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Abstract. We introduce a new algorithm that takes a Transition-based
Emerson-Lei Automaton (TELA), that is, an ω-automaton whose accep-
tance condition is an arbitrary Boolean formula on sets of transitions to
be seen infinitely or finitely often, and converts it into a Transition-based
Parity Automaton (TPA). To reduce the size of the output TPA, the
algorithm combines and optimizes two procedures based on a latest ap-
pearance record principle, and introduces a partial degeneralization. Our
motivation is to use this algorithm to improve our LTL synthesis tool,
where producing deterministic parity automata is an intermediate step.

1 Introduction

Let us consider the transformation of ω-automata with arbitrary Emerson-Lei
acceptance into ω-automata with parity acceptance. Our inputs are Transition-
based Emerson-Lei Automata (TELA), i.e., automata whose edges are labeled
with integer marks like 0 , 1 , 2 , ... and whose acceptance condition is a positive
Boolean formula over terms such as Fin( 1 ) or Inf( 2 ) that specifies which marks
should be seen infinitely or finitely often in accepting runs. Our algorithm pro-
cesses a TELA with any such acceptance condition, and outputs a TELA whose
acceptance can be interpreted as a parity max odd (resp. even) condition, i.e.,
the largest mark seen infinitely often along a run has to be odd (resp. even).
Figures 5 and 7 on page 20 show an example of input and output.

While non-deterministic Büchi automata are the simplest ω-automata able to
represent all ω-regular languages, deterministic Büchi automata are less expres-
sive; as a consequence, applications that require determinism usually switch to
more complex acceptance conditions like Rabin, Streett, or parity. Parity can be
regarded as the simplest of the three, in the sense that any parity automaton can
be converted into a Rabin or a Streett automaton without changing its transition
structure. Parity acceptance is especially popular among game solvers, as parity
games can be solved with memoryless strategies and arise in many problems.

Our motivation comes from one such problem: reactive synthesis from LTL
specifications, i.e., building an I/O transducer whose input and output signals
satisfy an LTL specification φ [5]. The high-level approach taken by our ltlsynt
tool [21], or even by the SyntComp’19 winner Strix [19], is to transform the LTL
formula into a deterministic transition-based parity automaton (DTPA), inter-
pret the DTPA as a parity game by splitting the alphabet on inputs and outputs,
then solve the game and use any winning strategy to synthesize a transducer.
Let us zoom on the first step: transforming an LTL formula into a DTPA.
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One of the many methods to transform an LTL formula into a DTPA is to first
convert the LTL formula into a non-deterministic Büchi automaton, and then
determinize this automaton using some variant of Safra’s construction to obtain
a DTPA [23, 24]. This is the current approach of ltlsynt [21]. However, since
the introduction of the HOA format [3] allowing the representation of TELA,
we have seen the development of several tools for converting LTL formulas into
TELA: for instance delag [22], ltl2da and ltl2na (all three part of newer
versions of Owl [14]), ltl3tela [20], or Spot’s ltl2tgba -G (see Section 6),
all trying to reduce the size of their output by using acceptance formulas more
closely related to the input LTL formulas. An alternative way to transform an
LTL formula into a DTPA is therefore to first transform the LTL formula into a
deterministic TELA, and then “paritize” the result. This paper focuses on such
a paritization procedure. Note that our construction preserves the deterministic
nature of its input but also works on non-deterministic automata.

Our procedure adapts for TELA, optimizes, and combines a few existing
transformation procedures. For instance there exists a procedure called SAR
(state appearance record) [17, 18] that converts a state-based Muller automaton
into a state-based parity automaton, and a similar but more specialized proce-
dure called IAR (index appearance record) [17, 18] for transforming a Rabin or
Streett automaton into a parity automaton. These two procedures are based on
a latest appearance record (LAR), i.e., a structure that keeps track of the latest
occurring state or the latest occurring unsatisfied Rabin/Streett pair (the term
LAR is sometimes used to describe SAR [11]). We describe the adaptation of
these two procedures in Section 4. In the context of a TELA, we introduce a
simplified SAR called CAR (color appearance record) that only tracks colors, and
the IAR algorithm has already been adapted by Křetínský et al. [16]. A third
transformation, also described in Section 4, can be used as a preprocessing before
the previous procedures: this is a partial degeneralization, i.e. an extension of the
classical degeneralization procedure [12, 2] that will replace any sub-formula of
the form

∧
i Inf(mi) (resp.

∨
i Fin(mi)) by a single Inf(mj) (resp. Fin(mj)) in the

acceptance condition.
In Section 5 we present our “paritization” procedure that combines the above

procedures with some additional optimizations. Essentially the automaton is
processed one strongly-connected component (SCC) at a time, and for each
SCC the acceptance condition is simplified before choosing the most appropriate
transformation to parity.

This paritization procedure is implemented in Spot 2.9. In Section 6 we show
how the combination of all the improvements outperforms the straightforward
CAR algorithm in practice.

2 Transition-based Emerson-Lei Automata

Emerson-Lei Automata were defined [9] and named [25] in the 80s; they provide
a way to describe a Muller acceptance condition using a positive Boolean formula
over sets of states that must be visited finitely or infinitely often. Below we define
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the transition-based version of those automata, as used in the Hanoi Omega-
Automata Format [3]. Instead of working directly with sets of transitions, we
label transitions by multiple colored marks, as can be seen in Figures 5–7.

Let M = {0, . . . , n−1} be a finite set of n contiguous integers called the set of
marks or colors, from now on also written M = { 0 , 1 , . . .} in our examples. We
define the set C(M) of acceptance formulas according to the following grammar,
where m stands for any mark in M :

α ::= ⊤ | ⊥ | Inf(m) | Fin(m) | (α ∧ α) | (α ∨ α)

Acceptance formulas are interpreted over subsets of M . For N ⊆ M we define
the satisfaction relation N |= α inductively according to the following semantics:

N |= ⊤ N |= Inf(m) iff m ∈ N N |= α1 ∧ α2 iff N |= α1 and N |= α2

N ̸|= ⊥ N |= Fin(m) iff m /∈ N N |= α1 ∨ α2 iff N |= α1 or N |= α2

Intuitively, an Emerson-Lei automaton is an ω-automaton labeled by marks
whose acceptance condition is expressed as a positive Boolean formula on sets
of marks that occur infinitely or finitely often in a run. More formally:

Definition 1 (Transition-based Emerson-Lei Automata). A transition-
based Emerson-Lei automaton (TELA) is a tuple A = (Q,M,Σ, δ, q0, α) where:

– Q is a finite set of states.
– M is a finite set of marks.
– Σ is a finite input alphabet.
– δ ⊆ Q×Σ × 2M ×Q is a finite set of transitions.
– q0 ∈ Q is an initial state.
– α ∈ C(M) is an acceptance formula.

Given a transition d = (q1, ℓ, A, q2) ∈ δ, we write d = q1
ℓ,A−−→ q2. A run r of A

is an infinite sequence of transitions r = (si
ℓi,Ai−−−→ s′i)i≥0 in δω such that s0 = q0

and ∀i ≥ 0, s′i = si+1. Since Q is finite, for any run r, there exists a position
jr ≥ 0 such that for each i ≥ jr, the transition si

ℓi,Ai−−−→ s′i occurs infinitely often
in r. Let Rep(r) =

⋃
i≥jr

Ai be the set of colors repeated infinitely often in r.
A run r is accepting if Rep(r) |= α, and we then say that A accepts the word

(ℓi)i≥0 ∈ Σω. We may then write r |= α. The language L (A) is the set of words
accepted by A. Two TELA are equivalent if they have the same language. By
extension, the language of a state q ∈ Q is the language of the automaton using
q as initial state.

Definition 2 (Strongly Connected Component). Let us consider a TELA
A = (Q,M,Σ, δ, q0, α). A strongly connected component (SCC) is a non-empty
set of states S ⊆ Q such that any ordered pair of distinct states of S can be
connected by a sequence of transitions of δ.

