
FREDDA Société de l’information et de la communication 2017

Appel à projet générique 2017

Instrument : Projet de Recherche Collaborative
Défi : Société de l’information et de la communication

Méthodes formelles pour la conception d’algorithmes distribués
FoRmal mEthods for the Design of Distributed Algorithms

FREDDA

Contents

Project summary 2

Summary of persons 2

1 Context, positioning and objectives 2
1.1 Context and challenges . 2
1.2 Goals and novel aspect . 4
1.3 Expected results . 6
1.4 State of the art . 6

2 Project organization and means implemented 9
2.1 Tasks description . 9

2.1.1 Task 0: Project management . 9
2.1.2 Task 1: Formalization . 10
2.1.3 Task 2: Robustness . 11
2.1.4 Taks 3: Monitoring . 12
2.1.5 Task 4: Case study and protoypes . 14
2.1.6 Task 5: Organization of workshops . 15

2.2 Schedule and dependencies . 15
2.3 Deliverables . 16
2.4 Consortium Description . 16

2.4.1 Scientific coordinator . 16
2.4.2 Description of the consortium . 17

2.5 Scientific justification of requested resources . 18
2.5.1 Equipment . 18
2.5.2 Staff . 18
2.5.3 Missions . 18
2.5.4 Total . 19

3 Impact and benefits of the project 19
3.1 A new framework for the development of distributed algorithm 19
3.2 Reconciliation of two research communities . 20
3.3 Dissemination . 20

Remark: The bibliography can be found in the Annex of this proposal.

1

FREDDA Société de l’information et de la communication 2017

Project summary

Distributed algorithms are nowadays omnipresent in most systems and applications. It is of utmost impor-
tance to develop algorithmic solutions that are both robust and flexible, to be used in large scale applications.
Currently, distributed algorithms are developed under precise assumptions on their execution context: syn-
chronicity, bounds on the number of failures, etc. The robustness of distributed algorithms is a challenging
problem which has barely been considered until now, and there is no systematic way to guarantee or verify the
behavior of an algorithm beyond the context for which it has been designed. We propose to develop automated
formal method techniques to verify the robustness of distributed algorithms and to support the development of
robust applications. Our methods are of two kinds: statically through classical verification, and dynamically,
by synthesizing distributed monitors, that check either correctness or the validity of the context hypotheses at
runtime.

Summary table of persons involved in the project

Partner Name First Name Current Position Involvement
(person.
month)

Role and responsibilities in
the project

IRIF SANGNIER Arnaud Associate Professor 33,6 Global coordinator
BOUAJJANI Ahmed Professor 12
DELPORTE Carole Professor 20
FRAIGNIAUD Pierre Senior Researcher 20
FAUCONNIER Hugues Professor 20
LAROUSSINIE François Professor 20

LaBRI MILANI Alessia Associate Professor 12
MUSCHOLL Anca Professor 12
TRAVERS Corentin Associate Professor 24 Local coordinator
WALUKIEWICZ Igor Senior Researcher 9,6

LSV BOLLIG Benedikt Researcher 12 Local coordinator
FÜGGER Matthias Researcher 4
GASTIN Paul Professor 12

Cezara Drăgoi (INRIA - ENS ULM) will as well participate to this project as an external member and her
involvement will be of 4 person. month.

1 Context, positioning and objectives

1.1 Context and challenges

Distributed applications represent nowadays a significant part of our everyday life and their development is
central in the Internet of Things. To mention just a few examples, our personal data are stored on remote dis-
tributed servers, health data management relies on remote applications reachable via smartphones or tablets,
and data-intensive computations like MapReduce or Hadoop are performed on computer clusters. Such appli-
cations have to meet several, often conflicting requirements like, for instance, low latency for clients and high
throughput on the application side. They furthermore have to be reliable and robust, and they have to satisfy
stringent correctness criteria, while being subject to fluctuating network conditions. The basic building blocks
of such applications are distributed algorithms, which address particular problems in specific contexts. For
instance, consensus algorithms [FLP85, GR07] and their relaxations like set agreement and k-set agreement
[Cha93] make systems with machine replications agree on a value or a set of values. Another example are
renaming algorithms [CRR11], which are used to provide different entities in a network with a small set of
names.

In the last decades, researchers from the distributed computing community have developed advanced tech-
niques for the design and analysis of distributed algorithms. One of the key aspects in the development of
these algorithms are the specific assumptions made on the considered execution context (usually referred to
as system model in the realm of distributed algorithms). For example, communication can be synchronous or
asynchronous, the entities in the network may or may not be equipped with a unique identifier, or a certain

2

FREDDA Société de l’information et de la communication 2017

number of errors and failures can happen during an execution. These assumptions are crucial and may lead to
different families of algorithms designed for a specific context. This is, for instance, the case for algorithms that
solve the fundamental set-agreement task, in which processes collectively choose a small subset of values from
a larger set of proposals (see, e.g., [AGGT12]). A problem with a simple algorithmic solution in some system
model may become unsolvable after small changes in the model assumptions. For example, it is well known
that it is impossible to solve consensus in an asynchronous environment when at most one process may fail
[FLP85], though simple algorithms exists when there is no failure or the system is synchronous. And for the
set-agreement problem, the precise requirements over the model remains unknown. While there are numerous
sophisticated techniques for algorithm design and analysis, most of the existing distributed algorithms, together
with their correctness proofs, remain tailored to one very specific system model and are surprisingly difficult to
generalize to different, but very similar models.

Many execution frameworks have been proposed. Some are very intuitive, like the synchronous context,
in which all entities behave synchronously, or the completely asynchronous context, in which arbitrary long
communication delays may occur. In practice, systems are neither synchronous nor fully asynchronous. Many
other models lying between the synchronous and the asynchronous model have thus been defined. Investigation
of such partially synchronous models have also been motivated by the fact that tolerating at the same time
asynchrony and failures is hard or even impossible depending on the problem being considered. Hence, one is
interested in execution contexts that degrades (or relaxes) to some extend the assumptions of the synchronous
model in order to capture real systems executions while leaving the problem under study solvable. For example,
in the round-based heard-of model [CS09], a message in transit that is not received within a round is considered
to be lost and processes then react according to the set of messages they have received in the previous round. In
the ⇥-model [WS09], a bound ⇥ represents the ratio between the shortest and longest time delay of messages
in transit simultaneously. Contexts with partial synchrony have also been studied in the case of shared-memory
systems, (for instance, [ADFT12]): one can restrict the way the different processes access the memory by, for
example, bounding the number of times a process can perform read/write actions while other active processes
do not access the memory.

Towards robust distributed algorithms. Even though most distributed algorithms to solve problems like
leader election, consensus, set agreement, or renaming, are not very long and essentially consist of an iterated
loop, their behavior is difficult to understand due to the numerous possible interleavings of an execution. As a
result, correctness proofs of distributed algorithms are extremely intricate. On top of this comes the fact that
most algorithms are designed for an unspecified, unbounded number of participants and may use resources (like
registers or data transmitted in messages) that depend on that number. Finally, their correctness proofs strongly
depend on the underlying execution context and, as a matter of fact, can be very sensitive to any deviation. In
other words, distributed algorithms tend to be not robust.

The purpose of our project is to develop formal methods that provide algorithmic support
for the design of robust distributed algorithms.

Researchers from the formal methods and verification community have proposed techniques to analyze
distributed systems and to show their correctness. When the algorithm at hand is designed for a fixed finite
number of participants using only finite-domain variables, software tools like SPIN [Hol05] are able to show
correctness properties automatically, as it has been done for some classical mutual exclusion protocols like Pe-
terson’s algorithm or the Bakery’s algorithm. Some works aimed to circumvent these restrictions. In particular,
parametrized and data-aware verification techniques enable the analysis of networks of arbitrary size or of al-
gorithms working with unbounded data [ABG15]. However, the decidability frontier for verification problems
is very thin. On the positive side, there exist a wide range of logical tools and formalisms that allow one to
express properties of distributed systems, to model their executions, and to reason about them. Researchers
from verification have, by now, acquired a strong knowledge on the feasibility and application of automatic
analysis techniques.

