
ELSEVIER 3 (1995) 303-324 Theoretical Computer Science 14I

Theoretical
Computer Science

A hierarchy of temporal logics with past

F. Laroussinie, Ph. Schnoebelen *

LIFIA-IMAG, 46 Au. F&x Viallet, F-38031 Grenoble Cedex, France

Abstract

We extend the classical hierarchy of branching-time temporal logics between UB and CTL*
by studying which additional expressive power (if any) stems from the incorporation of past-
time modalities. In addition, we propose a new temporal combinator, N for “From Now On”,
that brings new and interesting expressive power. In several situations, nontrivial translation
algorithms exist from a temporal logic with past to a pure-future fragment. These algorithms
have important practical applications, e.g., in the field of model-checking.

0. Introduction

Temporal logics have long been recognized as a very convenient formalism with

which to reason about concurrent and reactive systems [8,2 11. In computer science,

most theoretical studies of temporal logics only use future-time constructs. This is in

contrast with the temporal logics studied by linguists, philosophers, . ., where past-time

and future-time have been on an equal footing [23].

This situation is surprising because computer scientists recognize that past-time con-

structs can be very useful when it comes to express certain properties. For example,

using “ 0 ” for “at all future moments” and “0 --I” for “at some past moment”, it is

easy to state that “in all cases the occurrence of a problem must have been preceded

by a cause”, i.e., “no problem will ever occur without a cause”, which is an important

safety property one ofien uses (under some form). One just writes:

q (problem + 0 -‘cause) (1)

Finally, the usefulness of past-time constructs is most apparent in the classification of

temporal properties [28,20,5].

However, it has been shown that formulas using past-time constructs can often be

replaced by equivalent pure-future formulas [13, 181. For example, (1) is equivalent to

l(lcause U problem) (2)

* Corresponding author Email : {fl,phs}@lifia.imag.fi.

0304-3975/95/$09.50 @ 1995-Elsevier Science B.V. All rights reserved

SSDI 0304-3975(95)00035-6

304 F. Laroussinie, Ph. Schnoebelen I Theoretical Computer Science 148 (1995) 303-324

which uses the “Until” construct U. (We state in the next section in which formal

sense these two formulas are equivalent.) The underlying motto is that past-time brings

additional expressivity from a practical, but not from a theoretical viewpoint. Clearly,

a formulation like (1) is much more natural than the clumsier (2). This is even more

obvious when one tries to express a statement like q (problem + V -‘(causelA 0 --I

cause2)) without past-time.

Another reason why past-time is often omitted in theoretical studies is that very effi-

cient model-checking algorithms exist for state-based logics like CTL (with or without

fairness) [8,7], while it is not clear how to adapt this technology to (history-based)

logics with past. Some existing results (e.g. [15]) consider model-checking for PTL
with past, but this problem is already PSPACE-complete for pure-future PTL [24].

This raises the following question: “Is it possible to combine the great convenience

of past-time for specification with the efJiciency of CTL model-checking for vertjica-
tion?” Rather than try to adapt the existing technology to, e.g., CTL +Past, which

we believe is a very difficult problem, we argue that a translation-based approach is

feasible [161. By only requiring the addition of a translating interface, such an approach

would allow to reuse the very efficient model-checking tools that have been built after

years of improvement [3]. Of course, this approach requires the use of a logic with

past that can be translated into, e.g., CTL.
When we surveyed the available past-elimination results in the literature, we found:

PTL + Past can be translated into PTL [13, 121. This is the standard result in the

field.

The linear-time propositional p-calculus, Lu + Past can be translated into the usual

pure-future p-calculus [26]. ’

CTL’ + Past can be translated into CTL’ [14]. This is a simple corollary of Gabbay’s

proof for PTL.
PTL \ X + Past can be translated into PTL \ X [22]. This uses rewrite rules similar

to Gabbay’s rules.

Finally, apart from [26] all of these (and some more, e.g. [4]) are just variants of

Gabbay’s result for PTL. And they do not solve our problem. For example, if we

want to add past-time constructs to a (state-based) branching-time logic-like CTL, the

literature only tells us how to translate CTL + Past into CTL*. This is not satisfac-

tory, for we consider CTL precisely because it admits a very efficient model-checking

procedure, while this is not the case with CTL’. Therefore, knowing that CTL + Past

can be translated into CTL would be, from a practical viewpoint, a very interesting

addition to the results we mentioned.

This is exactly what we investigate in this article. We address general questions

of the form “Which past-time combinators can be added to branching-time temporal
logics like CTL, ECTL, . . . without compromising the possibility to translate back

’ In fact, [26] gives a translation from some kind of backward-and-forward Biichi automata into usual Biichi

automata, so that one has to translate From the p-calculus into Biichi automata, and vice versa.

F. Laroussinie, Ph. Schnoebelen I Theoretical Computer Science 148 11995) 303-324 305

into CTL, ECTL, . . . ?” We consider the classical branching-time hierarchy from UB

to CTL* [lo, 1 l] and systematically try to add past-time constructs.

A second motivation for this study is the introduction of a new temporal combinator,

“N” for “From Now On” or “Henceforth”. N is very useful in some situations where

we want to restrict the scope of past-time combinators. This new combinator can also

be eliminated (i.e., translated into pure-future constructs) in some situations.

Here is the plan of the article: we define PCTL’ (CTL* + Past) in Section 1, and the

relevant fragments (PTL, CTL, . .) in Section 2. Section 3 discusses and motivates ini-

tial equivalence, the correctness criterion we use for our expressivity problems. Then

Sections 4 and 5 state fundamental expressivity results of past-time combinators in

branching-time logics. The new “From Now On” combinator is motivated and intro-

duced in Section 6 where our expressivity results are extended. Some proofs have been

relegated to an Appendix when they disturb the exposition.

1. Temporal logics with Past

1.1. Syntax

We define PCTL* (for “CTL* with Past”) as an extension of CTL’ [1 l] with past-

time combinators. (Our definition differs slightly from the PCTL* used in [14] as we

explain later.) We assume a given set Prop = {a, b, . . . ,problem, cause,. . .} of atomic

propositions.