We note A|S = (S,M,Σ, δ′, q′0, α) a sub-automaton induced by S, where δ′ =
δ ∩ (S ×Σ × 2M × S), and q′0 ∈ S is an arbitrary state of S. An SCC S is said
accepting if L (A|S) ̸= ∅.
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Example 1. In the automaton of Figure 5, the run r that repeats infinitely the
two transitions 0 12 4

3 has Rep(r) = { 2 , 3 , 4 }. Since Rep(r) satisfies
the acceptance condition (written below the automaton) r is an accepting run.
Moreover, the set of states {0, 1} is a SCC of the automaton.

A TELA’s acceptance formula can be used to express many classical ω-
automata acceptance conditions, as shown in Table 1. Note that colors may ap-
pear more than once in most formulas; for instance (Fin( 0 )∧ Inf( 1 ))∨(Fin( 1 )∧
Inf( 0 )) is a Rabin acceptance formula.

Table 1. Shape of classical acceptance formulas. The variables m,m0,m1, . . . stand
for any acceptance marks in M = {0, 1, . . .} to allow multiple occurrences.

Büchi Inf(m)
generalized Büchi

∧
i Inf(mi)

co-Büchi Fin(m)
generalized co-Büchi

∨
i Fin(mi)

Rabin
∨

i (Fin(m2i) ∧ Inf(m2i+1))
Rabin-like

∨
i (Fin(m2i) ∧ Inf(m2i+1)) ∨

∨
j Inf(mj) ∨

∨
k Fin(mk)

Streett
∧

i (Inf(m2i) ∨ Fin(m2i+1))
Streett-like

∧
i (Inf(m2i) ∨ Fin(m2i+1)) ∧

∧
j Inf(mj) ∧

∧
k Fin(mk)

parity max even Inf(2k) ∨ (Fin(2k − 1) ∧ (Inf(2k − 2) ∨ (Fin(2k − 3) ∧ . . .)))
parity max odd Inf(2k + 1) ∨ (Fin(2k) ∧ (Inf(2k − 1) ∨ (Fin(2k − 2) ∧ . . .)))

Intuitively, a Büchi automaton A accepts a run r if and only if r visits a
given mark infinitely often. If r has instead to visit multiple marks infinitely
often, then A is a generalized Büchi automaton. A co-Büchi automaton must
instead avoid visiting a given mark (or at least one mark amongst a subset of
M if it is generalized) infinitely often.

A Rabin automaton must visit some marks infinitely often and avoid others,
according to at least one pattern amongst a finite set. A Streett automaton is
the complement of a Rabin automaton. Some acceptance conditions are said to
be Rabin-like (resp. Streett-like) if they can be obtained by removing some Fin
or Inf clauses from a Rabin (resp. Streett) acceptance formula. A parity max
even (resp. odd) automaton accepts a run r if and only if the greatest infinitely
recurring mark in r is even (resp. odd).

Note that the only unusual formulas in Table 1 are the Rabin-like and Streett-
like conditions. A Rabin-like formula

∨
i

(
Fin(m2i) ∧ Inf(m2i+1)

)
∨
∨

j Inf(mj) ∨∨
k Fin(mk) can be converted into the Rabin formula

∨
i

(
Fin(m2i)∧Inf(m2i+1)

)
∨∨

j(Fin(a)∧Inf(mj))∨
∨

k(Fin(mk)∧Inf(b)) by introducing two new marks a and b
such that a occurs nowhere in the automaton and b occurs everywhere. Therefore,
without loss of generality, we may describe algorithms over Rabin automata, but
in practice we implement those over Rabin-like acceptance conditions.

When discussing Rabin acceptance, it is common to mention the number
of Rabin pairs, i.e., the number of disjuncts in the formula; we use the same
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vocabulary for Rabin-like, even if some of the pairs only have one term. Dually,
the number of pairs in a Streett-like formula is the number of conjuncts.

Remark 1. Formula Fin( 0 ) ∧ Inf( 1 ) can be seen as Rabin with one pair, or a
Streett-like with two pairs. Similarly, a generalized Büchi is also Streett-like.

Remark 2. Any sub-formula of the form
∨

i Inf(mi) (resp.
∧

i Fin(mi)) can be
replaced by a single Inf(a) (resp. Fin(a)) by introducing a mark a on all transi-
tions where any mi occurred. Thus, any parity automaton can be rewritten as
Rabin-like or Streett-like without adding or removing any transition: to produce
a Rabin-like (resp. Streett-like) acceptance, rewrite the parity acceptance for-
mula in disjunctive normal form (resp. CNF) and then replace each term of the
form

∧
i Fin(mi) (resp.

∨
i Inf(mi)) by a single Fin (resp. Inf).

Remark 3. The following table describes parity max odd and parity max even
acceptance formulas for various number of colors, using the HOA syntax [3]. It
may help clarify corner cases for some formulas (e.g. with 0 or 1 color), or provide
alternative interpretations as other classical acceptance conditions if there are
few enough colors. For Rabin(-like) and Streett(-like), the number of pairs is
specified between parentheses (see Remark 1).

cond. formula alt. interpretation

m
ax

od
d

0 ⊤ accept all
1 Fin( 0 ) co-Büchi
2 Inf( 1 )∨Fin( 0 ) Streett(1), Rabin-like(2)
3 Fin( 2 )∧(Inf( 1 )∨Fin( 0 )) Streett-like(2)
4 Inf( 3 )∨(Fin( 2 )∧(Inf( 1 )∨Fin( 0 )))
5 Fin( 4 )∧(Inf( 3 )∨(Fin( 2 )∧(Inf( 1 )∨Fin( 0 ))))

m
ax

ev
en

0 ⊥ reject all
1 Inf( 0 ) Büchi
2 Fin( 1 )∧Inf( 0 ) Rabin(1), Streett-like(2)
3 Inf( 2 )∨(Fin( 1 )∧Inf( 0 )) Rabin-like(2)
4 Fin( 3 )∧(Inf( 2 )∨(Fin( 1 )∧Inf( 0 )))
5 Inf( 4 )∨(Fin( 3 )∧(Inf( 2 )∨(Fin( 1 )∧Inf( 0 ))))

Note that according to the HOA format, a transition can be labeled with
any number of colors. Obviously, if the acceptance condition is a parity max
condition, then transitions with multiple colors can be simplified by removing
all colors but the greatest. Moreover, the absence of colors behaves as an imagi-
nary color −1 in terms of parity max acceptance. Applications that require each
transition to feature exactly one color may simply increment all existing colors,
introduce 0 on uncolored transitions, and switch the parity criterium from even
to odd or odd to even.
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3 Acceptance Simplifications

We introduce in this section straightforward simplification rules that allow us to
reduce the number of colors and the size of an acceptance formula of a TELA.
Assume that A is a TELA with an acceptance condition α. The notation α[β ←
γ] stands for “replace any subformula of α equal to β by γ”.

Basic cleanup.
If a color i does not appear on any transition of A, then overwrite α with
α[Fin(i)← ⊤][Inf(i)← ⊥].
If a color i appears on all transitions of A, then overwrite α with α[Fin(i)←
⊥][Inf(i)← ⊤].

Merging colors.
If two colors i and j always occur together, overwrite α with α[Fin(j) ←
Fin(i)][Inf(j)← Inf(i)] and remove all occurrences of color j in A.