One important approach to avoid undecidability consists in looking for bad behaviors within a subset of
the global behavior. In other words, one imposes restrictions on the system so as to regain decidability. Such
restrictions are sometimes quite severe and discard many realistic behaviors. On the other hand, they allow one
to develop approximation frameworks which are very useful to detect ’bugs’. There are different ways to obtain

3

FREDDA Société de l’information et de la communication 2017

such restrictions in distributed systems. For instance, one can impose a bound on the size of the message queues
or on the number of phases, each allowing only one process to send messages [BE14]. These restrictions on the
considered executions are similar to execution models proposed in the distributed-computing community, and
it will be worthwhile to understand, and formalize, the common aspects behind these two approaches.

Checking the robustness of a system is not a new idea in the realm of verification. It has already been
applied, for instance, in the context of timed automata [BMS15], which are models for real-time systems that
were originally equipped with some real-valued clocks with infinite precision. Robustness in that case means
that a given property is still satisfied when clock values are subject to small deviations. Closer to our context,
a notion of robustness exists for concurrent programs with shared variables running on different models for
memory consistency. In fact, most such programs are developed assuming that they are executed under the
classical interleaving semantics, which is known as sequential consistency. However, for efficiency reasons,
compilers and processors may use a different model of execution, aka weak memory model. The idea is that
operations (read from or write to the memory) may follow a different order with respect to the sequential
consistency model. In that case, a program that respects certain properties under sequential consistency is
considered as robust if it still respects these properties under a weaker notion of consistency [BDM13]. It
should be noted that there even exist methods to enforce robustness by inserting barriers at some key points of
the program. The main issue is then to insert as few barriers as possible so as to remain efficient in terms of
concurrency.

We hence observe that we have two areas with complementary skills. On one side, we have distributed
computing with its know-how for establishing the correctness of a few particular distributed algorithms using
ad-hoc techniques that strongly depend on the execution context. On the other side, the verification community
provides formal models and automated analysis techniques.

In this project, we gather researchers from both communities in order to build a method-
ology and automated tools to ease and automatize the development of robust distributed
algorithms.

1.2 Goals and novel aspect

Figure 1: FREDDA development cycle

The goal of this project is to design automated techniques that can be used in the development of robust
distributed algorithms. Figure 1 sums up the development cycle we envisage. Basically, the input is a distributed
algorithm, designed for a specific execution context, that respects a given correctness criterion. Note that the
algorithm may come with a witness for its correctness like, for instance, invariants. The FREDDA development
cycle works in several stages:

4

FREDDA Société de l’information et de la communication 2017

1. Robustness analysis. The algorithm is analyzed with respect to a new execution context. The goal is to
automatize this part as much as possible. There are two possible outcomes after this step. If the algorithm
turns out to be robust, we are done. Otherwise, a counterexample is provided in terms of one or several
example executions that violate the robustness condition.

2. Refinement of the algorithm. In this step, the counterexample obtained in Step 1 is used to build a more
robust distributed algorithm that discards the non-robust behavior. However, as it will be difficult to
generate a new algorithm from the witness automatically, this stage will be performed by experts from
distributed computing.

In some cases, our development cycle will not terminate (otherwise, we would be able to refine a syn-
chronous algorithm to make it work in an asynchronous environment, which is impossible for some problems
like consensus). But an algorithm becomes more robust with each iteration of the development cycle. Some
scenarios will require weakening the correctness criterion and a relaxation of the execution context in order to
get out of the cycle. Even though we may detect, after some iterations, that the robust algorithm we are aiming
at for a specific execution context is out of reach, our analysis ensures that the algorithm we have built so far is
robust for another execution context. In any case, this procedure leads to an improved algorithm that is robust
under certain conditions.

The robustness of distributed algorithms is a problem that has not received much attention until now
but is relevant for the development of new algorithms and to improve the design methodology. Further-
more, developing automated techniques and tools for robustness analysis leads to challenging and interesting
research tasks.

• First, there is a need for formal definitions of different notions of robustness and this also requires
formal definitions of execution contexts. Note that degradations of some execution contexts (such as
synchronism) have already been proposed, but most of the different options are not compared to each
other. There is indeed no exhaustive study that relates the different relaxations. We may check, for
example, whether one relaxation is included in another, or, conversely, whether it allows for strictly
more behaviors. It is, hence, necessary to perform such a study to list and classify the different existing
relaxation techniques and eventually propose a new form of relaxation. It is also important to understand
the relation between the execution contexts developed in the distributed computing community and the
restrictions used in the verification of distributed systems to under-approximate the behaviors of systems.

• Second, the development of methods for checking robustness is challenging for different reasons. In
fact, even if they are often not very long (in terms of number of lines), the algorithms to be analyzed are
complex due to different features. They are often designed for an unbounded number of participants and
their correctness is guaranteed provided that enough resources (being registers, messages size, values of
shared variables, etc.) are available. Note that often, the number of required resources is parametrized
with respect to the number of participants (for example, in any shared memory k-set agreement algorithm
the number of registers depends on the number of processes [DFKR15]). Reasoning about all possible
scenarios that can arise during distributed algorithms executions may be computationally very hard and
detailed models of such scenarios tend to be intractable: consequently, automated verification techniques
such as model checking can only handle small instances of distributed systems. However, we believe
that the ideas and techniques developed in verification, coming from automata theory and logic, can be
of great use to reason systematically about cleverly abstracted models of distributed algorithms. Further-
more, one strong aspect in the development cycle represented in Figure 1 lies in the fact that the input
distributed algorithm is assumed to be correct for a certain execution context, and the bottleneck for the
analysis will hence be to understand how to use this information. We will also have to propose ways to
transmit the results of the robustness analysis, when negative, to the algorithms designer, in such a way
to be useful for the refinement phase.

• Finally, another challenging question raised by our approach concerns the way we keep the system
aware that the conditions under which the algorithm has been designed are not met anymore.
Note that it is of utmost importance to detect such situations at run-time. This does not only inform the
participating processes that there is no guarantee anymore to get the desired result, but it also allows one to
launch a recovery procedure, or to switch to another, less efficient, but more robust algorithm. Disposing

5

FREDDA Société de l’information et de la communication 2017

of gracefully degrading, or adaptive algorithms would be of significant value for the development process
of distributed applications. We believe that an automated approach to this problem can substantially help
algorithm designers to provide flexible and reliable solutions. The challenge here is hence to design
monitors to keep track of executions at run-time. The difficulties are to find the aspect to be monitored
in order to detect changes in the behavior, and to design monitors for distributed systems which is an
inherently hard task.

1.3 Expected results

We expect that the following results will be obtained during the FREDDA project:

1. Propose formalisms to speak about robustness in distributed systems. In fact, the project will begin
by exploring, exhaustively, the techniques used in both distributed computing and verification to relax or
restrict execution contexts of distributed systems. The goal will be to come up with families of interesting
execution contexts and corresponding notions of robustness. As it has already been observed in the
context of concurrent systems and weak memory models [BMM11, BDM13], it is important to consider
different notions of robustness. Actually, asking for being robust with respect to a property stronger than
the desired correctness property can facilitate the analysis considerably.

2. Develop new automated tools for the analysis of distributed algorithms. The heart of our project
will be the development of tools and methods to perform the robustness analysis automatically. We also
aim at a precise understanding of the decidability frontier. We will propose algorithms to check for
robustness, as well as methods to build monitors that check, at run-time, whether an algorithm satisfies
given constraints and is executed in the right execution context. We plan to implement some of our
techniques in a prototype.

3. Design new robust algorithms. Our last goal will be to produce some robust algorithms obtained thanks
to the FREDDA development cycle presented in Figure 1. In particular, we will study in detail algorithms
for the renaming problem in message-passing systems. It is known that there exist solutions for both
synchronous and asynchronous contexts, and we would like to deduce new algorithms for contexts that
lie in between. We also plan to apply our methods to other families of distributed algorithms.

1.4 State of the art

Conception of distributed algorithms

In this section, we give an overview of various distributed system models relevant to FREDDA. One of the
main paradigm in distributed computing when one is interested in fault-tolerance is consensus (in which pro-
cesses have to eventually agree on one of their initial value). Consensus is an universal primitive, and more
practically at the heart of state machine replication, which enable fault-tolerance by replicating a service on
several servers and coordinating clients requests among them. The impossibility of consensus in asynchronous,
crash-prone environments [FLP85] has motivated investigations of problems with less stringent requirements,
various partially synchronous models, and development of best-effort algorithms that converge in well-behaved
executions.