Definition 1.1 (Syntax of PCTL*). The formulas of PCTL” are given by the following

grammar

PCTL* 3 f,g ::= a 1 fAg / lf (Ef (f Ug I Xf 1 f Sg) X-‘f

where a E Prop.

Here S is the “Since” combinator, a past-time variant of U (“Until”). X-’ is “Pre-

viously”, a past-time variant of X (“Next”). We use the standard abbreviations T, I,
fvg, .f @ 8, . . . and

FfgfTUf F-If Ef TSf
Af sf 1ETf

Gf gf TFTf G-If gf 7F-‘7f
?J (kf GFf

gf zfFGf

(3)

F and G corresponds to the 0 and u notations sometimes used in modal logics. In

PCTL*, (1) is written G(problem + F-‘cause).

Though we did not make the usual (unnecessary) distinction between “state” and

“path” formulas, PCTL* includes as fragments the CTL and CTL’ branching-time

306 i? ~ro~ss~~~e, PA. Schebefen I Theoretical Cornpurer Science 148 (1995) 303-3.74

temporal logics, as well as the PTL linear-time temporal logic. In all the following, “a
logic” means “a fragment of PCTL*“.

A pure-future formula is a formula in which no X-’ and S occur. Then CTL” is
the fragment of PCTL* containing all pure-future formulas. A state formula is a pure-
future formula that starts with a A or E quantifier. A linear-time formula is a formula
without any E (or A) quantifier.

1.2. Semantics

Temporal logics are interpreted in Kripke structures:

Definition 1.2. A Kripke structure S is a tuple S = {Qs, Rs, Es), where Qs = (p, (a,. . .}
is a set of states, Rs C Qs x Qs is a total 2 accessibility relation, and 1s : Qs -+ 2prop

is a labeling of the states with propositions.

A run in a structure S is any infinite sequence of states 40.41 . . . s.t. qiRqi+, for
i = O,... We write IIs = {z, . . . } for the set of all runs (in 8) starting from q, and

n(s) for the set of all runs in S. For any i, z(i) (gf qi), d (gf qi.qi+l . , .), and nl;

(gf 40.41. . . qi_1) are resp. the ith state, the ith suffix and the ith prefix of x.
A PCTL* formula expresses properties of a moment in a run. Formally, we define,

for any x E Kl(5) and any n = 0, 1,2,. . . when a formula f E PCTL.* is true of run n
at time n, written n,n /=:s f. We often drop the “5”’ subscript when it is clear from
the context.

Definition 1.3 (Semantics of PCTL*). We define z,n,n /=s f by induction on the struc-
ture off:

n,n I=a iff a E I(7c(n)),
n,nkfAg iffz,nbfaandn,n+g,

n,n I== lf iffx,n Ff,
7~98 /== Ef iff there exists a 12 E 17(s) with rc’1, = aln s-t. z’, n + f,
n,n + fug iff there is a ,%>a s-t. n,k /= g and a,i + f for all n<i < k,

7c,n/=Xf iff n,n+l/= f,
7t,n k fSg iff there is a O<k<‘n s.t, a,k + g and rc,z’ +f for all k < i<n,

7t,n k X-If iff n > 0 and x,n - 1 /= f.

Informally, z(n) is the present state. The prefix rcl, is the past and x” is a selected
future. a means “u holds now”, f U g means “g will hold at some point in the (selected)
future, and f holds in the meantime”, Xf means “f holds at the next moment”, X-If
means “f did hold at the previous moment”, f S g means “g did hold in the past and
f has been holding ever since that moment”, Ef means that “the present admits a

2 Restricting to structures with a total accessibility relation is a technical simplification that does not change

any of our expressivity resuks.

F. Laroussinie, Ph. Schnoebelen I Theoretical Computer Science 148 (1995) 303-324 307

possible future for which f h$ds”, pf means that “f will hold infinitely many times

in the (selected) future” and G f means that “f will hold at all but finitely many times

in the (selected) future”.

This semantics is Ockhamist [23,27] in the sense that it views the past as jixed
(and finite) and only considers nondeterminism in the future. This is in contrast with

e.g. the CTL*+Past from [25] where it is possible to quantify over all potential ways

of reaching a given state. We claim that the Ockhamist viewpoint is more suited to the

specification of reactive systems behaviour, because it considers states in a computation

tree, while the non-Ockhamist viewpoints consider machine states (where past is not

very meaningful).

Notice also that our semantics considers a cumulative past, where the history of the

current situation increases with time and is never forgotten. This contrasts with the

definition from [14] where one has

n,n k Ef iff there is a rc’ E II(n(n)) s.t. n’, 0 k f

We believe our definition is more natural and, because a non-cumulative past is some-

times handy, we present in Section 6 a larger logic, NCTL’, which allows both view-

points.

Now for a formula f we define derived truth concepts:

nksf gf n,Oksf reads “run 71 satisjies f”

q /=s f gf 7t /=s f for all rc E n(q) “state q satis$es f”

S + f Sf z ks f for all 71 E II(s) “structure S satisjes f”

k9 f gf z,n /=s f for all (7r,n) “f is (globally) valid”

in all Kripke structures S

k, f sf S + f for all Kripke structures S “f is (initially) valid”

kg f entails k; f but the converse is not true, and in fact kgf iff bj Gf. As indicated

by our definition of S k f, it is the “ki”, so-called anchored [191, notion of validity

that interests us here, as is usual in computer science [8].

The following proposition is a formal justification that an Ockhamist viewpoint is

sensible.

Proposition 1.4. Two states q,q’ (in a jinite Kripke Structure) satisfy the same
PCTL’ formulas ifs they are bisimilar.

This generalizes Theorem 3.2 of [2] where a formal definition of the well-known

notion of bisimilarity can be found. The proof is an easy corollary of our Theorem 3.12.

In general, this proposition does not hold for logics with a non-Ockhamist viewpoint.

Definition 1.5. (1) We say that two formulas f and g are equivalent, written f = g,

when for all (z,n) in all structures, z,n k f iff TC, n k g.

308 F. Laroussinie, Ph. Schnoebelen I Theoretical Computer Science I48 (1995) 303-324

(2) We say that f and g are initially equivalent, written f Si g, when for all rc in

all structures, rc + f iff n + g.