Simplifying covering colors.
If each transition contains i, j, or both, then α can go through the following
four rewriting rules:

α[Fin(i) ∧ Inf(j)← Fin(i)][Fin(i) ∧ Fin(j)← ⊥]
[Fin(i) ∨ Inf(j)← Inf(j)][Inf(i) ∨ Inf(j)← ⊤]

Unit propagation.
Inf(i) and Fin(i) behave like positive and negative literals in a formula. Thus,
if they appear as unit clauses in a conjunction a or disjunction, then can be
propagated to the other clauses. In a subformula of the form Inf(i) ∨ β or
Fin(i) ∧ β, the subformula β can be replaced by β[Inf(i) ← ⊥][Fin(i) ← ⊤].
Similarly, in a subformula of the form Fin(i)∨β or Inf(i)∧β, the subformula
β can be replaced by β[Inf(i)← ⊤][Fin(i)← ⊥].

Fusing Inf-disjuncts or Fin-conjuncts.
As per Remark 2, a formula of the form Inf(i)∨ Inf(j) (resp. Fin(i)∧ Fin(j))
can be replaced by Inf(k) (resp. Fin(k)) if we add a color k to all transitions
with either i and j. As we do not want to increase the number of colors,
we only perform such a rewriting when either i or j occurs only once in the
formula.
Assuming the colors m1, . . . ,mn occur only once in α, the general rule con-
sists in substituting a subformula

∧n
i=1(Inf(mi) ∨ βi) for any subformula

Inf(j) ∨
∧n

i=1(Inf(mi) ∨ βi), and replacing all occurrences of color j in the
automaton by the set of colors m1, . . . ,mn. The rule is self-explanatory if
we first distribute Inf(j) inside the

∧n
i=1 before applying the rule described

in the previous paragraph.
A dual rule allows us to remove Fin(j) from Fin(j) ∧

∨n
i=1(Fin(mi) ∧ βi).

Transition-based acceptation.
It may happen that a TELA has more colors than edges. We can then reduce
the number of colors by assigning a single color to each edge then rewriting
the acceptance formula. Formally, let us assume the automaton has m edges.
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0 2 1

21(
Inf( 2 )∧Fin( 1 )

)
∨(

(Inf( 4 )∨Inf( 1 )) ∧ Fin( 0 ) ∧ (Fin( 1 )∨Fin( 3 ))
)

Fig. 1. A first example

1 2

0 2 1

21(
Inf( 2 )∧Fin( 1 )

)
∨(

(Inf( 4 )∨Inf( 1 )) ∧ Fin( 0 ) ∧ (Fin( 1 )∨Fin( 3 ))
)

Fig. 2. A second example

We define a bijective coloring function κ : δ → {0, . . . ,m− 1}. Given c ∈M ,
let δc be the subset of edges in δ colored by c; we then apply new rewriting
rules in order to compute a new acceptance formula:

α[Inf(c)←
∨
e∈δc

Inf(κ(e))][Fin(c)←
∧
e∈δc

Fin(κ(e))]

Applying this simplification makes the Color Acceptance Record algorithm
of Section 4 a Transition Acceptance Record.

Basic cleanup, merging colors, and simplifying complementary colors were al-
ready implemented in Spot. We added unit propagation and fusing as we worked
on the paritization procedure, while looking at the effect of the algorithm on au-
tomata with random acceptance conditions.

Example 2. We can see in Figure 3 that neither 3 nor 4 appear in any tran-
sition, so Inf( 4 ) is replaced by ⊥ and Fin( 3 ) by ⊤. The condition (Inf( 2 ) ∧
Fin( 1 ))∨ ((⊥∨ Inf( 1 ))∧Fin( 0 )∧ (Fin( 1 )∨⊤)) is a Boolean condition that we
can simplify and we end up with (Inf( 2 ) ∧ Fin( 1 )) ∨ (Inf( 1 ) ∧ Fin( 0 )).

Example 3. We consider in Figure 3 a similar example with extra colors. We
rewrite the condition again as (Inf( 2 ) ∧ Fin( 1 )) ∨ (Inf( 1 ) ∧ Fin( 0 )) However,
we can also remark that any transition features either 1 or 2 . So we can simplify
covering colors and get Fin( 1 )∨ (Inf( 1 )∧Fin( 0 )). This condition is of the form
Fin( 1 )∨β; thus, any occurrence of Inf( 1 ) is replaced by ⊤ as we apply the unit
propagation. We end up with Fin( 1 ) ∨ Fin( 0 ).

4 Specialized Transformations

We describe three algorithms that transform the acceptance condition of a
TELA. The first two output an equivalent TELA with parity acceptance: CAR
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(Section 4.1) works for any input, while IAR (Section 4.2) is more suitable for
Rabin-like or Streett-like inputs. The third algorithm is a partial degeneralization
(Section 4.3): given an input automaton with a generic acceptance formula α, it
outputs an automaton where any generalized Büchi (resp. generalized co-Büchi)
subformula of α has been replaced by a Büchi (resp. co-Büchi) formula. Various
optimizations common to these algorithms are listed in Section 4.4.

4.1 Color Appearance Record

Consider a set of marks M= {0, 1, . . ., n−1} and a TELAA = (Q,M,Σ, δ, q0, α).
We want to compute an equivalent TELA A′ with a parity max acceptance
condition. Let M ′ = {0, . . . , 2n + 1} be a set of 2n + 2 output marks and α′ =
Fin(2n+ 1) ∧ (Inf(2n) ∨ (. . .)) be the parity max even condition on M ′.

The intuition behind the Color Appearance Record (CAR) algorithm is to
pair states in Q with a permutation of M that records the colors visited by a
run in the order they were last seen. Colors that are encountered infinitely often
will end up being collected to the left of the permutation. Let Π(M) be the set
of permutations (or histories) of M , and Seq(M) be the set of finite injective
sequences (or orderings) of elements of M .

We can represent a history σ ∈ Π(M) by a table ⟨σ(0), σ(1), . . ., σ(n− 1)⟩;
using the operation · we can concatenate tables. We may occasionally interpret
a permutation table as a sequence of colors. We say that a history σ displays a
set F ⊆M if there exists an index i ∈M such that F = {σ(0), . . . , σ(i−1)}, i.e.
F contains exactly the i first elements of σ; we then also say that σ separates
F at the index i. We introduce the set QCAR = Q × Π(M) of CARs over the
states in Q.

We introduce an update function U : Π(M) × Seq(M) → Π(M) ×M that
moves a sequence of colors (c1, . . . , ck) to the left of an input permutation table
σ and returns the updated history as well as the number of elements rotated (i.e.
whose index in the table has been changed) by this move. Unlike the state-based
algorithm detailed by Löding et al. [17, 18], a single transition can be labelled by
multiple colors. Thus, we may have to insert multiple colors “at the same time”
in the history of colors. And the resulting history will depend on the order the
colors were inserted in.

Formally, U(σ, ()) = (σ, 0) if the input sequence is empty, and otherwise
U(σ, (c1, . . . , ck)) = (σ′, i) where σ′ = ⟨c1, . . . , ck⟩ · π, the table π is obtained by
removing c1, . . . , ck from σ, and i = 1 + max(σ−1(c1), . . . , σ

−1(ck)). Note that
σ′ is indeed a permutation and that neither the index i nor the table π depend
on the ordering of c1, . . . , ck. Moreover, the set {σ(0), . . . , σ(i− 1)} is separated
by σ′ at the index i.

Example 4. Let n = 4. Let us assume we want to insert the colors 0 and 1 in
the history σ = ⟨2, 1, 0, 3⟩; then U(σ, (0, 1)) = (⟨0, 1, 2, 3⟩, 3) but U(σ, (1, 0)) =
(⟨1, 0, 2, 3⟩, 3). Here, i = 3 and π = ⟨2, 3⟩.

By U ’s definition, the following lemma holds. The first part intuitively means
that the last colors inserted are stored to the left of the updated history; the
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second, that when we insert a color c, the set of colors that is rotated is exactly
the set of colors encountered since c’s last occurrence.