A classical relaxation of consensus is k-set agreement, which allows processes to decide up to k distinct
values. Consensus is thus 1-set agreement. k-set agreement is solvable if and only no more that k�1 processes
may fail. Interestingly, k-set agreement objects enable n processes to pick distinct new names in an interval of
size n� k + 1 [Gaf06].

In the seminal paper [DDS87], crude partially synchronous models are defined and investigated with re-
spect to whether consensus can be solved or not. These models distinguish between process (a)synchrony and
communications (a)synchrony, i.e., whether there exists global time bounds between any two consecutive steps
of processes, or on message transfer delays. The paper [DLS88] shows that consensus can be solved in even-
tually synchronous models, in which executions are asynchronous for arbitrary long time, and then become
synchronous. This model has later been refined at the channel level. If a (non-faulty) process is connected
to every other processes via eventually channels, consensus is solvable [ADFT08]. Implicit references to real

6

FREDDA Société de l’information et de la communication 2017

time may be replaced by bounds on the ratio between the slowest and fastest channels/processes as in the ⇥-
model [WS09]. In shared memory, timeliness properties of channels/processes may be replaced by constraining
the scheduler, for example bounding the number of steps performed between two consecutive steps of some
process. Finally, set timeliness [ADFT12] imposes constraints on the relative speed of sets of processes. This
class of refined models gives separations results for t-resilient k-set agreement solvability.

Distributed systems models also address fault-tolerance by describing how part of the system (e.g., the
processes and/or the communication medium) may fail. Several failure models have been defined, ranging from
crash or fail-stop failures to more severe byzantine failures. A natural parameter for fault-tolerant distributed
algorithms is the number of malfunctioning components they can tolerate. For example, when up to t processes
may prematurely stop, n-processes fault-tolerant renaming can be solved with a set of new names of size n+ t.
Algorithms tolerating up to t processes failures are said to be t-resilient. More generally, one may specifies set
of processes that may fail together in a single execution [DFGT11, HR13]. This notion of adversary accounts
for the fact that failure are often correlated in real systems. Adversaries may be split into classes according to
whether or not k-set agreement can be solved, which essentially correspond to 1-, 2-, . . . , (n� 1)-resiliency.

Finally, to bypass impossibility results, one may require algorithms to terminate only when the underly-
ing execution satisfies some property. Wait-freedom requires each process to terminate regardless the behavior
of other processes. Wait-free computing has been largely studied. In particular, characterization of what can
be computed wait-free have been obtained using tools borrowed from algebraic and/or combinatorial topol-
ogy [HKR13]. By contrast, obstruction-freedom only requires termination for a given process if it performs
sufficiently many consecutive steps in isolation. Equivalently, it can be seen as a property of the scheduling that
ensures that at least one process will run alone for an arbitrary number of steps. Assuming obstruction-free runs
allows many problem to be solved including consensus. Many scheduling assumptions/termination requirement
lying between obstruction-freedom and wait-freedom have been investigate, such as k-concurrency [GMT01]
and asymmetric progress conditions [Tau10, IRT10]. In k-concurrent executions, no more than k processes
may simultaneously participate, that is have started their local algorithm and not yet received an output. 1-
concurrency corresponds to sequential computing while n-concurrency is wait-freedom. Interestingly, what can
be computed k-concurrently is closely related to what can be computed using k-set agreement objects [GG11].

Among the large variety of models, one of the goal of the FREDDA project is to find relevant models in
which algorithmic solutions, with the help of verification theory and techniques, may be extended to larger
models.

Verification of distributed algorithms

Distributed algorithms are inherently hard to get right. Thus, one major challenge in the field of distributed
computing, besides establishing complexity results and precise upper and lower bounds, is to come up with
formal correctness proofs. As our project is targetting automated verification of robustness properties, we will
focus on the state-of-the-art of model checking distributed algorithms.

Model checking is a fully automated method for determining whether a system model adheres to its cor-
rectness specification [BK08]. Classically, it covers finite-state systems, but it has since produced a rich theory
in the realm of infinite-state systems. Of particular interest here is prameterized verification, which amounts to
establishing correctness of an algorithm no matter how many processes actually interact. Unsurprisingly, the
problem is undecidable in general, even when dealing with identical finite-state processes. However, a long
line of research has established a variety of positive results. A recent textbook and survey article reflect the
increasing interest in the area [BJK+15, Esp16].

A widely used proof technique in parameterized verification is the cut-off principle [EN03, EK04, CTTV04],
which builds on the following deduction rule: If the algorithm is correct when at most N processes intervene,
then it is correct for any number of processes. The existence of a cut-off N allows one to reduce parameter-
ized verification to model checking a finite-state system. Cut-offs can be applied to a couple of architectures
and communication paradigms such as valueless token rings and certain rendez-vous systems and guarded pro-
tocols (see [AKR+14] for a thorough analysis). Other well-established proof techniques include the theory
of well-quasi orderings and well-structured transition systems [ACJT96, FS01] (which is suitable for broad-
cast systems [DSZ10]), the composition method (which has been applied to token-ring systems [AR16]), and
network invariants [WL89, KM95]. It should be noted that, even though unified views of parameterized verifi-
cation exist, most results actually depend on a particular architecture and execution context and are not readily

7

FREDDA Société de l’information et de la communication 2017

generalizable.
Though model-checking research has considered the case of an unbounded number of processes, there is

clearly a lack of techniques that are amenable to distributed algorithms. This is no wonder, since the latter
combine parameterized verification with unbounded data types and a variety of possible execution contexts.
Fault tolerance and timing issues complement the major challenges. However, progress has been made in com-
bining at least two of these features. In [ABG15], an underapproximate model-checking approach is presented
that can cope with an unbounded number of processes that exchange data in terms of totally ordered processs
identifiers. In particular, this framework captures leader-election protocols and distributed sorting algorithms.
Another research stream addresses model checking of fault-tolerant algorithms, which entails multiple param-
eters to describe the proportion of faulty processes. A promising approach here is a combination of abstraction
and bounded model checking [JKS+13, KVW14]. In the FREDDA project, we will have to push the state-of-
the-art forward to deal with distributed algorithms such as set agreement and renaming.

Monitoring in distributed systems

Runtime verification is an appealing, alternative method to traditional exhaustive exploration of a model, and is
situated between testing and model checking. Its main distinguishing feature is that it is performed at runtime,
by monitoring program executions against formal specifications. This opens the possibility to use it as support
for error diagnosis, and also to react whenever an incorrect behavior of the program is detected.

Traditional runtime verification consists in constructing monitors from a given property. The monitor is
used to check e.g. the current execution of the system. In other words, it reads a finite trace incrementally and
is supposed to produce a verdict. While in model-checking all executions of the system are considered (often
with emphasis on infinite executions) runtime verification deals with single (or a bounded number of finite)
executions and does not require complete knowledge about the program or system. In other terms, runtime ver-
ification can be applied on black-box systems for which no model is available. It also represents a lightweight
method regarding complexity, since monitoring single traces simply corresponds to the word problem. The
main issue in runtime monitoring is the complexity of the monitor, i.e., its memory and computation time
requirements, as a monitor runs in parallel with the system and should not slow it down too much.

Runtime verification is an ongoing and intense research topic, with a dedicated international workshop
Runtime verification running since more than 15 years. A large body of work was devoted to monitoring
LTL properties (see e.g. the survey [LS09]), and several tools (e.g. LOLA, EAGLE, RV-Monitor) are available.
Extensions of monitors have been proposed in more complex settings such as for stochastic and timed automata,
and for properties expressed in metric interval temporal logic, TLTL, and linear mu-calculus.

Designing distributed monitors from a given specification is far more challenging than for sequential pro-
grams, as the monitoring information has to be computed by a distributed algorithm. A straightforward, but
impractical, way to monitor a distributed program is to synchronize the concerned components and to inquire
about their states. A much better way to do this is to write a distributed monitor that deduces the required infor-
mation by recording and exchanging suitable information using mainly the communication means provided by
the execution of the monitored program. So the main point is to avoid adding synchronization in the program
through the monitoring task, since this usually impacts negatively on the overall performance.