Thus f c g when /==9 f w g, and f Zi g when +i f H g. Clearly, f E g entails

f --i g but the converse is not true. Here is a simple example: X-IT =i I because no

run satisfies X-IT at its starting point. But of course X-‘T $ _L because for any run

rc with length at least 2, we have rt, 1 k X-IT. Similarly, G(problem + F-‘cause)

is initially equivalent and not globally equivalent to (2). s

When we use temporal logics to reason about programs, it is customary to consider

initial validity as the basic concept. Specifications refer to the runs of a program,

starting from some initial states. Therefore, we are content to replace a given formula

f by an equivalent f ‘, using “initial equivalence” as the relevant notion. The interest

with global equivalence is that it is substitutive: if f E f’ then f can be replaced by

f’ in any temporal context, yielding equivalent formulas. That is, = is a congruence

w.r.t. all temporal combinators. On the other hand, _i is only a congruence w.r.t.

boolean combinators (and X-’ and S).

Considering initial equivalence as the correctness criterion allows to eliminate past-

time combinators, according to

X_‘f E_i I,

f sg -_i g. (4)

but, because + is not substitutive in temporal contexts, these simplification rules cannot

be used in all situations.

2. A menagerie of temporal logics

Many fragments of CTL* have been used and investigated. In fact, CTL* was first

proposed as a logic which included all other previously proposed temporal logics.

Emerson and Halpem introduced a very convenient device to denote such fragments.

Following them, we write B(C, , . .) the fragment of CTL’ where C, . . . are the only

allowed linear-time combinators, and where every occurrence of a linear-time com-

binator must be under the immediate scope of an E or A quantifier (the “B” is for

“branching”). For example:

l B(X, F) is the UB logic from [I]. AFXa is not in UB while AFAXa is.
l B(X, U): This is the CTL logic from [6]. A[a U EXb] is in CTL but not in UB

where only F and X can be used.

l B(X, U,r): This is the ECTL (“Extended CTL”) logic from [l 11. E ?a is in ECTL
but not in CTL.

3 To be precise (2) is not sufficient. G(problem + F-’ cause) =i ~(-xause U (problem A xause)) is

correct.

F. Laroussinie, Ph. Schnoebelen I Theoretical Computer Science 148 (1995) 303-324 309

B(C, . . . , -I, A) denotes a fragment enlarging B(C, . . .) inasmuch as it allows boolean

combinators to appear between the linear-time combinators C, . . and the branching-

time quantifier on top of it. For example:

l B(X, F, --I, A) (also called UB+) allows E[FwIF~ =+ Xc].

l B(X, U, -I, A) (also called CTL+) allows A[(a U b)VXc].

l B(X, U,F, 7, A) is the ECTL+ logic that roughly corresponds to the CTF logic

introduced in [9].

Now, because for any branching-time formulas f, g, . . we have EX-‘f = X-If,

E(fSg) = fSg, etc., we do not enforce the use of a E or A immediately on top of past-

time combinators in a B(C, . . .) fragment. For example, we consider that X-’ (E(F-’ a)U

F-lb) is a B(U,X-‘, S) formula.

This (syntactic) classification of relevant fragments of PCTL* can be linked to se-

mantic notions through the following

Definition 2.1.

l A formula f is a future-formula iff the truth of f at (rr, n) in S only depends on

the future n(n)n(n + 1). . ., i.e. if rc” = rP implies rr,n +sf ($ d,m /=sf.

l f is a present-formula iff the truth of f at (rc, n) in S only depends on the current

state, i.e. if n(n) = n’(m) implies 71, n +s f H d,m +sf
l ,f is a branching-time formula iff the truth off at (rc, n) in S does not depend of the

selected future, i.e. if z(O)...z(n) = d(O)...d(m) implies rc,n bsf H d,m ksf.

Clearly, any present-formula is a future-formula and a branching formula.

Proposition 2.2. (1) Any pure-future formula is a future-formula.

(2) Any state formula is a present-formula.

Proposition 2.3. A logic of the form B(C, . . . , 7, A) only contains branching-time for-
mulas.

3. Compared expressivity

When we discuss comparative expressivity between two temporal logics LI and Lz,
two notions can be used:

Definition 3.1. (1) L1 is less4 expressive than L2, written L1 -& Lz, if for any f, E LI
there is a f2 E ~2 s.t. f I s f2.

4 or equally

310 F. Laroussinie, Ph. Schnoebelen I Theoretical Computer Science 148 (1995) 303-324

(2) Ll is initially less expressive than Lz, written L1 5i Lz, if for any f 1 E Ll there

is a fi E L2 s.t. f1 -; f2.

Clearly, L1 C L2 implies L1 ig L2. Also, L1 & L2 implies L1 3i L2. In both cases

the converse is not true in general. As usual we denote by “4*” and “z*” the strict

ordering and the equivalence relation induced by “&“.

Also, for pure-future logics, both “$” and “5i” coincide. For pure-future logics,

the classical hierarchy result has been established in [10, 111:

UB < UB+ < CTL z CTL+ 4 ECTL 4 ECTL+ + CTL*

When logics with past-time are considered, the most relevant result is the Separation

Theorem for PTL.

Theorem 3.2 (Gabbay [13]). Any PPTL formula can be rewritten into an equivalent
totally separated formula (that is, a boolean combination of pure-past and pure-future

PPTL formulas.)

See [12] for a proof. The immediate corollary is

Corollary 3.3. PPTL =i PTL.

Proof. With totally separated formulas, (4) allows to fully remove past-time constructs

(modulo Ei). El

There is a branching-time equivalent to this last result:

Theorem 3.4 (Hafer and Thomas [14]). PCTL* Ei CTL*.

(The proof in [14] applies to their definition of PCTL* but it can be adapted without

any difficulty to our definition.)

4. Temporal logics with X-’ and S

Let us write PCTL for “CTL + Past”, i.e. B(X, U,X-‘, S). The question which

initiated our study was “does PCTL Gi CTL?“. The answer is unfortunately:

PCTL $i CTL

This section investigates why.