Lemma 1. Let σ ∈ Π(M) be a history, C ⊆ M , k ∈ N∗ and (C0, . . . , Ck) ∈
Seq(M)k such that C0 ∪ . . . ∪ Ck = C. Let σ0 = σ and U(σi, Ci) = (σi+1, ιi+1)
for i ∈ {0, . . . , k}. Then:

1. σk+1 displays C.
2. If σ displays C, then there exists l ∈ {0, . . . , k} such that σl+1 separates C

at the index ιl+1.

Proof. Lemma 1.1 is obvious by U ’s definition: the latest colors encountered
(hence, C) are inserted to the left of the history.

Let us prove Lemma 1.2. For all c ∈ C, let µ(c) = min{m | c ∈ Cm} be
the earliest occurrence of the color c in the sets of labelling marks. Let l =
max{µ(c) | c ∈ C} and L = {c ∈ C | µ(c) = l} be respectively the index and the
set of the colors that are encountered last. Note that if we update a history σ
displaying C by inserting colors that belong to C, the resulting history will still
display C. Hence, for i ∈ {0, . . . , k + 1}, σi displays C.

Thus, σl must be of the form π · πL · π′ where π, πL, and π′ are respectively
permutations of C−L, L, and M −C. Intuitively, the colors in C−L have been
moved to the front of σl that still displays C. Let j = |C| − 1 be the index of
the rightmost element of L in σl. Obviously, L ⊆ Cl. Then by definition of U ,
ιl+1 = j + 1. Since σl+1 displays C, it also separates it at the index ιl+1. ⊓⊔

We intuit that the set of colors occurring infinitely often in a run of A is
exactly the biggest set of colors that are infinitely rotated (i.e. separated at the
pivot point) in the CAR. Thus, assuming we match to each separated set in a
run a color in M ′ that depends on the number of elements in the set and will
be even if the set verifies the original acceptance condition α and odd otherwise,
then we can convert α to a parity max even condition verified by a new run
whose states are in QCAR.

Formally, we introduce a function κ : Π(M)×M →M ′ defined as follows:

κ(σ, i) = 2i if {σ(0), . . . , σ(i− 1)} |= α

= 2i+ 1 otherwise.

To a given run of of A, we can therefore match several runs that have the
same label but also record the colors encountered in a CAR and whose transitions
are marked by colors in M ′:

Definition 3. Let r = (si
ℓi,Ai−−−→ si+1)i∈N be a run of A and σ ∈ Π(M). We

introduce as follows the set ρCAR(r, σ) ⊆ (QCAR ×Σ × 2M
′ ×QCAR)ω of CAR

runs matched to r with initial history σ; r′ = (s′i
ℓ′i,Bi−−−→ s′i+1)i∈N belongs to

ρCAR(r, σ) if and only if ∀i ∈ N:

– ℓi = ℓ′i; the two runs have the same label;
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– s′i = (si, σi); r′ enriches the states of r with a history;
– σ0 = σ; the initial history is equal to the arbitrarily chosen permutation σ;
– there exists an ordering (a1, . . . , ak) ∈ Seq(M) of Ai and an index ιi+1 ∈M

such that U(σi, (a1, . . . , ak)) = (σi+1, ιi+1); the history is updated according
to the colors encountered by r;

– Bi = {κ(σi+1, ιi+1)}; edges are labelled according to the acceptance and the
size of the rotated set.

Note that if each transition of r is labelled by at most one color, then
ρCAR(r, σ) contains exactly one run. However, if at least two colors label one
of the transitions, then we can define multiple CAR runs depending on the or-
der we insert colors in the CAR.

Example 5. Let n = 4, σ = ⟨2, 1, 0, 3⟩, and α = Fin( 0 ) ∧ Inf( 1 ). Consider a

run r whose first transition is q
x,{ 0 , 1 }−−−−−−→ q′. Let σ be the initial CAR. Let

us consider the ordering ( 0 , 1 ); U(σ, (0, 1)) = (⟨0, 1, 2, 3⟩, 3), κ(⟨0, 1, 2⟩, 3) =
7 since {0, 1, 2, 3} ̸|= α, thus, we can match the initial transition to a CAR

transition (q, ⟨2, 1, 0, 3⟩) x,{ 7 }−−−−→ (q′, ⟨0, 1, 2, 3⟩).
Had we chosen instead the ordering ( 1 , 0 ), then the resulting CAR transi-

tion would have been (q, ⟨2, 1, 0, 3⟩) x,{ 7 }−−−−→ (q′, ⟨1, 0, 2, 3⟩). Thus, to a single run
of A, we can match multiple CAR runs, depending on the insertion order of the
colors.

We say that r′ separates a set F if there exists an index i ∈ N such that
σi separates F at the index ιi. F is separated infinitely often if there exists an
infinite number of such indices i. Intuitively, a set is separated by r′ if it is exactly
the set of elements rotated after inserting some colors in one of the histories of
the CAR run. The following lemma intuitively means that the only sets infinitely
separated by CAR runs are either Rep or subsets of Rep.

Lemma 2. Let r be a run of a TELA A and r′ ∈ ρCAR(r).

1. Rep(r) is separated infinitely often by r′.
2. If r′ separates F infinitely often then F ⊆ Rep(r).

Proof. We know that there exists a rank i0 after which the only colors that label
the edges of r belong to Rep(r). Moreover, by definition of Rep, there exists a
rank i1 ≥ i0 such that Ai0 ∪ . . . ∪ Ai1 = Rep(r). Then, by Lemma 1.1 and by
definition of ρCAR, σi1 displays Rep(r), regardless of the insertion order of the
coloring labels Ai0 , . . . , Ai1 .

By definition of Rep, there also exists a rank i2 ≥ i1 such that Ai1 ∪ . . . ∪
Ai2 = Rep(r). Then, by Lemma 1.2 and definition of ρCAR, there exists an index
i1 ≥ u0 ≥ i2 such that σu0

separates Rep(r) at the index ιu0
. We can more

generally compute a strictly monotonic sequence (ui)i∈N such that σui
separates

Rep(r) at the index ιi. Hence, Lemma 2.1 holds.
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Moreover, as σu0
separates exactly Rep(r) at the index ιu0

and the only colors
inserted after the rank u0 belong to Rep(r), by definition of the update function,
∀i ≥ u0, σi can only separate a subset of Rep(r) at the index ιi. Thus, Lemma
2.2 holds. ⊓⊔

The next lemma proves that Rep(r) is exactly the biggest set separated by
the CAR run r′.

Lemma 3. Let r be a run of a TELA A, r′ ∈ ρCAR(r), and F ⊆M . Rep(r) = F
if and only if:

1. F is separated infinitely often by r′;
2. if F ′ is separated infinitely often by r′, either F ′ = F or |F | > |F ′|.

Proof. Let us assume that Rep(r) = F . Proposition 3.1 holds by Lemma 2.1,
and 3.2 holds by Lemma 2.2.

Let F ⊆ M be such that propositions 3.1 and 3.2 hold. By Lemma 2.2,
F ⊆ Rep(r). However, by Lemma 2.1, Rep(r) is separated infinitely often by
r′. Thus, either Rep(r) = F or |F | > |Rep(r)|. Since F ⊆ Rep(r), necessarily
Rep(r) = F . ⊓⊔

The paritization process relies on the following theorem:

Theorem 1. Let r be a run of a TELA A, σ ∈ Π(M) and r′ ∈ ρCAR(r, σ).
Then r |= α if and only if r′ |= α′.

Proof. By Lemma 3, Rep(r) is the biggest set separated infinitely often by r′.
Thus, if Rep(r) |= α, then the greatest color visited infinitely often by r′ is
2 |Rep(r)|, hence, even. And if Rep(r) ̸|= α, then the greatest color visited in-
finitely often by r′ is 2 |Rep(r)|+ 1, hence, odd. Thus, r is accepting if and only
if r′ verifies a parity max even condition. ⊓⊔

The last step of this proof is to design a TELA that can generate the runs
in ρCAR(r, σ). Note that the insertion process is intrinsically non-deterministic,
yet we want to preserve determinism if the original TELA A happens to be
deterministic. Fortunately, by Theorem 1, it only takes one run in ρCAR(r, σ)
verifying α′ to ensure that r is an accepting run. Thus, we only need to enforce the
a deterministic insertion order on the colors encountered (that may nonetheless
depend on the current state and history).