An additional challenge is dealing with failures. Distributed systems are indeed prone to failures, mal-
function and unexpected communication delays. In such contexts, strong synchronization primitives such as
consensus may not be implementable. Each monitor thus has to express a verdict about the state of the un-
derlying system based only on its partial knowledge of the global state and perhaps after some asynchronous
information exchanges with other monitors. In asynchronous systems, according to the lower bound [BFR+16],
the number of local verdicts required for monitoring LTL properties grows linearly with the number of failures
to be tolerated and the alternation number of the formula.

For the synthesis of distributed systems there is no general solution available. A first problematic issue is the
lack of a canonical model for concurrency: reasonable frameworks can range between multi-threaded shared
memory Java-like models and Scala-like programs with asynchronous function calls. A second, practical,
problem is that monitors, when they exist, tend to be quite big.

A very successful example for the automatic generation of distributed monitors has its roots in the theory of
Mazurkiewicz traces. This concurrency model was introduced in the late seventies by A. Mazurkiewicz [Maz77]
as a simple model inspired by Petri nets. Within this theory, Zielonka’s theorem [Zie87] is a prime example of

8

FREDDA Société de l’information et de la communication 2017

a result on synthesis of distributed monitors. Many researchers contributed to simplify the construction and to
improve its complexity. The most recent construction [GGMW10] produces deterministic distributed monitors
of size that is exponential in the number of processes (and polynomial in the size of a DFA for the monitor-
ing property). It is very challenging to try to adapt Zielonka’s construction to models involving other types
of synchronization. Generally speaking, designing synthesis algorithms on specific architectures, and with a
reasonable computational overhead, is a significant endeavour.

2 Project organization and means implemented

2.1 Tasks description

2.1.1 Task 0: Project management

GLOBAL COORDINATOR Arnaud Sangnier (IRIF)
LOCAL COORDINATORS Benedikt Bollig (LSV), Corentin Travers (LaBRI)

OBJECTIVES

Ensure the achievement of goals - Manage the interactivity between the participants - Diffuse the obtained
results

PROGRAM

Organization in tasks. To achieve our goals, the projet is organized in four tasks, each having its own
coordinator (cf. Table 1). Each partner participates in each of the tasks. Each task is divided into subtasks.
The description (and the risk analysis) of these tasks is provided hereafter. Their scheduling during the
project is given in Subsection 2.2.

Num Task Coordinator
0 Project Management Arnaud Sangnier (IRIF)
1 Formalization Arnaud Sangnier (IRIF)
2 Robustness Benedikt Bollig (LSV)
3 Monitoring Anca Muscholl (LaBRI)
4 Tools and Case Study Corentin Travers (LaBRI)
5 Organization of workshops Pierre Fraigniaud (IRIF)

Table 1: Summary of the tasks and of the associated coordinator

Annual meetings. In order to achieve the different objectives of our project, it is important that there
is both a strong local collaboration between the verification and distributed computing teams, but also a
global collaboration between partners. We plan to organize two meetings each year. Their goal will be to
present new results, to discuss the progress made with respect to the proposal, and to build working groups
dedicated to some particular tasks. These meetings will be organized by each of the different partners and
are open to other researchers and students.

Research stays. We will reserve part of the requested budget to finance research stays for the members
of the project. These stays are, in fact, very important to allow the participants to collaborate. Please note
that visits to other international experts are envisaged, too.

Website. It is very important that new results are made available to the community quickly. In fact, this
will allow us to discuss them with other researchers and to estimate their impact. To this aim, we will
maintain a website dedicated to the project, which provides our results, deliverables, summaries of annual
meetings, and slides of the talks. The website will also be used to advertise any events connected to our
project.

RISKS AND THEIR MANAGEMENT

9

FREDDA Société de l’information et de la communication 2017

There are two main risks in managing such collaborative project. The first is that each partner performs
its research on its own leading to a lack of collaboration inside the project. However, the annual meetings
and the research stays will minimize this risk. The other important issue is that we do not achieve our
goals. To avoid this situation, this proposal contains a risk analysis for each task, which allows us to be
conscious of those points where we have to be more attentive.

2.1.2 Task 1: Formalization

COORDINATOR Arnaud Sangnier

OBJECTIVES

Define the models for the considered algorithms - Propose some logical formalism for correctness properties -
Formalize the notion of execution contexts

PROGRAM

The main role of this task will be to define a common mathematical language between researchers from the
distributed computing community and the one from the verification world to represent distributed algorithms,
the properties of the considered algorithms and to characterize the execution contexts which will be at the heart
of our robustness analysis.

Subtask 1.1 - Models of distributed algorithms. In order to achieve the main goals of our project
which consists in providing methods for the robustness analysis of distributed algorithms, we will focus
on very specific families of distributed algorithms, namely those to solve problems like consensus, set-
agreement, or renaming. We will consider algorithms using either message passing or shared memory
systems. Our goal in this subtask will be to provide models for such algorithms (in other words, both
syntax and semantics) to describe, faithfully, the considered distributed algorithms. The difficulty will be
raised by the fact that researchers from the distributing community often describe their algorithms at a high
level, which is not precise enough for a formal analysis. On the other hand, people from the verification
community have developed over the years an expertise in developing models to represent algorithms and
systems formally. We will use this agglomeration of expertise to build models that are suitable to represent
behaviors of distributed algorithms. Among the features we will consider, we can, for instance, mention
whether the algorithms are designed for an unbounded number of participants or not, whether they use
unique identifiers or not, whether they use a number of register independent of the number of participants
or not, whether they use some counting variables or not, whether they are dependent of the number of
failure or not, etc. An exhaustive characterization will allow us to draw a cartography of the different
aspects we will consider in this project.

Subtask 1.2 - Logical specification. Not only it is important to have a formal way to describe distributed
algorithms but we need as well to develop formal languages to write the specification and as the well the
invariants of our algorithms. There already exist many specification languages for computing systems
like for instance the branching and temporal logic and their extension (see e.g. [BK08]) however these
languages might not be expressive enough for the algorithms we will examine. First in many cases, the
entities executing the algorithms will manipulate some data and the correctness criterion will need to
be able to speak about those, for instance in the k-set agreement problem to specify that there are not
more than k decided value. Then, since we plan to consider wait-free or obstruction-free algorithms, the
specification language should be able to state properties like the following one : if a process executes itself
alone, it will be able to take a decision. But one can imagine, especially if we want to use these logical
formalisms to describe as well invariants, that we will need to describe even more stronger properties
concerning the interleaving of the different executions. Some logics have been developed in the context
of games for verification to describe both temporal properties and connection between the strategies of the
player in the games (for instance the temporal logic Alernating-Time Temporal Logic ATL [AHK02]),
and it could be interesting to inspire ourselves from such logic in order to develop specification languages
for algorithms with unbounded number of participants (in ATL the number of player is fixed). We will
have to be careful in the way we will develop our specification languages, because it is well known that
as soon as one allow data in temporal logic, the undecidability frontier is very close. However using the

10

FREDDA Société de l’information et de la communication 2017

fact that most of the time the precise value of the data do not really matter and as well restricting ourselves
to very specific properties dedicated to the distributed algorithms under analysis, we have some chance to
fight such negative result. The languages we will develop will be used to write the specification that have
to respect the distributed algorithms, but they could as well serve to describe some invariants or properties
to perform some rely-guarantee reasoning (which will be useful in the context of the robust analysis). For
this last case, the specification expresses that if a property is verified, which could for instance restrict the
set of considered execution,s then an other property is guaranteed to hold too.

Subtask 1.3 - Formal definitions of executive contexts. In the context of robustness analysis, our last
formalization subtask will be to define some ways to describe executive contexts for the different models
of distributed algorithms proposed in Subtask 1.1. There exist in the literature already different executive
contexts as for instance the synchronous model, the asynchronous model, model with a certain number of
failures, model with partial synchrony. As we have mentioned, in the context of verification of concurrent
systems, in order to regain decidability or to be more efficient, researchers have propose too some ways
to restrict the set of considered executions by imposing some restrictions on it (for instance by bounding
the number of phase in message passing system, a phase being a period of time where only one process
is allowed to send messages). Such restrictions can as well be seen as specific executive contexts. We
believe that there are some connections between the executive contexts considered in the distributed com-
puting community and the one used in verification, and we will examine them. Hence one aspect of this
subtask will be as well to perform a comparison analysis between the already existing contexts. We will
furthermore see if we can define new contexts based on the one that already exists but as well based on
the analysis we will perform in Task 2. In fact, it is to be expected that the robustness analysis will lead
us to see that we are able to refine an algorithm for some contexts that were maybe not the one proposed
originally. Such a situation could happen for example, when we decide to stop the cycle of development
represented in Figure 1 after some iterations without obtaining a full robust algorithm.

