no ECTL” equivalent but it can be written 
(modulo -0 in UB + S. See the Appendix. 0 

The F combinator of UB is necessary here and for example, one has 

Theorem 4.3. B(X, X-l, S) Zi B(X). 

Proof. See the Appendix. 0 

In some way, these negative results rely on the fact that our semantics considers 
the past as fixed so that X-’ and S can express properties which usually can only be 
expressed in a linear-time framework. However, adopting a non-Ockhamist viewpoint 
would make things even worse since no translation can be expected if Proposition 1.4 
does not hold. 

5. Temporal lo&s with F-’ 

When we consider the F-’ past-time combinator alone, the problems we had with 
X-’ and S do not occur. 

Theorem 5.1. CTL -I- FF’ dzf B(X, U, F-‘) q CTL. 

This result is ~ndamental. The crucial step in the proof is to establish the following 
lemma. 

Lemma 5.2 (Separation lemma for CTL + F-‘). Any CTL+F-’ formula is (globally) 
equivalent to a separated CTL + F-’ formula. 

Here a (partially) separated formula is a formula where no past-time combinator 
occurs under the scope of a future-time combinator. 5 Once a CTL + FF’ formula 
has been separated, (4) can be applied to eliminate all past-time constructs. (See the 
Appendix for a proof of Lemma 5.2.) 

5 Observe that the usual notion of (totally) separated formula used for linear-time logics will not work in 

our branching-time framework. 
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The previous theorem shows how one can extend CTL with past-time constructs 
without loosing the ability to translate back into CTL. This must be done precisely. 
Adding F-’ will do, adding X-’ or S will fail. F-’ is a specialization of S but it is 
nonetheless sufficient in many situations. For example, (1) is written in CTL + F-' . 

F-’ can be added to other logics as well. We have 

Theorem 5.3. CTL+ + F-’ sf B(X, U, F-‘, 1, A) q CTL. 

A similar result exists for ECTL+: 

Theorem 5.4. ECTL+ + F-’ dzf B(X, U,“, F-‘, 7, A) q ECTL+. 

Adding F-’ to ECTL increase the expressive power: 

Theorem 5.5. ECTL’ Fi ECTL + F-I +i ECTL. 

Proof. Modulo Zi, the ECTL + F-’ formula EF (GAG-‘6) cannot be expressed in 

ECTL, and the ECTLf formula E(r a/\ p b) cannot be expressed in ECTL + F-‘. See 
the Appendix. q 

6. A combinator for From Now On 

We introduce a new unary combinator, N, 
in our PCTL* logic and write NCTL* for the 

The semantics of N is given by 

for “From Now On” 6 
logic PCTL* + N. 

or “Henceforth”, 

That is, Nf holds if f holds when we forget the past, or if “from now on f holds”. 
Here is an example motivating this new construct. Assume we want to state that 
AG(problem + F-‘cause) holds as soon as a proper reset had been done. We can 
write 

AG[reset + AG(problem + FF’cause)] (5) 

Then, if a problem occurs after a proper reset, there must have been a cause, but the 
cause may have occurred before the reset. If we want to specify that every time there 
is a reset, then from now on no problem can occur without a cause (i.e., a cause 
occurring after the reset), we can write: 

AG[reset + NAG(problem + F-‘cause)] (6) 

6 No connection with the Now of H. Kamp, Formal properties of ‘now’, Theoria, 227-263, 1971. 
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The difference between (5) and (6) is important. It exemplifies the interest of having 
N. With N we can encode the definition for E used in [14]: their Ef is equivalent 
to our NEf. Then, the PCTL* logic of 1141 can express (6). But it cannot express 
(directly) (5). In our experience, both constructs are useful, and that’s why we propose 
a specific combinator. 

Finally, N is very useful to characterize key semantic properties: 

and to explain the difference between initial and global validity: 

Proposition 6.2. bi S iff kg Nf. 