Formally, an ordering choice over the TELA A is a function f : Π(M)× δ →
Seq(M) such that f(σ, q x,A−−→ q′) is an ordering of A. Intuitively, ordering choices
are used to determine the order in which colors should be inserted in the CAR,
depending on the original history and the transition applied.

Theorem 2. Let σ0 ∈ Π(M) and f be an ordering choice on A. We introduce
the TELA A′ = (QCAR,M ′, Σ, δCAR, (q0, σ0), α

′) where δCAR is defined as fol-
lows: for all d ∈ δ, d = q

x,A−−→ q′, and for all σ ∈ Π(M), d′ = (q, σ)
x,B−−→ (q′, σ′)

belongs to δCAR, where U(σ, f(σ, d)) = (σ′, ι) and B = {κ(σ′, ι)}.
Then L(A) = L(A′). Moreover, if A is deterministic, then A′ is as well.
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Proof. By design, to every run r of A, we can match a run r′ of A′ such that
r′ ∈ ρCAR(r, σ0). By Theorem 1, if r is accepting, then so is r′. Hence, L(A) ⊆
L(A′).

Moreover, to each transition in δCAR, we can match a predecessor in δ. Thus,
to each run r′ of A′, we can match a run r of A such that r′ ∈ ρCAR(r, σ0). By
Theorem 1, if r′ is accepting, then so is r. Hence, L(A′) ⊆ L(A).

Thus, L(A′) = L(A). The definition of δCAR also preserves determinism. ⊓⊔

Example 6. The CAR arrow at the top-right of Figure 6 shows an application of
CAR on a small example. Let us ignore the fact that there is no initial state in
these “automata” and focus on how transitions of the output (above the arrow)
are built from the transitions of the input (below). Assuming we want to build
the successors of the output state (11, ⟨0, 2, 1⟩), we look for all successors of input
state 11. One option is 11 012 . We compute the history U(⟨0, 2, 1⟩, { 2 }) of
the destination state by moving 2 to the front of the current history, yielding
⟨2, 0, 1⟩. The destination state is therefore (01, ⟨2, 0, 1⟩). The set of colors sepa-
rated by this insertion is R = { 0 , 2 }, and since R |= α the resulting transition
is labeled by the color in M ′ 2 × |R| + 0 = 4 . Another successor is the loop
11 0 . In this case, color 0 , already at the front of the history, is moved onto

itself, so the output is a loop. Since the separated set R = { 0 } is such that
R ̸|= α, the resulting loop is labeled by 2× |R|+ 1 = 3 .

Note that this construction may produce |Q| × n! states in the worst case.
The initial history σ0 and the ordering choice may influence the effective size of
the resulting automaton, as shown in Section 4.4.

We will prove that this upper bound in O(|Q| × n!) is tight. To do so, we
need to introduce the set Rep(w) of letters that appear infinitely often in a word
w ∈ Σω. Then:

Theorem 3. Let n ∈ N, n ≥ 2, and Σ = {1 . . . , n}. We consider the language
Ln = {(wi)i∈N ∈ Σω | Rep((w2i+1)i∈N) ⊆ Rep((w2i)i∈N)} of infinite words on Σ
such that any letter infinitely occurring at odd positions also occurs infinitely at
even positions.

Then any DRA accepting Ln has at least 2× n! states.

Consider the set of marks Mn = {−n, . . . − 1} ∪ {1 . . . , n} and the DTELA
An = (A,M,Σ, δn, a0, αn), where:

– A = {q+, q−};
– a0 = q+;
– δn = {q+

i,{i}−−−→ q− | i ∈ Σ} ∪ {q−
i,{−i}−−−−→ q+ | i ∈ Σ};

– αn =
∧i=n

i=1 Fin(−i) ∨ Inf(i).

Then obviously Ln = L(An), as positive (resp. negative) colors are only visited
during the even (resp. odd) steps of any run of An.

If Theorem 3 holds, then paritizing the automaton An that has two states
will result in a parity automaton with at least 2×n! states, as a parity acceptance
condition is merely a special Rabin condition.
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Proof. If n = 2, consider the automaton A2 shown in Figure 3 that accepts L2.

q+ q−

1, {− 1 }

1, { 1 }

2, {− 2 }

2, { 2 }

α = (Fin(− 1 ) ∨ Inf( 1 )) ∧ (Fin(− 2 ) ∨ Inf( 2 ))

Fig. 3. The automaton A2.

The automaton A2 is equivalent to the parity automaton P2 that features
4 states provided by our IAR implementation (as detailed later in Section 4.2).
We can check that this DTELA is minimal in terms of states by applying the
algorithm of Baarir et al. [1] implemented in Spot. Thus the theorem holds for
n = 2.

q0 q1 q2 q3
2, { 4 }

1, { 2 }

1, { 3 }

2, { 1 }

2, { 2 }

1, { 4 }

1, { 1 }

2, { 3 }

parity max even

Fig. 4. The automaton P2.

Let us suppose that the theorem holds for rank n− 1. We will prove that it
holds for rank n. Let R = (Q,M,Σ, δ, q0, α) be a DRA accepting Ln. Our goal
is to prove that there exist n runs of R that visit at least 2 × (n − 1)! states
infinitely often each, and that these sets of states do not overlap.

Let Qeven be the set of states of Q reachable from the initial state q0 using an
even number of edges. For q ∈ Qeven, let Rq = (Q,M,Σ, δ, q, α). Note that Ln
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is stable by concatenation with a finite prefix of even length. Thus, Rq accepts
Ln.

Moreover, Ln−1 = Ln∩(Σ\{n})ω. Thus, the restriction ofRq to the alphabet
Σ \ {n} accepts Ln−1. In a similar manner, for i ∈ {1, . . . , n}, the restriction Ri

q

of Rq to the alphabet Σi = Σ \ {i} accepts a language isomorphic to Ln−1.
Thus, by induction hypothesis, Ri

q has at least 2× (n− 1)! states. Actually,
it even has a SCC with at least 2 × (n − 1)! states: consider a state q′ ∈ Qeven
that also belongs to Ri

q’s bottommost SCC. The DRA Ri
q′ accepts a language

isomorphic to Ln−1, and can still do so if we prune every state that isn’t in Ri
q’s

bottommost SCC. Thus, by applying the induction hypothesis to this restriction
of Ri

q′ , we show that Ri
q’s bottommost SCC has at least 2× (n− 1)! states.

The end of proof then relies on the following lemma:

Lemma 4. For all i ∈ {1, . . . , n}, there exists an infinite word αi ∈ Σω
i such

that:

1. There exists a non-accepting run σi of R labelled by αi.
2. Let us consider the set RepS(σi) of states visited infinitely often by σi. Then∣∣RepS(σi)

∣∣ ≥ 2× (n− 1)!.
3. For all j ∈ Σi, RepS(σi) ∩ RepS(σ

j) = ∅.