RISKS AND THEIR MANAGEMENT Tasks 1.1 and 1.2 are not very risky, however to achieve them it is necessary
to have a strong collaboration between researchers from the formal model community and from the distributed
community. Our consortium have in fact been conceived following this spirit. Even if these two tasks are not
that challenging, they will allow to develop a common language which will be a building block for the rest of
our project and hence they should not be neglected. The task 1.3 is the most challenging since it consists in
developing formalism to describe executive contexts and try to provide some families of such contexts. The
difficulty comes from the fact, that it is a new way of looking at distributed algorithm. However we are confident
that we will be able to achieve this, in particular because there already exist definition of such specific contexts
in the literature, that might be too informal for our purpose, but that we will use as a source of inspiration.

2.1.3 Task 2: Robustness

COORDINATOR Benedikt Bollig (LSV)

OBJECTIVES

Develop methods to verify statically the robustness of distributed algorithms

PROGRAM

In this task, we will develop different algorithmic techniques to solve the robustness problem. These
techniques will be used in the robustness analysis of the development cycle presented on Figure 1. The
following subtasks will lead our reasoning: we will first seek for methods in a very simple context (the
one of finite-state systems). Then, we will perform a theoretical analysis in order to understand what can,
or cannot, be achieved automatically and at which cost. Finally, we will propose methods based on ap-
proximation techniques, either to be more efficient or to regain decidability. For each of these subtasks,
we will also study ways to transmit the counter-example obtained by robustness analysis.

Subtask 2.1 - Analysis of finite-state systems. Most of the distributed algorithms that we will analyze are
designed to work with an unbounded number of participants and might also employ variable or messages
ranging over infinite domains. However, even if our goal is to propose methods to perform a robustness
analysis in such general context, the first step towards this goal is a thorough robustness analysis in the

11

FREDDA Société de l’information et de la communication 2017

finite-state case. Finite-state models are obtained by fixing the number of participants and bounding the
available resources. The main issue of this task is to see how robustness can be verified in this simpler
context. In fact, there could be different notions of robustness. For instance, one could ask to be robust with
respect to some specification, which means that a distributed algorithm which satisfies some specification
in a specific execution context, will continue to verify it if the context is changed. But one could also
require stronger properties like equivalence of the sets of reachable states or trace equivalence. We will
develop algorithms to check the different notions of robustness we will consider. A precise understanding
of this task is essential for the other subtasks.

Subtask 2.2 - Establish decidability frontier. In this subtask, we will consider more general models,
closer to distributed algorithms (with an unbounded number of processes or unbounded data) and we will
study the decidability and the complexity of the robustness checking for these new models. We expect
that, for the general models we will define in Subtask 1.1., most simple verification problems will be
undecidable due to the various sources of infinity that coe into play. However, it is important to understand
what are the precise combinations of aspects that lead to undecidability. This may allows us to assess if our
models could not be refined so that to fall in a decidable fragment. Furthermore, it might be the case that
simple verification questions, like safety properties, are impossible to check on our models while some of
the robustness problems are decidable. In fact, the input of the robustness analysis is an algorithm that
has already been proven correct in a certain execution context, and it is possible that using this knowledge
facilitates the verification of the robustness. To illustrate this point, note that there are some logics used in
program verification, like separation logics, for which the satisfiability problem is in general undecidable
but the entailment in some specific case becomes decidable [IRV14]. The reason is that, to check an
implication, one restricts to the model satisfying the antecedent. Some similar reasoning could apply to
robustness analysis.

Subtask 2.3 - Approximation techniques. In this subtask, we will develop some approximation schemes
for the robustness analysis in order to tackle potential undecidability results or to be more efficient. The
thing is that, in the robustness analysis, we can seek for some specific behaviors that will not be robust
and that will consist in a subset of the general behaviors of the distributed algorithm at hand. If we
can formally define subsets of behaviors for which robustness can be tested efficiently, then this yields
efficients techniques for finding witnesses of non-robustness. However, such techniques are well suited to
find counter-examples, but they cannot be used to prove robustness (since only an under-approximation
of the behavior is observed). At that point, different options may be considered. Assume we found
some restrictions on the set of executions that allows us to decide, efficiently, whether a given algorithm
is robust. Now, suppose that we did not find a counter-example to the robustness in such a set. Then,
we can either try to increase the set of observed executions and relaunch the analysis, or decide that we
have obtained a robust algorithm for an execution context that is more restricted than the one for which
robustness was originally tested. In this latter case, we obtain that the distributed algorithm is robust with
respect to another execution context than the original one. Note that this is the reason why there is a strong
connection between this subtask and Subtask 1.3. In fact, the restrictions that we will impose to define
under-approximation of behaviors could be seen themselves as specific execution contexts.

RISKS AND THEIR MANAGEMENT. The subtask 2.1 is the less risky one because of the restrictions imposed on
the model. For the subtask 2.2, there is not a real risk to not obtain results, but as mentioned it is possible that
most of the robustness results will be undecidable in the general context. Thanks to the expertise of researchers
in the consortium specialized in formal methods, there are high chance that we will be able to draw a nice
cartography of the different aspects leading to undecidability and even obtain some interesting classes where
the robustness analysis will be automatically feasible. The subtask 2.3 is the most challenging in this task and
as well the more risky, because we have to provide useful approximation techniques, which allows in practice to
detect non robustness. We are however confident that we will be able to obtain results as well here, because such
a methodology has already been successfully applied for instance to search for bugs in concurrent programs.

2.1.4 Taks 3: Monitoring

COORDINATOR Anca Muscholl (LaBRI)

12

FREDDA Société de l’information et de la communication 2017

OBJECTIVES

Construct distributed monitors detecting deviations from the execution context at runtime, and design recovery
procedures when a deviation is detected.

PROGRAM

The motivation behind this task is to construct monitors that detect changes in the execution context and
initiate appropriate recovery actions. A distributed algorithm is designed for a certain execution context, like
synchronous or asynchronous communication, uniqueness of process identifiers in the network, and certain
types and frequency of failures that can occur, without affecting the outcome of the algorithm. In reality, such
assumptions may become false during an execution, and a basic question is how to detect this at the runtime.
After detecting such an anomaly a monitor can initiate a recovery action, or switch to another algorithm de-
signed for a different execution context. The particularity of runtime monitoring needed in this context is that
processes have to collect necessary information while running the distributed algorithm, without introducing
additional synchronizations. Concretely it means that processes participating in the monitoring activity can
use only means of communication provided by the algorithm they monitor. For example, they can pigyback
monitoring information on messages being exchanged by the algorithm. This task will rely on Task 1, in par-
ticular on the formalization of families of distributed algorithms and the notions capturing various degrees of
satisfaction of the execution context.

Distributed monitoring is a challenging subject. There are many models of concurrent systems but for none
of them the problem is really well understood. In our case we are quite lucky since we can start from results
on monitoring for Zielonka automata. These automata are a rather direct abstraction of distributed algorithms,
and we have already some useful results on distributed monitoring in this setting. In view of our applications
to analysis of distributed algorithms, the model of Zielonka automata would need to be extended to parametric
automata where the number of participating processes is not fixed. We would also need to introduce data aspect,
in order to handle process identifiers. Finally, we will use monitoring to implement control which is another
challenging aspect of this task.

Subtask 3.1 This task will concentrate on a simplified case where the number of processes is fixed. This
brings us to the model of Zielonka automata. Fundamental theorem for Zielonka automata [Zie87] can
be understood as giving a construction of a distributed monitor. Building on our improvements of this
theorem [GGMW10], we will provide efficient construction of distributed monitors. Another challenge in
this task we will be to handle all properties linked to definitions of execution contexts identified in Task 1.
Existing results on monitoring consider only regular properties, but these are not sufficient to describe
execution contexts.
Subtask 3.2 This task will concentrate on monitoring of an extension of the Zielonka automata capable of
modeling of distributed algorithms. We have in mind a conservative extension of Zielonka automata where
unboundedly many processes communicate through shared registers storing process identities. Natural se-
quential specifications are provided by register automata [KF94] and their variants [BHLM14, SKMW17].
A central question is then whether Zielonka’s theorem has a parametrized analog. Uniqueness of process
identifiers may guarantee a smooth transfer from a fixed to an unbounded number of processes.