Basic properties of N are: 

Proposition 6.3. FOP all NCTL* formulas f, g: 
l N(.fi’ig) = NfANg and Nlf s -,Nf, 
l NEf = ENf and NNf s Nf, 
l NX-‘f E l_, 

e N(f Sg) z Ng, entailing NF-‘f z Nf. 

Formulas using N can be translated into equivalent (often longer) formulas 
without N: 

Theorem 6.4. NCTL* s PCTL* Zi CTL”. 

Proof. This is a simple extension of Theorem 3.4. The new point is to eliminate N: 
consider Nf with j’~ PCTL* and rewrite f into a separated f ‘. Then Nf’ can be 
rewritten into some PCTL* formula thanks for Propositions 6.2 and 6.3. 0 

Similarly, we can extend Theorems 5.1 and 5.4 into 

Theorem 6.5. CTL’ + F-’ + N %f B(X, U, F-l, N, -I, A} Ei i.YTL. 

Theorem 6.6. ECTL+ -t F-’ + N d&f B(X, U,?, FF’, N, -T, A) q ECTL+. 

Proof. Like Theorems 5.1 and 5.4. In both cases, occurrences of N are easy to simplify 
because we deal with separated formulas. q 

N is not only a notational facility. It sometimes (strictly) adds expressive power, For 

example, writing PUB for UB+X-’ +F-’ d&f B(X,F,X-‘, F-l), we have UB+i PUB +i 
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CTL’ =< PCTL’ E NCTL’ E ECTL+ + 5 +X-l + N 

ECTL+ s, ECTL+ + F-’ 3 ECTL+ + F-’ + N 

CTL 3; CTL+ + 3 CTL+ + F-’ + N 

Fig. 1. A hierarchy of temporal logics with past 

PUB + N Zi CTL and ECTL + F-’ +i ECTL + F-’ + N +i ECTLf + F-’ + N Zi ECTL’. 
Similarly, while ECTL+ + S + X-’ +i PCTL’, we have 

Theorem 6.7. ECTL+ + S + X-’ + N 3 PCTL* Ei CTL*. 

Proof. A corollary of the Normal Form Theorem [21, p. 2961. See the Appendix. q 

Fig. 1 summarizes the hierarchy we established. An arrow from L1 to L2 means that 

L1 +i Lz. NO arrow can be added because CTL $i UB + S and CTL & UB + X-l. 
Our proof that EF(uAE~UCAE~‘UC’) (resp. EaUb) cannot be expressed modulo _i in 

UB + S (resp. UB + X-’ ) is beyond the scope of this article where the emphasis is on 

translatability through simple rewrite rules. 

7. Conclusion 

In this paper, we investigated which past-time combinators can be added to which 

branching-time temporal logics with the conflicting aims of 

l enhancing practical expressivity, 

l having translation algorithms into pure-future branching-time logics, like CTL and 

ECTL+. 
We also proposed a new combinator, N for “From Now On” and showed how it allows 

simple formulations of some practical temporal properties. 

In general, logics with past-time combinators can be translated into pure-future logics, 

provided one is willing to have CTL’ as a target. When CTL or ECTL” is the target, 

we proved that one can only add N and F-’ before loosing translatability. 
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We claim that CTL + F-’ + N is convenient for specification and model-checking 

(through a simple translation procedure). Of course such an approach is not perfect. For 

example, it does not include the usual diagnostic mechanism one often finds in model- 

checking tools. More importantly, complexity issues sometimes make the whole scheme 

unapplicable (by complexity, we mean the size of a pure-future formula equivalent to a 

given formula). This problem was not investigated in this study because we conjecture 

that our translation from CTL + F-’ into CZ’L is nonelementary, exactly like Gabbay’s 

translation for PTL+Past is likely to be. In actual practice, this potential combinatorial 

explosion does not occur frequently, and all formulas in the Lift example of [ 161 have 

quickly been translated automatically. This is probably because these formulas have 

a low modal height. However it seems difficult to pinpoint a sensible fragment of 

CTL + FF’ + N for which no explosion will occur: the formula EF(F-‘~~A. AF-‘a,) 

has modal height 2, and is initially equivalent to the CTL’ formula E(Fal A . AFu,) 

for which no CTL equivalent of size less than n! seems to exist. 