Proof. Let i ∈ {1, . . . , n} and q′ be a state in Qeven that also belongs to Ri
q0 ’s

bottommost SCC. Let u ∈ Σ∗
i be a word leading from q0 to q′ in Ri

q0 (remember
that R is deterministic). We have shown that Ri

q′ accepts Ln−1. Moreover, there
exists a word w ∈ Ln−1 such that Rep((w2k+1)k∈N) = Rep((w2k)k∈N) = Σi.
Thus, there exists a word u′ ∈ Σ∗

i such that u0 = u · u′ is of even length,
contains every letter of Σi both on even and odd positions, and visits at least
2× (n− 1)! states of Ri

q0 .
Let j ̸= i and q1 be the state reached reading u0ij in R. In a similar manner

to u0, there exists a word u1 ∈ Σ∗
i such that u1 is of even length, contains every

letter of Σi both on even and odd positions, and visits at least 2 × (n − 1)!
different states of Ri

q1 .
By repeating this procedure, we can design an infinite word αi = u0iju1ij . . .

such that Rep((αi
2k+1)k∈N) = Σ and Rep((αi

2k)k∈N) = Σi. Thus, αi ̸∈ Ln and R
rejects αi. Point 4.1 therefore holds.

Moreover, let σi be the run of R matched to αi. There exists a rank l such
that σi only visits states in RepS(σ

i) after that rank. However, by construction,
the word ul must visit at least 2 × (n − 1)! different states. Thus, RepS(σ

i)
contains at least 2× (n− 1)! states. Point 4.2 therefore holds.

Let us now suppose that there exist j ∈ Σi such that RepS(σi)∩RepS(σj) ̸= ∅.
Let q be a state belonging to this intersection. The infinite run σi of R visits q
infinitely often, hence we can split it in a infinite sequence (σi

k)k∈N of finite runs
of R such that σi

0 leads from q0 to q and for all k ≥ 1, the non-trivial run σi
k

leads from q to q and visits every color in Rep(σi). We can similarly split σj into
a infinite sequence of sub-runs (σj

k)k∈N leading from q to q and visiting every
color in Rep(σj).
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Now consider the run σ = σi
0σ

j
1σ

i
1σ

j
2σ

i
2 . . . of R. It must be a non-accepting

run of R, as Rep(σ) = Rep(σi) ∪ Rep(σj) and the union of two non-accepting
cycles in a Rabin Automata must obviously be non-accepting by definition of
the Rabin acceptance condition (see Table 1).

However, let α = (αk)k∈N be the label of the run σ. By design of σ, we
have Rep((α2k+1)k∈N) = Σ, as it is either equal to Σ ∪ Σ, Σi ∪ Σ, Σ ∪ Σj ,
or Σi ∪Σj , depending on whether σ preserves the parity of the positions of the
letters infinitely occurring in αi and αj . In a similar manner, Rep((α2k)k∈N) = Σ.
Thus, α ∈ Ln. This is not possible, as σ is not an accepting run of R.

As a consequence, RepS(σi)∩RepS(σj) = ∅ and point 4.3 therefore holds. ⊓⊔

Thus
⋃i=n

i=1 RepS(σ
i) ⊆ Q and

∑i=n
i=1

∣∣RepS(σi)
∣∣ = n × 2 × (n − 1)!. Hence,

|Q| ≥ 2× n!. ⊓⊔

4.2 Index Appearance Record

While CAR can be used to transform Rabin or Streett automata into parity
automata, there exists an algorithm more suitable for these subclasses of TELA.
Let A = (Q,M,Σ, δ, q0, α) be a TELA with a Rabin acceptance condition α =∨

i∈I (Fin(pi) ∧ Inf(ri)). We call (pi, ri) a Rabin pair, where pi is the prohibited
color, and ri the required color. The intuition here is to track satisfiable Rabin
pairs instead of colors. Our goal is to build an automaton A′ with a parity max
odd α′ acceptance over the colors I ′ = {0, 1, . . . , 2×|I|} that is equivalent to A.

Consider the set Π(I) of permutations of Rabin pair indices. We pair states
in Q with such a history in order to track the indices of the Rabin pairs (pi, ri)
in the order the colors pi were last seen. Let QIAR = Q × Π(I) be the set
of index appearance records (IAR). We update these IAR by using a function
U : Π(I) × Seq(I) → Π(I) similar to the update function in Section 4.1 that
rotates a set of indices in front of a history, although U no longer needs to output
the number of elements rotated.

Given a set C of colors, we will also define the set P (C) = {i ∈ I | pi ∈ C}
of indices of Rabin pairs with a prohibited color in C and the greatest index
M(σ,C) = max

(
{−1} ∪

{
i ∈ {0, . . . , |I| − 1}

∣∣ pσ(i) ∈ C ∨ rσ(i) ∈ C
})

in a
history σ (as in, furthest to the right) corresponding to a Rabin pair with a
color in C, or −1 if there is none.

Intuitively, the prohibited colors of the Rabin pairs whose indices are ro-
tated infinitely often to the left of the history during a run are also encoun-
tered infinitely often. Let us consider the pivot point i = max

(
{−1} ∪

{
i ∈

{0, . . . , |I| − 1}
∣∣ pσ(i) ∈ C

})
after inserting the Rabin indices matched to a set

of colors C labelling a transition of a run in a history σ. The Rabin pairs whose
index is in {σ(0), . . . , σ(i)} will ’yield’ a false result.

Consider then the index m =M(σ,C) of the Rabin pair intersecting C that
is the furthest to the right of the permutation. By definition, m ≥ i. If m > i,
then pσ(m) ̸∈ C and the Rabin pair of index σ(m) can be considered ’accepting’
for the current transition at least since we encounter its required color while
avoiding its prohibited one. Since our goal is to build an equivalent automaton
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A′ with parity max odd acceptance, we may then design a transition labelled by
an ’accepting’ odd color whose size is proportional to m. However, if it is not
the case, either because C does not intersect a Rabin pair or because pσ(m) ∈ C,
then we output an even color.

An even color can be ’cancelled’ by a greater odd color later in a run: it means
that, after encountering the required color of a given pair, we eventually met its
associated prohibited color, thus invalidating our initial assessment. Formally,
we introduce a coloring function κ : Π(I)× 2M → I ′ such that:

κ(σ,C) = 0 if m = −1
= 2m+ 1 if pσ(m) ̸∈ C

= 2m+ 2 if pσ(m) ∈ C

where m =M(σ,C). Moreover, note that the insertion order of the Rabin pairs
in the IAR is arbitrary. In order to preserve determinism, we must therefore
define an deterministic insertion choice. Formally, a Rabin ordering choice over
the TELA A is a function f : Π(I) × δ → Seq(I) such that f(σ, q

x,C−−→ q′) is
an ordering of the set

{
i ∈ {0, . . . , |I| − 1}

∣∣ pσ(i) ∈ C
}

of Rabin pairs whose
forbidden color is in C. At last, we can compute the automaton A’:

Theorem 4 ([16]). Let σ0 ∈ Π(I) and f be a Rabin ordering choice on A. We
introduce the TELA A′ = (QIAR, I ′, Σ, δIAR, (q0, σ0), α

′) where δIAR is defined
as follows: for all d ∈ δ, d = q

x,A−−→ q′, and for all σ ∈ Π(I), d′ = (q, σ)
x,B−−→

(q′, σ′) belongs to δIAR, where U(σ, f(σ, d)) = σ′ and B = {κ(σ′, A)}.
Then L(A) = L(A′). Moreover, if A is deterministic, then A′ is as well.
A dual construction transforms Streett into parity max even.

For a proof of this theorem, we refer the reader to Löding [17] (for state-based
acceptance) and to Křetínský et al. [16] (for an adaptation to TELA).

This procedure generates an automaton with |Q| × |I|! states in the worst
case, but unless many colors occur multiple times in α, we usually have |I| ≤ n/2,
making IAR a more efficient choice than CAR whenever possible. We can always
ensure that the number of Rabin pairs is smaller than the number of colors in the
automaton, relabelling some edges without changing the automaton’s language
if needed. The IAR automaton is therefore smaller than the equivalent CAR
automaton.

Example 7. The arrow IAR in Figure 6 shows an example of IAR at work on a
Rabin automaton with two pairs. The output transition 2⟨01⟩ 2⟨10⟩4 cor-
responds to a loop labeled by C = { 0 , 2 } in the input. Since 0 is prohibited
in Rabin pair 1, index 1 has to move to the front of the history. Furthermore,
the rightmost index of ⟨01⟩ with a color in C is also m = 1 and corresponds to
p1 = 0 ∈ C, thus the output transition is labeled by 2m+ 2 = 4 .