One problem is that the simple addition of X-i gives a logic which cannot be

(initially) less expressive than ECTL+ which is the largest relevant fragment of CTL*
for which efficient model-checking exists.

Theorem 4.1. ECTL+ & B(F, X-‘)

F. Luroussinie, Ph. S&hn~ebele~ I Theoretical Computer Science 148 (I995j 303-324 311

Proof. The CTL* formula EG(&Xa) has no ECTL+ equivalent [ll] but it is initially
equivalent to the B(F,X-‘) formula EG(d/X-‘uv-YX-‘T). Cl

The simple addition of S brings similar problems.

Theorem 4.2. ECTL+ gi UB + S ‘IZf B(X, F, S).

Proof. The CTL” formula E(s V aUb)Ur has no ECTL” equivalent but it can be written
(modulo -0 in UB + S. See the Appendix. 0

The F combinator of UB is necessary here and for example, one has

Theorem 4.3. B(X, X-l, S) Zi B(X).

Proof. See the Appendix. 0

In some way, these negative results rely on the fact that our semantics considers
the past as fixed so that X-’ and S can express properties which usually can only be
expressed in a linear-time framework. However, adopting a non-Ockhamist viewpoint
would make things even worse since no translation can be expected if Proposition 1.4
does not hold.

5. Temporal lo&s with F-’

When we consider the F-’ past-time combinator alone, the problems we had with
X-’ and S do not occur.

Theorem 5.1. CTL -I- FF’ dzf B(X, U, F-‘) q CTL.

This result is ~ndamental. The crucial step in the proof is to establish the following
lemma.

Lemma 5.2 (Separation lemma for CTL + F-‘). Any CTL+F-’ formula is (globally)
equivalent to a separated CTL + F-’ formula.

Here a (partially) separated formula is a formula where no past-time combinator
occurs under the scope of a future-time combinator. 5 Once a CTL + FF’ formula
has been separated, (4) can be applied to eliminate all past-time constructs. (See the
Appendix for a proof of Lemma 5.2.)

5 Observe that the usual notion of (totally) separated formula used for linear-time logics will not work in

our branching-time framework.

312 E Laroussinie, Ph. Schnoebelen I Theoretical Computer Science 148 (1995) 303-324

The previous theorem shows how one can extend CTL with past-time constructs
without loosing the ability to translate back into CTL. This must be done precisely.
Adding F-’ will do, adding X-’ or S will fail. F-’ is a specialization of S but it is
nonetheless sufficient in many situations. For example, (1) is written in CTL + F-' .

F-’ can be added to other logics as well. We have

Theorem 5.3. CTL+ + F-’ sf B(X, U, F-‘, 1, A) q CTL.

A similar result exists for ECTL+:

Theorem 5.4. ECTL+ + F-’ dzf B(X, U,“, F-‘, 7, A) q ECTL+.

Adding F-’ to ECTL increase the expressive power:

Theorem 5.5. ECTL’ Fi ECTL + F-I +i ECTL.

Proof. Modulo Zi, the ECTL + F-’ formula EF (GAG-‘6) cannot be expressed in

ECTL, and the ECTLf formula E(r a/\ p b) cannot be expressed in ECTL + F-‘. See
the Appendix. q

6. A combinator for From Now On

We introduce a new unary combinator, N,
in our PCTL* logic and write NCTL* for the

The semantics of N is given by

for “From Now On” 6
logic PCTL* + N.

or “Henceforth”,

That is, Nf holds if f holds when we forget the past, or if “from now on f holds”.
Here is an example motivating this new construct. Assume we want to state that
AG(problem + F-‘cause) holds as soon as a proper reset had been done. We can
write

AG[reset + AG(problem + FF’cause)] (5)

Then, if a problem occurs after a proper reset, there must have been a cause, but the
cause may have occurred before the reset. If we want to specify that every time there
is a reset, then from now on no problem can occur without a cause (i.e., a cause
occurring after the reset), we can write:

AG[reset + NAG(problem + F-‘cause)] (6)

6 No connection with the Now of H. Kamp, Formal properties of ‘now’, Theoria, 227-263, 1971.

F. Laroussinie, Ph. Schnoebelen I Theoretical Computer Science 148 (199s) 303-324 313

The difference between (5) and (6) is important. It exemplifies the interest of having
N. With N we can encode the definition for E used in [14]: their Ef is equivalent
to our NEf. Then, the PCTL* logic of 1141 can express (6). But it cannot express
(directly) (5). In our experience, both constructs are useful, and that’s why we propose
a specific combinator.

Finally, N is very useful to characterize key semantic properties:

and to explain the difference between initial and global validity:

Proposition 6.2. bi S iff kg Nf.

Basic properties of N are:

Proposition 6.3. FOP all NCTL* formulas f, g:
l N(.fi’ig) = NfANg and Nlf s -,Nf,
l NEf = ENf and NNf s Nf,
l NX-‘f E l_,

e N(f Sg) z Ng, entailing NF-‘f z Nf.

Formulas using N can be translated into equivalent (often longer) formulas
without N:

Theorem 6.4. NCTL* s PCTL* Zi CTL”.

Proof. This is a simple extension of Theorem 3.4. The new point is to eliminate N:
consider Nf with j’~ PCTL* and rewrite f into a separated f ‘. Then Nf’ can be
rewritten into some PCTL* formula thanks for Propositions 6.2 and 6.3. 0

Similarly, we can extend Theorems 5.1 and 5.4 into

Theorem 6.5. CTL’ + F-’ + N %f B(X, U, F-l, N, -I, A} Ei i.YTL.

Theorem 6.6. ECTL+ -t F-’ + N d&f B(X, U,?, FF’, N, -T, A) q ECTL+.