Another aspect is to consider more specific extensions of the model with data. A recent research
stream aims at extending temporal specifications and monitors by parametrized events. They range from
first-order extensions of LTL [BKM10] to register automata [GDPT13]. To some extent, the latter can
handle data values such as object references and process identities. Current techniques, however, are
restricted to centralized monitors and do not carry over to a distributed setting.
Subtask 3.3 The final step is to use distributed monitoring to control of distributed algorithms. We
expect to be able to synthesize controllers for distributed algorithms of particular shape (like “wait-free”
algorithms). Our approach is to use monitoring to detect changes and switch between different distributed
algorithms. It seems to us that this is one of the most promising approaches to automatic construction of
robust distributed algorithms.

RISKS AND THEIR MANAGEMENT We have already done some work that can serve as a basis of Subtask 3.1,
so we do not expect surprises there. This task though will serve to find a common language, it will be done in
parallel with Subtask 1.1, which also has this purpose. Subtask 3.2 is the main technical challenge of Task 3. At
present it is hard to predict to what extent we will be able to extend Zielonka’s theorem. We are quite confident

13

FREDDA Société de l’information et de la communication 2017

though that we will be able to find an extension covering test cases of this project. Finally, Subtask 3.3 will
very much depend on the progress in Task 1.

2.1.5 Task 4: Case study and protoypes

COORDINATOR Corentin Travers (LaBRI)

OBJECTIVES

Design new renaming algorithms demonstrating the methodology developed in Task 2 - Construct a collection
of monitors for the execution contexts these new algorithms withstand -Implement prototypes to automatize
robustness analysis and monitor synthesis.

PROGRAM

To guide and assess research in other tasks, we will focus on algorithms for the renaming problem. In this
problem, the processes are initially provided with unique identifiers in a large space.The goal for each process
is to pick a new name in a smaller interval such that no two processes share the same name.

Renaming Historically, renaming has been introduced as a problem that can be solved in unreliable asyn-
chronous environments [ABD+90]. Indeed, provided that the size of the target name-space is large enough,
the problem can always be solved, even in asynchronous, failure-prone environments. Surprisingly, despite
its very simple specification, sophisticated lower bounds and algorithms for renaming have been discovered.
Renaming has mainly been studied in the shared memory model. Several algorithms have been found, ex-
hibiting a trade-off between performances and how loose the target name-space is (see [Ali15] for a survey of
recent results). By contrast, little is known on renaming algorithms for message-passing systems, in which only
the synchronous [AAGT12, CHT99] and the asynchronous (e.g., [ABD+90]) models have been investigated.
Of course, by simulating shared registers, renaming algorithms designed for shared memory can be deployed
in message-passing systems. This comes at a high price, induced on one hand by the cost of the simulation
and, on the other hand, by the fact that shared-memory renaming algorithms usually assume the worst-case
environment: fully asynchronous communication and unbounded number of crash failures.

Several variants of the problem have been defined. In tight renaming, the size of the target name-space is the
total number of processes, while this constraint is relaxed in loose renaming. In adaptive renaming, the size of
the target name-space is not a function of the total number of processes, but rather of the number of processes
actually requesting new names. New names are acquired and then released in long-lived renaming. Hence,
renaming might be seen as a resource allocation problem, by equating new names with resources. Exclusive
access to a resource can be ensured with mutual exclusion. However, failure of one process in the critical
section may impede progress. An alternative is to have several copies of the resource, and guaranteeing that
each resource is accessed by at most one process at any time.

Adapting to the execution context In practice, although distributed executions exhibit asynchrony and fail-
ures do occur, timing anomalies and failures are somewhat rare. Moreover, many distributed problems of in-
terest (e.g., consensus, k-set agreement, tight renaming, etc.) cannot be solved in asynchronous, failure-prone
environments, but can be solved when the system satisfies some properties of synchrony. This has motivated
the development of indulgent algorithms. Such algorithms never violate the safety part of their specification
but may stall when the underlying execution is asynchronous and failures occur. Another approach consists in
(gracefully) degrading the constraints on the algorithm outputs as the execution context becomes harsher. For
example, for renaming, the size of the target name-space may depend on some notion of level of (a)synchrony
of the underlying execution. Finally, it is often the case that tolerating failures and dealing with asynchrony
requires inherently costly mechanisms, while rather simple solutions do exist for (partially) synchronous en-
vironments. Hence, efficient distributed algorithms often encompass various optimizations combined in an
ad-hoc manner, each targeting a special case in which outputs can be obtained quickly (e.g., fast-path in mu-
tual exclusion, various forms of early decision in agreement protocols, optimistic speculations techniques in
software transactional memory, etc.). This leads to monolithic, complicated, non-modular, hard to extend and
difficult to prove correct algorithms. A preeminent example is the classical Paxos consensus algorithm and

14

FREDDA Société de l’information et de la communication 2017

its descendants (entire websites are dedicated to explain them1). Another major concern is to translate such
algorithms into production code [CGR07].

Subtask 4.1 This tasks will concentrate on designing new message passing algorithms for renaming for
ranges of executions contexts lying between full synchrony and full asynchrony. We will follow the
methodology develop in Task 2, combining expertise in distributed algorithm design with (as much as
possible) automated robustness analysis.
Subtask 4.2 Given a collection of renaming algorithms A1, . . . , An, each certified to withstand a range of
variations in the execution context (for example, able to tolerate a certain number of failures below some
threshold, or guaranteeing progress as long as the communication pattern has some level of synchrony),
we would like to be able to select at run-time the best algorithm that fits the current execution context,
and to switch from one algorithm to another as the executions context changes. To that end, this task will
focus on designing distributed monitors and switching mechanisms in the framework of message passing
renaming algorithms.
Subtask 4.3 To facilitate Tasks 4.1 and 4.2, and to demonstrate the benefit of the FREDDA approach, this
task aims at producing prototype tools for automating robustness analysis and monitors synthesis.

RISKS AND THEIR MANAGEMENT This is a high-risk task. However, the members of the project from
distributed computing have a strong expertise in designing (partially) asynchronous, fault-tolerant message-
passing algorithms. We are confident that they can apply their knowledge to the renaming problem. Automatic
robustness analysis and monitor synthesis may have prohibitive complexity. We may thus have to limit the
number of processes, the range of execution context we consider and restrict ourselves to algorithm that follow
some well-structured pattern (round-based, finite message types, etc.). Nevertheless, this has to be balanced
with the potential large gains in terms of modularity, ease of extension and complexity of correctness proofs.
Finally, progress in this task is very dependant to progress made in Task 2 and Task 3.

2.1.6 Task 5: Organization of workshops

COORDINATOR Pierre Fraigniaud (IRIF)

OBJECTIVES

Organize two workshops which involve researchers from distributed computing and from formal methods.

PROGRAM

In this project, we will bring together researchers working on the verification of concurrent programs
and distributed systems, and researchers from distributed computing. We plan to organize two workshops
to strengthen this alliance. Both communities have a deep understanding of distributed computation, but from
two different perspectives. Historically, these communities have common roots. However, since more than two
decades, they tend to evolve independently. These workshops will address several topics that can be viewed
as bridges between the two aforementioned research fields, with potential fruitful co-developments. One of
the workshops will be organized as a Dagstuhl seminar, the other one together with a conference or as an
independent event.

2.2 Schedule and dependencies

The duration of this project will be four years. Figure 2 shows how the various tasks will be scheduled during
the project. This scheduling is justified by the dependencies presented in Figure 3. We see that Task 4 which
will guid our research thanks to the case study will feed the Subtasks 1.1 and 1.2 of Formalization which will
themselves be given in input of the tasks where we will develop techniques for robustness and monitoring.
The fact that Subtask 1.3 (Formalization of execution contexts) is interdependent of Task 3 and 4 is because
the analysis techniques we will develop will also influence the way we define execution contexts. The results
we will obtain in Tasks 2 and 3 will give a feedback to improve the distributed algorithms studied in Task 4.
Finally, the two workshops that we will organize inside Task 5 will be scheduled at the end of the first year of
the project and at the middle of the third year.