Topics deserving further studies are (among others): 

Axiomatizations for temporal logics with N. Given a complete axiomatization for 

CTL*, it is easy to get complete axiomatizations for NCTL* by providing axioms for the 

separation of formulas. But it would be interesting to study axiomatizations capturing 

natural way of reasoning with past-time combinators and N. 

Extensions of the separation methods. The separation methods we developed for 

branching-time logics should be investigated in the contexts of noninterleaving temporal 

logics, of interval temporal logics, of real-time temporal logics, . . 

Modal logics of reactive systems. We already investigated in [ 171 how these methods 

can be used for modal logics characterizing behavioral equivalences of reactive systems. 

This research direction has many possible prolongations. 

Appendix 

Proof of Theorem 4.2 

Lemma A.l. E(s V aUb)Ur can be expressed in UB + S. 

Proof. The idea is to state that r can be reached (EFr) in a way where all previously 

encountered states satisfy s or aUb. It is enough to ensure sVaVb all along, provided 

that all aAlbAls states satisfy aUb (along the selected future). Then, the configuration 

to avoid is a past state satisfying 1aAlb and (lb)S(lbATs). This is essentially what 

we express in UB + S through the following: 

rvEF(EXbAaS [rAa& (,,A~bA(,b)s(-br\~~))]) 

E(s v aUb)Ur 3i VEF(EX(rAb)AIF-’ (laAlbA(~b)S(~bA~s))) 

vEF F-’ (1 (laA-bA(lb)S(lb*ls~AEX(~)A~(~b)s(~bA~~)) 
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MO : N 0: Mi+l : Ni,, : 

Fig. 2. A family Mo,MI, , NO, Nl,. . of Kripke structures. 

where the added complexity deals with various special cases, mostly regarding the 

position of the last required b before of after the Y state. 0 

We now need to prove that E(s V aUb)Ur cannot be expressed in ECTL+. This uses 

combinatorial techniques inspired from [ 111. Consider the family of Kripke structures 

A&MI,. . . and No,Nt,. . . given in Fig. 2. 

Where the “color” indicates which propositions hold in which states. Observe 

cli /= E(s V aUb)Ur and ai F E(s V aUb)Ur for all i = 0, 1, . . . However, writing 

for the size of a formula f, we have 

Lemma A.2. For all f E CTL, and all i > ( f (, 

ai k f ifl ai k f, 

Iri + f ifs bi kfy 

Yi k f ifs Ci b f. 

Proof. By structural induction on f as in [ 1 I]. 0 

that 

Ifl 

Now there remains to extend the previous lemma to cover ECTL+ and not just CTL. 

Lemma A.3. For all f in ECTLf, there is a f * in CTL s. t. f and f * are equiva- 

lent over all states of Fig. 2. 

Proof. By induction on f. The interesting case is when f has the form 

with Eg, $ , cp I, . . . , qn in CTL+. Because in the structures of Fig. 2 all runs eventually 

end up looping (on do or 60), f is equivalent (in these models) to E (gnFAG(cplr\ . . . A 

cp,All/)) which is a CTL+ formula. There only remains to transform this into a CTL 
formula and we are done. 0 
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Proof of Theorem 4.3 

Theorem 4.3 is proved by establishing a separation lemma for &X,X-‘, S). Af- 

terward, it is enough to apply (4) on separated formulas. (Here we use the partial 

separation notion from Section 5.) 

Lemma A.4 (Separation lemma for B(X,X-‘,S)). Any ~EB(X,X-‘, S) formula f is 

(globally) equivalent to a separated f' E B(X, X-’ , S). 