Proof. Like Theorems 5.1 and 5.4. In both cases, occurrences of N are easy to simplify
because we deal with separated formulas. q

N is not only a notational facility. It sometimes (strictly) adds expressive power, For

example, writing PUB for UB+X-’ +F-’ d&f B(X,F,X-‘, F-l), we have UB+i PUB +i

314 E Laroussinie. Ph. Schnoebelenl Theoretical Computer Science 148 (1995) 303-324

CTL’ =< PCTL’ E NCTL’ E ECTL+ + 5 +X-l + N

ECTL+ s, ECTL+ + F-’ 3 ECTL+ + F-’ + N

CTL 3; CTL+ + 3 CTL+ + F-’ + N

Fig. 1. A hierarchy of temporal logics with past

PUB + N Zi CTL and ECTL + F-’ +i ECTL + F-’ + N +i ECTLf + F-’ + N Zi ECTL’.
Similarly, while ECTL+ + S + X-’ +i PCTL’, we have

Theorem 6.7. ECTL+ + S + X-’ + N 3 PCTL* Ei CTL*.

Proof. A corollary of the Normal Form Theorem [21, p. 2961. See the Appendix. q

Fig. 1 summarizes the hierarchy we established. An arrow from L1 to L2 means that

L1 +i Lz. NO arrow can be added because CTL $i UB + S and CTL & UB + X-l.
Our proof that EF(uAE~UCAE~‘UC’) (resp. EaUb) cannot be expressed modulo _i in

UB + S (resp. UB + X-’) is beyond the scope of this article where the emphasis is on

translatability through simple rewrite rules.

7. Conclusion

In this paper, we investigated which past-time combinators can be added to which

branching-time temporal logics with the conflicting aims of

l enhancing practical expressivity,

l having translation algorithms into pure-future branching-time logics, like CTL and

ECTL+.
We also proposed a new combinator, N for “From Now On” and showed how it allows

simple formulations of some practical temporal properties.

In general, logics with past-time combinators can be translated into pure-future logics,

provided one is willing to have CTL’ as a target. When CTL or ECTL” is the target,

we proved that one can only add N and F-’ before loosing translatability.

F. Laroussinie, Ph. Schnoebelen I Theoretical Computer Science 148 (1995) 303-324 315

We claim that CTL + F-’ + N is convenient for specification and model-checking

(through a simple translation procedure). Of course such an approach is not perfect. For

example, it does not include the usual diagnostic mechanism one often finds in model-

checking tools. More importantly, complexity issues sometimes make the whole scheme

unapplicable (by complexity, we mean the size of a pure-future formula equivalent to a

given formula). This problem was not investigated in this study because we conjecture

that our translation from CTL + F-’ into CZ’L is nonelementary, exactly like Gabbay’s

translation for PTL+Past is likely to be. In actual practice, this potential combinatorial

explosion does not occur frequently, and all formulas in the Lift example of [161 have

quickly been translated automatically. This is probably because these formulas have

a low modal height. However it seems difficult to pinpoint a sensible fragment of

CTL + FF’ + N for which no explosion will occur: the formula EF(F-‘~~A. AF-‘a,)

has modal height 2, and is initially equivalent to the CTL’ formula E(Fal A . AFu,)

for which no CTL equivalent of size less than n! seems to exist.

Topics deserving further studies are (among others):

Axiomatizations for temporal logics with N. Given a complete axiomatization for

CTL*, it is easy to get complete axiomatizations for NCTL* by providing axioms for the

separation of formulas. But it would be interesting to study axiomatizations capturing

natural way of reasoning with past-time combinators and N.

Extensions of the separation methods. The separation methods we developed for

branching-time logics should be investigated in the contexts of noninterleaving temporal

logics, of interval temporal logics, of real-time temporal logics, . .

Modal logics of reactive systems. We already investigated in [171 how these methods

can be used for modal logics characterizing behavioral equivalences of reactive systems.

This research direction has many possible prolongations.

Appendix

Proof of Theorem 4.2

Lemma A.l. E(s V aUb)Ur can be expressed in UB + S.

Proof. The idea is to state that r can be reached (EFr) in a way where all previously

encountered states satisfy s or aUb. It is enough to ensure sVaVb all along, provided

that all aAlbAls states satisfy aUb (along the selected future). Then, the configuration

to avoid is a past state satisfying 1aAlb and (lb)S(lbATs). This is essentially what

we express in UB + S through the following:

rvEF(EXbAaS [rAa& (,,A~bA(,b)s(-br\~~))])

E(s v aUb)Ur 3i VEF(EX(rAb)AIF-’ (laAlbA(~b)S(~bA~s)))

vEF F-’ (1 (laA-bA(lb)S(lb*ls~AEX(~)A~(~b)s(~bA~~))

316 F. Laroussinie, Ph. Schnoebelen I Theoretical Computer Science 148 (1995) 303-324

MO : N 0: Mi+l : Ni,, :

Fig. 2. A family Mo,MI, , NO, Nl,. . of Kripke structures.

where the added complexity deals with various special cases, mostly regarding the

position of the last required b before of after the Y state. 0

We now need to prove that E(s V aUb)Ur cannot be expressed in ECTL+. This uses

combinatorial techniques inspired from [111. Consider the family of Kripke structures

A&MI,. . . and No,Nt,. . . given in Fig. 2.

Where the “color” indicates which propositions hold in which states. Observe

cli /= E(s V aUb)Ur and ai F E(s V aUb)Ur for all i = 0, 1, . . . However, writing

for the size of a formula f, we have

Lemma A.2. For all f E CTL, and all i > (f (,

ai k f ifl ai k f,

Iri + f ifs bi kfy

Yi k f ifs Ci b f.

Proof. By structural induction on f as in [1 I]. 0

that

Ifl

Now there remains to extend the previous lemma to cover ECTL+ and not just CTL.

Lemma A.3. For all f in ECTLf, there is a f * in CTL s. t. f and f * are equiva-

lent over all states of Fig. 2.

Proof. By induction on f. The interesting case is when f has the form

with Eg, $, cp I, . . . , qn in CTL+. Because in the structures of Fig. 2 all runs eventually

end up looping (on do or 60), f is equivalent (in these models) to E (gnFAG(cplr\ . . . A

cp,All/)) which is a CTL+ formula. There only remains to transform this into a CTL
formula and we are done. 0

F. Laroussinie. Ph. Schnoebelen I Theoretical Computer Science 148 (1995) 303-324 317

Proof of Theorem 4.3

Theorem 4.3 is proved by establishing a separation lemma for &X,X-‘, S). Af-

terward, it is enough to apply (4) on separated formulas. (Here we use the partial

separation notion from Section 5.)