1E.g., https://understandingpaxos.wordpress.com/

15

https://understandingpaxos.wordpress.com/

FREDDA Société de l’information et de la communication 2017

Figure 2: Schedule of the tasks for the project

Figure 3: Dependencies between the tasks

2.3 Deliverables

For each task (except Tasks 0 and 5), we will provide two deliverables: the first one will be provided at the
middle of the task to sum the progress of the task and one at the end of the task. If t0 is the date at which will
begin the project, this will lead to the following deliverables (time lengths are provided in months):

t0 + 18 Report on progress for Task 1 t0 + 36 Final report on progress for Task 1
t0 + 24 Report on progress for Task 4 t0 + 48 Final report on progress for Task 2
t0 + 30 Report on progress for Task 2 t0 + 48 Final report on progress for Task 3
t0 + 30 Report on progress for Task 3 t0 + 48 Final report on progress for Task 4

2.4 Consortium Description

We present here the consortium. CVs of the different participants are provided in the appendix.

2.4.1 Scientific coordinator

This project will be led by Arnaud Sangnier. Arnaud Sangnier is an assistant professor at University Paris
Diderot since September 2010 and doing his research at laboratory IRIF in the team Modelization and Verifi-
cation. He did his PhD jointly at the laboratory LSV of ENS Cachan and the french company for electricity
(EDF) from 2005 until 2008 under the supervision of Alain Finkel and Étienne Lozes. His PhD focused on de-
veloping automatic methods for the verification of programs manipulating dynamic data structures and integer
variables. After his PhD, Arnaud did a first year of postdoctoral study at the department of computer science
of the University of Torino (Italy). There, he studied the verification of probabilistic systems with infinite data.
His postdoctoral stay was financed by a scholarship from the french DGA. From January 2010 until Septem-
ber 2010, he did another postdoctoral stay at the department of computer science of the University of Genova
(Italy) where he worked together with Giorgio Delzanno on the verification of parameterized systems to model

16

FREDDA Société de l’information et de la communication 2017

the behavior of protocols running on mobile ad hoc networks. The main theme of Arnaud Sangnier’s research
is the verification of so-called infinite-state systems. He studies particularly the class of programs manipulat-
ing integer variables (also known as counter systems) and communication protocols developed for networks
in which the number of active entities is a priori unknown and hence can be seen as a parameter. During the
last years, he has established new fundamental results for this class of systems, published at some of the best
conferences in formal methods (ICALP, CONCUR, FOSSACS). He has published 4 articles in international
journals and 26 articles in international conferences. From 2012 to 2015, he has also co-supervised, together
with Stéphane Demri (Senior Researcher at LSV-ENS Cachan), the PhD thesis of Amit Kumar Dhar, who is
now an assistant professor at IIT-Allahabad.

2.4.2 Description of the consortium

The consortium gathers experts in formal methods and in distributed computing from three French labs which
are international leader in these two domains: IRIF, LSV, and LaBRI. Furthermore the participants are divided
up in such a way that, in each laboratory, a collaboration between experts from these two communities is
locally possible. Hence, we hope that this project will give rise two new collaborations and will be able to bring
techniques from distributed computing in the top international conferences in formal methods and vice-versa.
In fact, even though, at some point, these two research communities were very close to each other (with, for
instance, the works of Leslie Lamport or the automatic proof of concurrent algorithms like mutual exclusion
protocol), the last decade has not seen much interaction between them.

IRIF. The Institut de Recherche en Informatique Fondamentale (IRIF) is a research laboratory co-founded
by the CNRS and the University Paris-Diderot, resulting from the merging of the two research units LIAFA
and PPS on January 1st, 2016. The scientific objectives of the laboratory are at the core of computer science,
focusing on: the mathematical foundations of computer science; computational models and proofs; models,
algorithms and system design. The IRIF participants to FREDDA are members either of the Distributed Algo-
rithms and Graph team or of the Modeling and Verification team. The people from the distributed computing
team are international experts in the design of distributed algorithms in specific contexts. For what concerns
the researchers from verification, they are international specialists in logic for verification of systems as in
developing automatic algorithms for the analysis of computing systems.

LaBRI. The Laboratoire Bordelais de Recherche en Informatique (LaBRI) is a research unit associated
with the CNRS (UMR 5800), the University of Bordeaux and Bordeaux INP. It has significantly increased in
staff numbers over recent years and now includes around 350 members (academics, researchers, PhDs, etc.).
The members of the laboratory are grouped in six teams, each one combining basic research, applied research
and technology transfer: Combinatorics and Algorithmics, Image and Sound, Languages and Systems and Net-
works, Formal Methods, Models and Algorithms for Bio-informatics and Data Visualisation and Supports and
Algorithms for High Performance Numerical Applications. The LaBRI participants to FREDDA are members
of either the Combinatorics and Algorithmics team or of the Formal Methods team. Both teams are recog-
nized worldwide for their expertise, as testified by membership in programme committees, invited talks and
tutorials, as well as the organization of conferences and workshops. The LaBRI team includes specialists on
various models and topics in the scope of the project, in particular fault tolerance and synchronization issues in
distributed computing, distributed monitoring and control, and parametrized verification.

LSV. The Laboratoire Spécification et Vérification (LSV) is a joint laboratory of ENS Paris-Saclay and the
French Centre National de la Recherche Scientifique (CNRS). It counts currently 25 permanent members, 9
temporary members, and 22 PhD students. The LSV has 20 years of expertise on formal verification across a
wide range of computer systems, such as distributed and database systems, time-critical systems, and security
protocols. Benedikt Bollig and Paul Gastin are members of the VASCO team, while Matthias Függer is a mem-
ber of the Inria team MExICo. VASCO’s research is about the analysis of complex systems, in a broad sense.
The focus is on automated verification and synthesis of safety-critical systems with quantitative constraints and
complex interactions between their components. MExICo is engaged in studying concurrency and interaction,
with the objective to increase reliability of distributed and asynchronous systems.

17

FREDDA Société de l’information et de la communication 2017

2.5 Scientific justification of requested resources

Since most of the requested resources are estimated in the same manner for each of the three partners, we
present the following justification of the requested resources according to the type of resources, and for each
of these, partner by partner, rather than in the opposite way. All calculations will be rounded to the closest
multiple of 100 e.

2.5.1 Equipment

We will provide a work station (a laptop) to each staff funded by the ANR (PhD student and Postdoctoral
fellow). The cost of a work station is estimated to 1500 e. Considering the duration of the project, some
permanent member will also need to renew their work station. This leads to the following estimations:

For IRIF: 4⇥ 1500 e = 6000 e
For LaBRI: 2⇥ 1500 e = 3000 e
For LSV: 1⇥ 1500 e = 1500 e

2.5.2 Staff

PhD student for IRIF and LSV We request the funding of a PhD student which will perform do his thesis
between LSV and IRIF. His/her mission will be focus on Task 3. This student will be supervised by Arnaud
Sangnier at IRIF and by Benedikt Bollig at LSV. However, he/she will also strongly collaborate with the experts
in distributed computing at IRIF. His/her work will be mainly focus on first a theoretical analysis of what can
be achieved for the robustness analysis (Subtask 1.2) and then he will have in charge to propose some efficient
analysis techniques for the robustness analysis based on approximation (Subtask 1.3). He/she will start the
PhD at the end of Year 1 in order to take benefit of the initial progress made in the project. The estimated cost
incurred by this position is 95000 e.

Postdoctoral fellow for LaBRI We request the funding of a 12-month postdoc position. Depending on the
expertise of the candidate (formal methods or distributed computing), her/his mission will be related to Task 3
or Task 4. In any case, she/he will be supervised by two members of the project, one from the team Algodist
and the other from the team Méthodes Formelles. Specifically, in case of a candidate from formal methods,
her/his work will be mainly dedicated to Substask 3.3, extending monitoring to control, especially for some
well-structured class (e.g., round-based) of renaming algorithms. In a case of a candidate more specialized into
distributed computing, we expect her/him to focus on the design of new renaming algorithms, following the
methodology developed in Task 2. The postdoctoral fellow will start at the end of year 2, in order to benefit
from the initial progress made in Tasks 1 and 2. The estimated cost incurred by this position is 50000 e.