Extended IAR: we can trivially extend the transition-based IAR algorithm to
Rabin-like and Streett-like automata. Intuitively, an acceptance formula is said to
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be Rabin-like (resp. Streett-like) if it can be derived from a Rabin (resp. Streett)
acceptance formula by removing either the prohibited Fin or the required Inf from
some Rabin (resp. Streett) pairs. Note that a formula can be both Rabin-like
and Streett-like, e.g. Inf( 0 ) ∨ Fin( 1 ).

4.3 Partial Degeneralization

Before talking about the partial degeneralization, we have to describe the de-
generalization. A classical degeneralization transforms a generalized Büchi au-
tomaton A (transition-based or state-based) with n states and m colors, into a
state-based Büchi automaton with at most n(m+1) states. The general principle
is to fix an order of the m colors, duplicate the structure of A in m + 1 copies
(called levels 0, . . . ,m), jump from level i to level i + 1 whenever the color of
rank i is encountered, mark the states in the last level as Büchi accepting, and
have their outgoing transitions always jump back to level 0 (or better, behave
as if they were starting in level 0).

A common optimization of the degeneralization procedure [12, 2] is to let
transitions labeled by multiple consecutive colors of D skip several levels at a
time. Let us define this skipping of levels more formally; we introduce a function
S : L × 2M → L × 2{e} that takes a level i and a set C of colors (labelling
some transition), and returns the new level j and a subset that is either ∅ or {e}
depending on whether the new color should be added to the output transition
or not.

S(i, C) =

{
(j, ∅) if j < |D|
(j − |D|, {e}) if j ≥ |D|

where j = max
(
k ∈ {i, . . ., i+|D|}

∣∣{di mod |D|, . . ., d(k+|D|−1) mod |D|} ⊆ C
)

is the
size of the longest sequence of consecutive colors of D starting from di that can
be found in C.

When applying this principle to produce transition-based Büchi automata,
only m levels are necessary, and when a transition starting level m sees the color
of rank m, it produces an accepting transition going back to level 0. One subtle
change made in the definition of S(s, C) is that those accepting transitions do
not always go to level 0, but to level j − |D|, i.e., they may also skip levels. To
our knowledge, this is the first time this is mentioned.

Let us introduce the partial degeneralization algorithm. Given a TELA A
and a subset D of its colors, our intent is to modify A in such a way that we
can replace any sub-formula of the form

∧
d∈D Inf(d) in its acceptance condition

α by a single Inf(e) for some new color e. Similarly, any sub-formula of the
form

∨
d∈D Fin(d) will be replaced by Fin(e). We denote such a substitution of

sub-formulas by α[
∧

d∈D Inf(d)← Inf(e)][
∨

d∈D Fin(d)← Fin(e)].
Intuitively, we want to ensure that the runs of the new automaton that see

all colors of D infinitely often also see e infinitely often. To do so, we consider
once again an ordering (d0, d1, . . . d|D|−1) of D and pair each state of the output
automaton with a level in L = {0, 1, . . . |D| − 1}. We jump from a level i to the
next level i+1 whenever we use a transition labeled by di; thus, we reach a level



18 F. Renkin, A. Duret-Lutz, and A. Pommellet

i only after having met the i first colors of D. We jump back down to level 0
after using a transition t labeled by d|D|−1 that leaves a state at level |D| − 1.
Since any cycle going through t has seen the whole set of colors D, we can add
the new color e to t.

Our partial degeneralization is simply a generalization of this degeneraliza-
tion principle to work on any subset of colors in the automaton, regardless of the
acceptance condition. In order to do so, we have to keep the original colors in
the output, and introduce a new one to mark the points where all tracked colors
have been seen. However when applied to subset of colors that appear only once
in the acceptance condition, and in a subformula α that is generalized-Büchi or
generalized-co-Büchi, then this subformula may be simplified and the original
colors discarded.

Theorem 5. Let A = (Q,M,Σ, δ, q0, α) be a TELA, let D = (d0, d1, . . . , d|C|−1)
be an ordered set of marks of M , and let L = {0, 1, . . . , |D|−1} be a set of levels.

Let the automaton A′ = (Q′,M ′, Σ, δ′, (q0, i0), α
′) be a partial degeneral-

ization of A according to D, where Q′ = Q × L, M ′ = M ∪ {e} for some
new color e /∈ M , α′ = α[

∧
d∈D Inf(d) ← Inf(e)][

∨
d∈D Fin(d) ← Fin(e)], and

δ′ =
{
(q1, i)

ℓ,C−−→ (q2, j)
∣∣∣ q1 ℓ,C∩M−−−−→ q2 ∈ δ, S(i, C ∩M) = (j, C \M)

}
. The ini-

tial level can be any i0 ∈ L.
Then A and A′ are equivalent.

First, note that this procedure does not remove any color from the automa-
ton but instead add one: even though subformulas of the form

∧
d∈D Inf(d) are

removed from α, other parts of α, preserved in α′, may still use colors in D. Of
course, colors that do not appear in α′ may be removed from the automaton
during a subsequent step, as performed by our implementation.

Moreover, since the algorithm preserves all the colors of M , the construction
is valid for any subset D ⊆M , even one that does not correspond to a conjunc-
tion of Inf or disjunction of Fin in α. In such a case, the construction enlarges
the automaton without changing its acceptance condition.

When applied to a generalized-Büchi automaton, and after removing the
unused colors, our partial degeneralization produces an automaton similar to
what would be produced by any classical degeneralization to transition-based
Büchi (modulo the small improvement to S(s, C) discussed before).

The conversion of generalized-Rabin with k “generalized pairs” into to Rabin
automaton with k pairs, presented by Křetínský et al. [13] can be seen as k partial
degeneralization run in parallel: each state therefore keeps tracks of a vector of
k levels. The same effect can be obtained by running the partial generalization
k times, once for each generalized Rabin pair.

For these reasons, we consider that the presented partial degeneralization is
a useful building block: it is a single algorithm that can replace existing more
specialized techniques (degeneralization of generalized Büchi automata, degen-
eralization of generalized-Rabin automata).

Example 8. In Figure 6, the arrow PD{1,3} denotes the application of a partial
degeneralization according to the set M = ( 1 , 3 ). This allows to rewrite accep-



Practical “Paritizing” of Emerson-Lei Automata 19

tance’s sub-formula Fin( 1 )∨ Fin( 3 ) as Fin( 4 ) with a new color. Output states
(q, i) are written as qi for brevity. The ordering of colors is d0 = 3 , d1 = 1 .

4.4 Optimizations

We now describe several optimizations for the aforementioned constructions.
Jump to bottom: Note that in Theorem 2, the choice of the initial CAR

σ0 is arbitrary, as the DPA we build is always equivalent to the initial TELA;
this is true of the initial history of IAR and the initial level i0 of the partial
degeneralization algorithm as well. An improper initial history may lead to a
cycle being turned into a lasso.

For instance, if we consider the input automaton x y0
1 , applying

CAR with π0 = ⟨0, 1⟩ produces an automaton with the following structure:
x⟨01⟩ y⟨01⟩ x⟨10⟩ , whereas π0 = ⟨1, 0⟩ would yield x⟨10⟩ y⟨01⟩ .
Instead of guessing the correct initialization, we simply use the fact that

two states (q, σ) and (q, π) recognize the same language: after the algorithm’s
execution, we redirect any transition leading to a state (q, σ) to the copy (q, π)
that lies in the bottommost SCC (according to some topological ordering of the
SCCs). The initial state is changed similarly. The input and output automata
should have then the same number of SCCs.