Lemma A.4 (Separation lemma for B(X,X-‘,S)). Any ~EB(X,X-‘, S) formula f is

(globally) equivalent to a separated f' E B(X, X-’ , S).

Proof. By structural induction. The induction step is obvious when f has the form a,

lg or f lAf2. When f is some X-‘g or f 1Sf2, the induction hypothesis gives us an

equivalent X-‘g’ or f{Sf 1 which is separated. Finally, because AXg - TEXTS, it is

enough to only consider the case where f has the form EXg.

Assume then that f is some EXg. By ind. hyp., g is equivalent to a separated g’.

With boolean manipulations, g’ can be written as

where the (p”s are pure-future and the $i,j’s are separated formulas of the form X-l+,

or 7X-‘$, or I/&$‘, or 7($&t+!/). Using

fSg 3 gv f/w’(fSg)

TX-If s C’TvX-‘Tf

X-If AX-‘g E X_‘(f Ag)

(and the fact that these equations respect separation), we can write g’ as

g’ - v(cpi'~X-'$; {hX-‘T})

where the {. . .} notation means that 1X-l T may or may not appear (depending on i).

Then EXg’ is easily rewritten into a separated formula, thanks to

WVi si> = vi EXgi

EX(~+AX-‘$) = $r\EXq+

EX(TX-‘T/i...) = _L 0

Proof of Lemma 5.2 and Theorem 5.1

The translation is done in several steps. We use contexts, i.e. (CZ’L + F-‘) formulas

with variables in them. The x in f[x] can be replaced by any (CTL+ F-r) formula: we

318 I? Laroussinie, Ph. Schnoebelenl Theoretical Computer Science 148 (1995) 303-324

write f[g] for f with g in place of x. Note that x may appear several times in f [xl.
This is a key point in our method, used to collect copies of duplicated subformulas.

Lemma A.5 If f [x] is a pure-future context, then f [F-lx] is (globally) equiva-
lent to a separated f’[x, FF’x] with f’[x, y] a pure-future context.

Proof. By structural induction on f [xl. Saying that f [x] is pure-future is just saying

that it is in CTL. We spend some time considering one case in detail:

l Assume f [x] is some Ecp[x]Ut&x]. By ind. hyp., rp[F-‘x] and J/[F-‘x] are equivalent

to some separated cp’[x,F-‘x] and $‘[x,F-‘xl. Then f [F-lx] = Eq’[x,F-‘x]U$‘[x,

F-lx]. In 40’ and +‘, F-lx can only appear under boolean combinators because of

the separation property. We can use boolean manipulations to obtain

f [F-lx] = E ((F-‘xr\a)v(lF-‘xn&vr) U ((F-lx~a’)~(~F-‘x~B’)~g’)

where CI, /I, y, CC’, /I’ and y’ are pure-future. Then we use distributivity

EgU(hvh’) E (EgUh)v(EgUh’)

(A.l)

to further simplify (A.1). We obtain several “E-U_” formulas with at most three

occurrences of F-lx. There we use the following five rewrite rules to extract F-lx

from the scope of the U:

W 1

W)

(R3)

(R4)

(W

EylJ(cr’~F-‘x) s F-*x~EyUa v E$J(xAE$J~)

EyU(P’/bF-‘x) = ~F-‘xAE(yA7x)U(/3’/hx)

E ((ocAF-‘~)v(~A~F-‘x)v~) Uy’

E F-‘xAE(ccv~)U$V~F-‘~AE (-xA(/~v~)) U$

v~F-‘xAE (-zA(~vY)) U (xAE(ccv~)U~)

E ((c~AF-‘x)v(/?A~F-‘x)vJJ) U(~AF-‘x)

= F-‘xAE(cN~)U~V-TF-‘~AE (-ccA(~v~)) U (xAE(~v~)W)

E ((OAF-‘x)v(j?~~F-‘x)v~) U(~‘A~F-‘X)

= TF-‘XAE (xA(~VY)) U(/?‘/\-LX)

l Assume f [x] is some EXq[x]. We proceed similarly. Using the ind. hyp. and dis-

tributivity

EX(hvh’) = EXh v EXh’

lead to a situation where we only need the following rules:

F. Laroussinie, Ph. Schnoebelen I Theoretical Computer Science 148 (1995) 303-324 319

(R6) EX(ciW’x) zz EX(a/u) v F-‘xr\EXcr

(R7) EX(w!-K’x) s EX(C~A-LK)A-IF-‘X

Assume f[x] is some EGq[x]. Then f[F-‘x] = EGq’[x,F-‘xl. Because of the

separation assumption, w.l.0.g. we can write EGq’[x, F-lx] under the

general form

f[F-‘x] = EG ((czAF-‘x)v(B~\TFF’x)v~) (A.2)

Then we only need the following rule:

l Finally, the other cases are obvious, or can be reduced to what we saw through

AXh s TEXT/I and AgUh s -IEG+ A ~(E4U~gA-h).

We let the reader check that equations (Rl)-(R8) are correct. ’ q

Lemma A.6. Zff[xt,. . ., x,] is a pure-future context, then f [F-lx,, . . . , F-IX,,] is equiv-

alent to a separated f ‘[xl, F-lx,, . . , x,, F-‘x,] with f’[x,, ~1,. . ,x,, y,,] a pure-future

context.

Proof. By induction on n, using Lemma AS. 0

Lemma A.7. Zf f[xl , . . .,x,1 is a pure-future context and I) ;, . . . , $; are pure-past

CTL + F-’ formulas (i.e. formulas with F-’ as the only temporal combinator), then
f [tj ;, . . . , I) ;] is equivalent to a separated CTL + F-’ formula.

Proof. By induction on the maximum number of nested F-l’s in the $ i’s and using

Lemma A.6. cl

Lemma A.8. Zf f[xl , . . . ,x,1 is a pure-future context and II/ ,, . . . , pb ,, are separated

CTL + F-’ formulas, then f [$,,. . . ,1(/J is equivalent to a separated CTL + F-’

formula.