Master internships They will be proposed in relation with the various tasks of the project. We expect to
supervise two students at IRIF, three students at LaBRI, and two students at LSV, in the course of the project,
for a four-months period each. Considering a cost of 600e/month, this gives an amount of 4800 e for IRIF and
LSV and of 6700 e for LaBRI.
We obtain the following total for the staff part of the budget:

For IRIF: 95000 e + 4800 e = 99800 e
For LaBRI: 50000 e + 6700 e = 56700 e
For LSV: 4800 e = 4800 e

2.5.3 Missions

Project plenary meetings The project gathers researchers from two almost disjoint scientific communities,
namely Formal Methods and Distributed Algorithms. Intensive collaboration between consortium members
from the different communities is crucial to the success of the project. We therefore plan to organize two
plenary meetings per year, for the duration of the project. We plan each meeting to be 3-days long and expect
that every member will participate in each meeting. However, to keep costs low, most of the meetings (6/8) will
be hosted in Paris (at IRIF or LSV) and the other (2/8) in Bordeaux at LaBRI. For each meeting, and for each
non-local member, the cost is estimated to 500 e (the cost is 0 when the meeting is hosted in the city of the lab

18

FREDDA Société de l’information et de la communication 2017

of the member). We thus obtain (considering that the PhD student and the postdoctoral fellow will not attend
every meeting):

For IRIF: (7⇥ 2 + 1⇥ 1)⇥ 500 e = 7500 e
For LaBRI: (4⇥ 6 + 1⇥ 2)⇥ 500 e = 13000 e
For LSV: (3⇥ 2)⇥ 500 e = 3000 e

International exchanges To further foster collaborations and benefit from outside expertise, we request re-
sources to fund short international visits (to or from abroad for one or two weeks) for each member of the
project. The cost of a short visit is estimated to 1500 e.

For IRIF: 6⇥ 1500 e = 9000e
For LaBRI: 4⇥ 1500 e = 6000 e
For LSV: 3⇥ 1500 e = 4500 e

Dissemination We expect the main results of the project to be communicated to top-level international con-
ferences in distributed computing and formal methods and also to workshops, GdR, etc. We estimate the cost of
attending a conference or a workshop to 1500 e. We request resources for each member to attend a conference
per year. This might be seen as a large amount, but conferences remain the most important way to communicate
new results in TCS. It should also be noted that the members of the project have been productive in the recent
year.

For IRIF: 6⇥ 4⇥ 1500 e = 36000 e
For LaBRI: 4⇥ 4⇥ 1500 e = 24000 e
For LSV: 3⇥ 4⇥ 1500 e = 18000 e

2.5.4 Total

Total (+00%) Equipment Staff Mission
For IRIF: 158 300 e 6 000 e 99 800 e 52500 e
For LaBRI: 102 700 e 3000 e 56700 e 43000 e
For LSV: 31 800 e 1500 e 4800 e 25500 e
TOTAL(+00%) 292 800 e

3 Impact and benefits of the project

3.1 A new framework for the development of distributed algorithm

The goal of the project is to propose a new framework to ease the development of distributed algorithms
based on robustness analysis. In other words, it aims at bringing some automated methods in the process of
development of these algorithms. At the moment, the way distributed algorithms are produced highly depends
on the knowledge and the ability of the researchers in distributed computing. As a consequence, they can be
false, they are difficult to adapt to other contexts, their description is sometimes ambiguous, and they are hard
to prove correct. We believe that formal methods, and in particular techniques that have been developed in the
last decades, can be adapted and used in order to improve the design process.

Our project will bring a new perspective to the design and analysis of distributed systems. Our working
assumption is that we cannot expect to know the execution context precisely. In other words, every time an
algorithm is deployed, its execution context will be different. To address this challenge, we will provide (i)
means to describe context changes formally; (ii) methods to model and verify one algorithm under various
execution contexts; (iii) monitors to detect, at runtime, if the initial assumptions on the execution context
still hold. These goals require a paradigm shift from the two communities: From the distributed computing
perspective, we need to be more general and think about changing execution contexts. From the verification
perspective, we need to be more focused and think only about particular classes of systems that are actually
variations on one algorithm. If successful, our project will open new horizons for the two fields and provide
advanced automated techniques for the design of robust distributed applications.

Our case study will allow us to implement and test the methods we develop. We intend to construct a
prototype that will serve as a proof-of-concept showing how a distributed algorithm can be adapted to an

19

FREDDA Société de l’information et de la communication 2017

execution context at hand. This will address an issue that slowly but surely becomes a very important topic in
software development.

Finally, we can expect as well to create new adaptative algorithms based on the robustness development
of some already existing algorithms. It is to be expected that such algorithms are the future of distributed
computing. In fact, there already exist algorithms that are based on this idea of adaptation to the execution
contexts and that are succesfully used. An important example is the Paxos algorithm which is widely used in
implementations of georeplicated data structures. In fact, the idea behind Paxos, whose role is to solve the
consensus in a network with failures, is that a good execution context allows it to answer better, but in bad
executive contexts where, for instance, a bounded number of entities do not answer, Paxos can however make
progress.

3.2 Reconciliation of two research communities

This proposal aims to reconcile distributed computing, in its aspect of the construction and analysis of dis-
tributed algorithms, and verification, which is targeted on the automated analysis of distributed systems. It
is in line with a more general trend of establishing links between the theory of algorithms (algorithm de-
sign and analysis, complexity, etc.) and the theory of software (verification, certification, semantics, pro-
gramming, etc.).2 More precisely, FREDDA gathers leading French experts from the two communities to
develop new ways of analyzing and modifying distributed algorithms from a specifically chosen class of al-
gorithms. At the international level, research topics related to our project are regularly presented at top con-
ferences in both areas. However, leading conferences such as PODC (ACM Symposium on Principles of
Distributed Computing) and CONCUR (International Conference on Concurrency Theory) have quasi dis-
joint audiences, as the two communities evolved independently during the past three decades. This situa-
tion slowly changes now, due to significant challenges raised by distributed systems. Members of our group
were already involved in organizing a successful workshop gathering researchers from the two areas (http:
//www.labri.fr/perso/travers/DRV2016).

3.3 Dissemination

The scientific dissemination will consist in publications at top-level international conferences. As underlined
above, such cross-community publications are only starting to appear (some of them have been co-authored
by members of our project). We expect this trend to gain momentum. We will also aim at giving cross-
community courses on the master level at our respective institutions, and present the results of our project
at some summer schools. As we have seen, we will organize two workshops to promote our findings, to
encourage new collaborations, and to build a cross-area community involving researchers from both verification
and distributed computing. The first workshop is the Dagstuhl seminar 18211 “Formal Methods and Fault-
Tolerant Distributed Computing: Forging an Alliance”, which is scheduled in May 2018. The second workshop
could be a satellite workshop to one of the top conferences either in verification or in distributed algorithms.
These workshops will continue and extend a workshop organized in 2016 in Italy (Bertinoro Workshop on
Distributed Runtime Verification) by participants of this project (P. Fraignaud and C. Travers).

We expect that the ideas developed in this project could be taught at some Master 2 level. They may also
give birth to new courses where formal methods and the design of distributed algorithms are more interlaced
than it is currently the case.

2Cf. Moshe Y. Vardi: Communications of the ACM 58(8), page 5, 2015.

20

http://www.labri.fr/perso/travers/DRV2016
http://www.labri.fr/perso/travers/DRV2016

	Project summary
	Summary of persons
	Context, positioning and objectives
	Context and challenges
	Goals and novel aspect
	Expected results
	State of the art

	Project organization and means implemented
	Tasks description
	Task 0: Project management
	Task 1: Formalization
	Task 2: Robustness
	Taks 3: Monitoring
	Task 4: Case study and protoypes
	Task 5: Organization of workshops

	Schedule and dependencies
	Deliverables
	Consortium Description
	Scientific coordinator
	Description of the consortium

	Scientific justification of requested resources
	Equipment
	Staff
	Missions
	Total

	Impact and benefits of the project
	A new framework for the development of distributed algorithm
	Reconciliation of two research communities
	Dissemination