Proof. By structural induction. The induction step is obvious when f has the form a, 

lg or f lAf2. When f is some X-‘g or f 1Sf2, the induction hypothesis gives us an 

equivalent X-‘g’ or f{Sf 1 which is separated. Finally, because AXg - TEXTS, it is 

enough to only consider the case where f has the form EXg. 

Assume then that f is some EXg. By ind. hyp., g is equivalent to a separated g’. 

With boolean manipulations, g’ can be written as 

where the (p”s are pure-future and the $i,j’s are separated formulas of the form X-l+, 

or 7X-‘$, or I/&$‘, or 7($&t+!/). Using 

fSg 3 gv f/w’(fSg) 

TX-If s C’TvX-‘Tf 

X-If AX-‘g E X_‘(f Ag) 

(and the fact that these equations respect separation), we can write g’ as 

g’ - v(cpi'~X-'$; {hX-‘T}) 

where the {. . .} notation means that 1X-l T may or may not appear (depending on i). 

Then EXg’ is easily rewritten into a separated formula, thanks to 

WVi si> = vi EXgi 

EX(~+AX-‘$) = $r\EXq+ 

EX(TX-‘T/i...) = _L 0 

Proof of Lemma 5.2 and Theorem 5.1 

The translation is done in several steps. We use contexts, i.e. (CZ’L + F-‘) formulas 

with variables in them. The x in f[x] can be replaced by any (CTL+ F-r) formula: we 
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write f[g] for f with g in place of x. Note that x may appear several times in f [xl. 
This is a key point in our method, used to collect copies of duplicated subformulas. 

Lemma A.5 If f [x] is a pure-future context, then f [F-lx] is (globally) equiva- 
lent to a separated f’[x, FF’x] with f’[x, y] a pure-future context. 

Proof. By structural induction on f [xl. Saying that f [x] is pure-future is just saying 

that it is in CTL. We spend some time considering one case in detail: 

l Assume f [x] is some Ecp[x]Ut&x]. By ind. hyp., rp[F-‘x] and J/[F-‘x] are equivalent 

to some separated cp’[x,F-‘x] and $‘[x,F-‘xl. Then f [F-lx] = Eq’[x,F-‘x]U$‘[x, 

F-lx]. In 40’ and +‘, F-lx can only appear under boolean combinators because of 

the separation property. We can use boolean manipulations to obtain 

f [F-lx] = E ((F-‘xr\a)v(lF-‘xn&vr) U ((F-lx~a’)~(~F-‘x~B’)~g’) 

where CI, /I, y, CC’, /I’ and y’ are pure-future. Then we use distributivity 

EgU(hvh’) E (EgUh)v(EgUh’) 

(A.l) 

to further simplify (A.1). We obtain several “E-U_” formulas with at most three 

occurrences of F-lx. There we use the following five rewrite rules to extract F-lx 

from the scope of the U: 

W 1 

W) 

(R3) 

(R4) 

(W 

EylJ(cr’~F-‘x) s F-*x~EyUa v E$J(xAE$J~) 

EyU(P’/bF-‘x) = ~F-‘xAE(yA7x)U(/3’/hx) 

E ((ocAF-‘~)v(~A~F-‘x)v~) Uy’ 

E F-‘xAE(ccv~)U$V~F-‘~AE (-xA(/~v~)) U$ 

v~F-‘xAE (-zA(~vY)) U (xAE(ccv~)U~) 

E ((c~AF-‘x)v(/?A~F-‘x)vJJ) U(~AF-‘x) 

= F-‘xAE(cN~)U~V-TF-‘~AE (-ccA(~v~)) U (xAE(~v~)W) 

E ((OAF-‘x)v(j?~~F-‘x)v~) U(~‘A~F-‘X) 

= TF-‘XAE (xA(~VY)) U(/?‘/\-LX) 

l Assume f [x] is some EXq[x]. We proceed similarly. Using the ind. hyp. and dis- 

tributivity 

EX(hvh’) = EXh v EXh’ 

lead to a situation where we only need the following rules: 
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(R6) EX(ciW’x) zz EX(a/u) v F-‘xr\EXcr 