‘This should not be too difficult. Alternatively, all five rules (Rl)-(R5) could be replaced by a single

general rule for which correctness is more difficult to assert.

320 E: Laroussinie, Ph. Schnoebelenl Theoretical Computer Science I48 (1995) 303-324

Proof. Because it is separated, a $ i has the form g,[(plt,. . . , (p&J with pure-future

cp$‘s and pure-past gi [XI,. . . , xk,]‘s. Applying Lemma A.7 to f[gl[xt,t,. . . ,~l,~,], . . . ,g;

Lhl,1,...P,,m”]] yields a separated f’[xt,t , . . . ,x,,~,]. Then f’[q[, , . . . , q&J is separated

and equivalent to f[$t , . . . , I&]. 0

Now we can prove Lemma 5.2 by structural induction on the CTL + F-’ formula

and using Lemma A.8. Then Theorem 5.1 is easy to prove: once we have a separated

formula, we repeatedly use

F-‘c~ Ei up

in boolean contexts.

Proof of Theorem 5.3

We slightly generalize the proof (from [lo]) that CTLf s CTL to prove that CTL++

F-’ E CTL + F-‘. Then Theorem 5.1 concludes the proof.

Lemma A.9. Any CTL+ -I- F-’ formula f is equivalent to a CTL + F-’ formula.

Proof. By induction on f. The only interesting case is when f has the form

E ,h(fiUgi)A A T(f clJgi)A A XhiA A F-‘kiATF_‘k’
i i i i

where we have

f zz E l\(fiUgi)A A ~(f~Ug~)A A Xhi A A F-‘kiA_F-‘k’

i i i i

Then E(/ji(fiUgi)A Ai l(f:USi)A Ai Xhi) can be transformed into a CTL + FF’ using

exactly the techniques for rewriting a CTL+ formula into a CTL formula [lOI. 0

Proof of Theorem 5.4

We introduce an intermediary fragment:

Loo 3 f,g ::= a(fAg I If (EXf I EfUg I AfUs I F-‘f 1 E

Then the proof of Theorem 5.4 is sketched as.

ECTL+ + F-’ E Loo z Lgp Si ECTL+

F. Laroussinie. Ph. Schnoebelen I Theoretical Computer Science 148 (1995) 303-324 321

The first part is easy. Clearly, from a syntactical viewpoint ECTL+F-’ & LM C ECTL++
F-' , but we also have ECTL+ + F-’ & Lo3:

Lemma A.lO. Any ECTL’ + F-’ formula is equivalent to a formula in L”.
is easy.

Lemma A.11 (Separation lemma for Lw). Any L”O is equivalent to a separated L3”
formula.

Proof. We proceed as in the Separation Lemma for CTL + F-’ (Lemma 5.2). In the

crucial step where we prove that any f [FF’x] with f [x] a pure-future L”O context can

be separated, there is one more case to consider: when f [x] has the form E(Gqr\ Ai I+$).

This needs one more rewrite rule.

G (F-'xr\a)v(-F'xna')vy [I v-TF-‘xr\E G (x*(a’vr))
[

E I A A? [(F-‘xl\Bi)V(~F-‘xAPI)V;li] I E
A l\‘i:WYi)]

i vTF_‘xr\E (--s&a/V y))
U (X//E [G(~v~)A A? (/3iVyi)]) U

After this we can conclude immediately because the pure-future fragment of L”O is
ECTL+.

Proof of Theorem 5.5

TO prove that ECTL + F-’ $i ECTL, first observe that E(P pnGq) 3i E P (p//G-‘4).

Now it is enough to prove that E(p pl\Gq) cannot be expressed in ECTL. For this we

consider the models MI, A42,. . . , Nr , A$, . . . described in Fig. 7. (They are inspired from

the proofs that E p p cannot be expressed in CTL and that E(F PA r q) cannot be

expressed in ECTL [ll].)

Clearly, for any i = 1,. .,

a; + E(‘Ppr\Gq) and ai k E(r pAGq)

However, writing (f (for the size off, we show by induction on f (left to the reader)

that

ai b f iff ai + f,

Pi + f ifi bi I= f,

Yi I= f iff Ci I= f.

322 F. Laroussinie, Ph. Schnoebelen I Theoretical Computer Science 148 (1995) 303-324

Nl: M’:

.%+1

N n+1: al
$0 @3

n+1 v x+1

Fig. 3. ai, CG k pAq, bi,Bi + TpAlq, CiTyi b TpAq.

for all f E ECTL and all i 2 1 f 1.

Then, to prove that ECTL+ $i ECTL + F-l, we prove that E(? PA ? q) is not

(initially) equivalent to any ECTL + F-’ formula. First, we observe that E(F pA p q)

cannot be expressed in the following pure-future fragment of ECTL+:

L3_f,g ::= a) fl\g) lf) EXf) EfUg) Af Ug 1 E(Ffr\Gg)

Clearly ECTL CL C ECTL+. The proof that E(? p~rq) cannot be expressed in L can

be done simply by enriching (left to the reader) the proof from [l l] that E(pp~Fq)

cannot be expressed in ECTL. The same models work for L as well.
Because ECTL + F-’ CL + F-‘, it is now sufficient to have a separation theorem for

L + F-‘, so that we shall arrive at

ECTL+F-‘CL+F-‘+L+F-‘)sep=iL+ECTL+

Lemma A.12 (Separation theorem for L + F-‘). Any ECTL + F-’ formula is equiua-
lent to a separated L + F-’ formula.

is a special case of Lemma A. 11 and can be proved using the same transformations.

Proof of Theorem 6.7

The Normal Form Theorem [21] states that any PTL formula is initially equivalent
to a formula of the form

i=l

where the vi’s and the $i’s are pure-past (linear-time) formulas.

F. Laroussinie, Ph. Schnoebelen I Theoretical Computer Science 148 (199s) 303-324 323

With this, it is easy to translate any formula f in CTL* into a globally equivalent

8(7,Xx-‘,S, A, 1) + N formula. The interesting case is when f is some Eg. Then we

replace in g all subformulas of the form Eh by new atomic propositions. This yields a

PTL formula g’ which can be written as some /jg,(F’piV ztji). Then

It now remains to replace the atomic propositions we introduced by their B(p, X-l, S, A,

1) + N equivalents, and we are done.

Acknowledgments

We would like to thank S. Pinchinat and the anonymous referees for their many

helpful comments on this work.

References

[l] M. Ben-Ari, A. Pnueli and Z. Manna, The temporal logic of branching time, Acta Inform. 20 (1983)
207-226.

[2] M.C. Browne, E.M. Clarke and 0. Griimberg, Characterizing finite Kripke structures in propositional

temporal logic, Theoret. Comput. Sci. 59 (1988) 115-131.

[3] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill and L.J. Hwang, Symbolic model checking: 10zo

states and beyond, Inform. and Comput. 98 (1992) 142-170.
[4] A. Burrieza and I.P. deGuzman. A new algebraic semantic approach and some adequate connectives

for computation with temporal logic over discrete systems, J. Appl. Non-Classical Logics 2 (1992)
181-201.

[5] E. Chang, Z. Manna and A. Pnueli, Characterization of temporal property classes, in Proc. 19th ICALP,
Vienna, Lecture Notes in Computer Science, Vol. 623 (Springer, Berlin, 1992) 474486.

[6] E.M. Clarke and E.A. Emerson, Design and synthesis of synchronization skeletons using branching

time temporal logic, in: Proc. Logics of Programs Workshop, Yorktown Heights, NY, Lecture Notes

in Computer Science, Vol. 13 1 (Springer, Berlin, 1981) 52-71.

[7] E.M. Clarke, E.A. Emerson and A.P. Sistla, Automatic verification of finite-state concurrent systems

using temporal logic specifications, ACM Trans. Programming Languages Systems 8 (1986) 244-263.
[8] E.A. Emerson, Temporal and modal logic, in: J. van Leeuwen, ed., Handbook of Theoretical Computer

Science, Vol. B, ch. 16 (Elsevier, Amsterdam, 1990) 995-1072.

[9] E.A. Emerson and E.M. Clarke, Characterizing correcmess properties of parallel programs using

fixpoints, in: Proc. 7th ICALP, Noordwijkerhout, Lecture Notes in Computer Science, Vol. 85

(Springer, Berlin 1980) 169-181.

[lo] E.A. Emerson and J.Y. Halpem, Decision procedures and expressiveness in the temporal logic of

branching time, J. Comput. System Sci. 30 (1985) 1-24.

[l l] E.A. Emerson and J.Y. Halpem. “Sometimes” and “Not Never” revisited: On branching versus linear

time temporal logic, J. ACM, 33 (1986) 151-178.

[121 D. Gabbay, The declarative past and imperative future: executable temporal logic for interactive systems,

in: Proc. Temporal Logic in Specijcation, Ahrincham, UK, Lecture notes in Computer Science, Vol.

398 (Springer, Berlin, 1987) 409448.

[13] D. Gabbay, A. Pnueli, S. Shelah and J. Stavi, On the temporal analysis of fairness, in: Proc. 7th ACM
Symp. Principles of Programming Languages, Las Vegas, NV, (1980) 163-173.

324 I’? Laroussinie, Ph. Schnoebelen I Theoretical Computer Science I48 (1995) 303-324

[14] T. Hafer and W. Thomas, Computation tree logic CTL* and path quantifiers in the monadic theory

of the binary tree, in: Proc. 14th SCALP, Karlsruhe, Lecture Notes in Computer Science, Vol. 267

(Springer, Berlin, 1987) 269-279.

[15] Y. Kesten, Z. Manna, H. McGuire and A. Pnueli, A decision algorithm for full propositional temporal

logic, in: Proc. CA v’93, Elounda, Greece, Lecture Notes in Computer Science, Vol. 697 (Springer,

Berlin, 1993) 97-109.

[16] F. Laroussinie, Logique Temporelle avec Passe pour la Specification et la Verification des Systemes

Reactifs, These de Doctorat, I.N.P. de Grenoble, France, November 1994.

[17] F. Laroussinie, S. Pinchinat and Ph. Schnoebelen, Translation results for modal logics of reactive

systems, in: Proc. AMAST’93, Enschede, NL (Springer, Berlin, 1993) 299-310.

[18] 0. Lichtenstein, A. Pnueli and L. Zuck, The glory of the past, in: Proc. Logics of Programs Workshop,
Brooklyn, Lecture Notes in Computer Science, Vol. 193 (Springer, Berlin, 1985) 196-218.

[19] Z. Manna and A. Pnueli, The anchored version of the temporal framework, in: Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency, Noordwijkerhout, Lecutre Notes in

Computer Science, Vol. 354 (Springer, Berlin, 1989) 201-284.

[20] Z. Manna and A. Pnueli, A hierarchy of temporal properties, in: Proc. 9th ACM Symp. Principles of
Distributed Computing, Quebec City, Canada (1990) 377-408.

[21] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems, Volume I:,

Specification (Springer, Berlin 1992).

[22] L.E. Moser, P.M. Melliar-Smith, G. Kutty and Y.S. Ramakrishna, Completeness and soundness of

axiomatizations for temporal logics without next, Fundam. Inform. (1993), to appear.

[23] A. Prior, Past, Present, and Future (Clarendon Press, Oxford, 1967).

[24] A.P. Sistla and E.M. Clarke, The complexity of propositional linear temporal logics, J. ACM 32 (1985)
733-749.

[25] C. Stirling, Modal and temporal logics, in: S. Abramsky, D. Gabbay and T. Maibaum, eds., Handbook
of Logic in Computer Science (Oxford Univ. Press, 1992) 477-563.

[26] M. Vardi, A temporal fixpoint calculus, in: Proc. 15th ACM Symp. Principles of Programming
Languages, San Diego, CA, (1988) 250-259.

[27] A. Zanardo and J. Carmo, Ockhamist computational logic: Past-sensitive necessitation in CTL*, J.

Logic Comput. 3 (1993) 249-268.

[28] L. Zuck, Past temporal logic, Ph.D. Thesis, Weizmann Institute, Rehovot, Israel, August 1986.