(R7) EX(w!-K’x) s EX(C~A-LK)A-IF-‘X 

Assume f[x] is some EGq[x]. Then f[F-‘x] = EGq’[x,F-‘xl. Because of the 

separation assumption, w.l.0.g. we can write EGq’[x, F-lx] under the 

general form 

f[F-‘x] = EG ((czAF-‘x)v(B~\TFF’x)v~) (A.2) 

Then we only need the following rule: 

l Finally, the other cases are obvious, or can be reduced to what we saw through 

AXh s TEXT/I and AgUh s -IEG+ A ~(E4U~gA-h). 

We let the reader check that equations (Rl)-(R8) are correct. ’ q 

Lemma A.6. Zff[xt,. . ., x,] is a pure-future context, then f [F-lx,, . . . , F-IX,,] is equiv- 

alent to a separated f ‘[xl, F-lx,, . . , x,, F-‘x,] with f’[x,, ~1,. . ,x,, y,,] a pure-future 

context. 

Proof. By induction on n, using Lemma AS. 0 

Lemma A.7. Zf f[xl , . . .,x,1 is a pure-future context and I) ;, . . . , $ ; are pure-past 

CTL + F-’ formulas (i.e. formulas with F-’ as the only temporal combinator), then 
f [tj ;, . . . , I) ;] is equivalent to a separated CTL + F-’ formula. 

Proof. By induction on the maximum number of nested F-l’s in the $ i’s and using 

Lemma A.6. cl 

Lemma A.8. Zf f[xl , . . . ,x,1 is a pure-future context and II/ ,, . . . , pb ,, are separated 

CTL + F-’ formulas, then f [$ ,,. . . ,1(/J is equivalent to a separated CTL + F-’ 

formula. 

‘This should not be too difficult. Alternatively, all five rules (Rl )-(R5) could be replaced by a single 

general rule for which correctness is more difficult to assert. 
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Proof. Because it is separated, a $ i has the form g,[(plt,. . . , (p&J with pure-future 

cp$‘s and pure-past gi [XI,. . . , xk,]‘s. Applying Lemma A.7 to f[gl[xt,t,. . . ,~l,~,], . . . ,g; 

Lhl,1,...P,,m” ]] yields a separated f’[xt,t , . . . ,x,,~,]. Then f’[q[, , . . . , q&J is separated 

and equivalent to f[$t , . . . , I&]. 0 

Now we can prove Lemma 5.2 by structural induction on the CTL + F-’ formula 

and using Lemma A.8. Then Theorem 5.1 is easy to prove: once we have a separated 

formula, we repeatedly use 

F-‘c~ Ei up 

in boolean contexts. 

Proof of Theorem 5.3 

We slightly generalize the proof (from [lo]) that CTLf s CTL to prove that CTL++ 

F-’ E CTL + F-‘. Then Theorem 5.1 concludes the proof. 

Lemma A.9. Any CTL+ -I- F-’ formula f is equivalent to a CTL + F-’ formula. 

Proof. By induction on f. The only interesting case is when f has the form 

E ,h(fiUgi)A A T( f clJgi)A A XhiA A F-‘kiATF_‘k’ 
i i i i 

where we have 

f zz E l\(fiUgi)A A ~(f~Ug~)A A Xhi A A F-‘kiA_F-‘k’ 

i i i i 

Then E(/ji(fiUgi)A Ai l(f:USi)A Ai Xhi) can be transformed into a CTL + FF’ using 

exactly the techniques for rewriting a CTL+ formula into a CTL formula [lOI. 0 

Proof of Theorem 5.4 

We introduce an intermediary fragment: 

Loo 3 f,g ::= a( fAg I If ( EXf I EfUg I AfUs I F-‘f 1 E 

Then the proof of Theorem 5.4 is sketched as. 

ECTL+ + F-’ E Loo z Lgp Si ECTL+ 
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The first part is easy. Clearly, from a syntactical viewpoint ECTL+F-’ & LM C ECTL++ 
F-' , but we also have ECTL+ + F-’ & Lo3: 

Lemma A.lO. Any ECTL’ + F-’ formula is equivalent to a formula in L”. 
is easy. 

Lemma A.11 (Separation lemma for Lw). Any L”O is equivalent to a separated L3” 
formula. 

Proof. We proceed as in the Separation Lemma for CTL + F-’ (Lemma 5.2). In the 

crucial step where we prove that any f [FF’x] with f [x] a pure-future L”O context can 

be separated, there is one more case to consider: when f [x] has the form E(Gqr\ Ai I+$). 

This needs one more rewrite rule. 

G (F-'xr\a)v( -F'xna')vy [ I v-TF-‘xr\E G (x*(a’vr)) 
[ 

E I A A? [(F-‘xl\Bi)V(~F-‘xAPI)V;li] I E 
A l\‘i:WYi)] 

i vTF_‘xr\E (--s&a/V y )) 
U (X//E [G(~v~)A A? (/3iVyi)]) U 

After this we can conclude immediately because the pure-future fragment of L”O is 
ECTL+. 

Proof of Theorem 5.5 

TO prove that ECTL + F-’ $i ECTL, first observe that E(P pnGq) 3i E P (p//G-‘4). 

Now it is enough to prove that E(p pl\Gq) cannot be expressed in ECTL. For this we 

consider the models MI, A42,. . . , Nr , A$, . . . described in Fig. 7. (They are inspired from 

the proofs that E p p cannot be expressed in CTL and that E(F PA r q) cannot be 

expressed in ECTL [ll].) 

Clearly, for any i = 1,. ., 

a; + E(‘Ppr\Gq) and ai k E(r pAGq) 

However, writing ( f ( for the size off, we show by induction on f (left to the reader) 

that 

ai b f iff ai + f, 

Pi + f ifi bi I= f, 

Yi I= f iff Ci I= f. 
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Nl: M’: 

.%+1 

N n+1: al 
$0 @3 

n+1 v x+1 

Fig. 3. ai, CG k pAq, bi,Bi + TpAlq, CiTyi b TpAq. 

for all f E ECTL and all i 2 1 f 1. 

Then, to prove that ECTL+ $i ECTL + F-l, we prove that E(? PA ? q) is not 

(initially) equivalent to any ECTL + F-’ formula. First, we observe that E(F pA p q) 

cannot be expressed in the following pure-future fragment of ECTL+: 

L3_f,g ::= a ) fl\g ) lf ) EXf ) EfUg ) Af Ug 1 E(Ffr\Gg) 

Clearly ECTL CL C ECTL+. The proof that E(? p~rq) cannot be expressed in L can 

be done simply by enriching (left to the reader) the proof from [l l] that E(pp~Fq) 

cannot be expressed in ECTL. The same models work for L as well. 
Because ECTL + F-’ CL + F-‘, it is now sufficient to have a separation theorem for 

L + F-‘, so that we shall arrive at 

ECTL+F-‘CL+F-‘+L+F-‘)sep=iL+ECTL+ 

Lemma A.12 (Separation theorem for L + F-‘). Any ECTL + F-’ formula is equiua- 
lent to a separated L + F-’ formula. 

is a special case of Lemma A. 11 and can be proved using the same transformations. 

Proof of Theorem 6.7 

The Normal Form Theorem [21] states that any PTL formula is initially equivalent 
to a formula of the form 

i=l 

where the vi’s and the $i’s are pure-past (linear-time) formulas. 
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With this, it is easy to translate any formula f in CTL* into a globally equivalent 

8(7,Xx-‘,S, A, 1) + N formula. The interesting case is when f is some Eg. Then we 

replace in g all subformulas of the form Eh by new atomic propositions. This yields a 

PTL formula g’ which can be written as some /jg,(F’piV ztji). Then 

It now remains to replace the atomic propositions we introduced by their B(p, X-l, S, A, 

1) + N equivalents, and we are done. 
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