This optimization applies to CAR, IAR, partial degeneralization, or combi-
nations of those. E.g., if partial degeneralization is used before CAR or IAR,
leading to states of the form ((q, i), σ), the search for an equivalent state in the
bottom SCC needs only consider q, and can simplify both constructions at once.

A similar simplification was initially proposed in the context of IAR for sim-
plifying one SCC at a time [16]. Heuristics used in degeneralization algorithms
to select initial level upon entering a new SCC [2] are then unnecessary.

History reuse: Note again that the choice of the ordering function used to
process input transitions labeled with multiple colors is arbitrary in Theorem
2. The insertion order of Rabin pair indices in front of the history during an
update of the IAR is also arbitrary. Křetínský et al. [16] suggested to check
previously built states for one with a compatible trail of the history, in order
to avoid creating new states. While implementing this optimization, we noticed
that sometimes we can find multiple compatible states: heuristically selecting
the most recently created one (as opposed to the oldest one) produces fewer
states on average in our benchmark. It seems to create tighter loops and larger
“lasso prefixes” that can later be removed by the jump to bottom optimization.
Such history reuse can also be done a posteriori once a candidate automaton
has been built, to select better connections.

Heuristic selection of move order: When an input transition is labeled
with multiple colors, but no compatible destination state already exists to apply
the previous optimization, we select the order in which colors are moved to the
front of the history using a heuristic. Colors that are common to all incoming
transitions of the destination states are moved last, so they end up at the begin-
ning of the history. For instance in the CAR construction of Figure 6, this is how
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Fig. 5. Some arbitrary input TELA, to be paritized. For
readability, letters are not displayed.
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Fig. 6. Intermediate steps of the construction, handling the SCCs in different ways.
These steps are explained at various places through Sections 4 and 5.
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Fig. 7. Paritization of the automaton of Figure 5, combining the transformed SCCs of
Figure 6 after adjustment to a common acceptance condition.
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the order ⟨102⟩ is chosen as destination history for transition 01 000 1 2 :
1 is common to all edges going to 00, so we want it at the front of the history.

SCC-aware algorithms: These algorithms benefit from considering the
SCCs of the original automaton. For CAR and IAR, the histories attached can
be restricted to the colors present in the SCC [16]. The partial degeneralization
needs not modify SCCs that do not contain all the colors C to degeneralize.

Heuristic ordering of colors to degeneralize: Our implementation of the
partial degeneralization tries to guess, for each SCC, an appropriate ordering
of the color to degeneralize: this is done by maintaining the order as a list
of equivalence classes of colors, and refining this order as new transitions are
processed. For instance if we degeneralize for the colors C = { 0 , 1 , 2 , 3 }, the
initial order will be ⟨{ 0 , 1 , 2 , 3 }⟩, then if the first transition we visit has colors
{ 1 , 3 } the new order will be refined to ⟨{ 1 , 3 }, { 0 , 2 }⟩ and we jump to level
2 as we have now seen the first equivalence class of size 2.

Propagation of colors: To favor the grouping of colors in the dynamic
ordering of the partial degeneralization, and in the history reuse optimization
of IAR and CAR, we propagate colors as much as possible in SCCs. Ignoring
transitions that are self-loops or that do not have both extremities in the same
SCC, colors common to all incoming transitions of a state can be copied to all
outgoing transitions and vice-versa. E.g., x y z0 0

1 2 is seen as the
equivalent x y z0

0
0 1

10 2 , showing that cycles with 1 always have 0 .
The next section goes one step further in SCC-awareness, by actually sim-

plifying the acceptance condition for each SCC according to the colors present.
The paritization strategy to apply (CAR, IAR, identity, ...) can then be chosen
independently for each SCC.

5 Paritization with Multiple Strategies

We now describe our paritization algorithm taking as input a TELA A:

1. Enumerate the SCCs Si of A. For each Si, perform the following operations:
(a) Consider the sub-automaton A|Si

.
(b) If L (A|Si

) is empty [4], strip all colors and set the acceptance condition
to ⊥, which is a corner case for parity max even formula. (For parity
max acceptances, transitions without color can be interpreted as having
color −1.). Go back to the step 1a to process the next SCC or to step 2
if it does not exist.

(c) Apply the simplifications described in section 3.
(d) Transform the automaton A|Si

into a parity max automaton Ri using
the first applicable procedure from the following list:
– Do nothing if the acceptance is already a parity max formula;
– If the acceptance has the shape Inf(m0) ∨ (Fin(m1) ∧ (Inf(m2) ∨ ...))

of a parity max, renumber the colors m0,m1, . . . in decreasing order
to get a parity max formula;
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– Adjust the condition to Inf( 0 ) and the labeling of the transitions if
this is a deterministic Rabin-like automaton that is Büchi-type (this
requires a transition-based adaptation of an algorithm by Krishnan
et al. [15]); note that Inf( 0 ) is also a parity max even formula.

– Dually, adjust the condition to Fin( 0 ) if this is a deterministic
Streett-like automaton that is co-Büchi-type, since Fin( 0 ) is also
a parity max odd formula.

– Optionally, adjust the condition to parity and the labeling of the
transitions if this is a deterministic automaton that is parity-type.

(e) If one of these steps has been applied, go back to the step 1a to process
the next SCC or to step 2 if it does not exist.

(f) If the simplified acceptance condition contains conjunctions of Inf or dis-
junctions of Fin, apply the partial degeneralization construction (maybe
multiple times) for all those terms, and remove unused colors. Since this
incurs a blowup of the state-space that is linear (maybe multiple times)
in the number of colors removed, it generally helps the CAR construction
which has a worst case factorial blowup in the number of colors. Also,
after this step, the acceptance condition might match more specialized
algorithms in the next step. Jump to step 1c as the acceptance changed.

(g) Propagate colors in the SCC (Section 4.4).
(h) Transform the automaton A|Si

into a parity max automaton Ri using
the first applicable procedure from the following list:
– If the automaton is Rabin-like or Streett-like, apply IAR to obtain

a parity max automaton. When the acceptance formula can be in-
terpreted as both Rabin-like or Streett-like we use the interpretation
with the fewest number of pairs (cf. Remark 1).

– Otherwise, apply CAR to obtain a parity max automaton.
2. Now that each automaton A|Si

has been converted into an automaton Ri

whose parity acceptance is either max odd or max even, adjust those accep-
tance conditions by incrementing or decrementing the colors of some Ri so
that they can all use the same acceptance, and stitch all Ri together to form
the final automaton R. For any transition of A that goes from state q in
SCC i to state q′ in SCC j, R should have a transition for each copy of q in
Ri and going to one copy of q′ in Rj . Similarly, the initial state of R should
be any copy of the initial state of A.

3. As a final cleanup, the number of colors of R can be reduced by computing
the Rabin-index of the automaton [6].

Figures 5–7 show this algorithm at work on a small example with three SCCs.
Figure 7 shows the result of step 2. Executing step 3 would reduce the number
of colors to 2 (or to 3 if uncolored transitions are disallowed).

We now comment the details of Figure 6. The notation S+P refers to the
Simplification of the acceptance condition (step 1c) and the Propagation of colors
in the SCC (step 1g). On SCC 1, step 1c replaces 4 by 2 , because these always
occur together, and step 1g adds 2 on the transition from 1 to 0. After partial
degeneralization, the sub-formula Fin( 0 ) ∧ Fin( 4 ) can be fused into a single
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Fin( 0 ) (see Remark 2) by simply replacing 4 by 0 in the automaton, and after
that the marks on the transitions before and after state 00 are propagated by
step 1g. The resulting automaton is neither Rabin-like nor Streett-like, so it is
transformed to parity using CAR; however the history of the states only have
3 colors to track instead of the original 5. In SCC2, Fin( 3 ) and Inf( 4 ) can be
replaced respectively by ⊤ and ⊥ because 3 and 4 are not used. The acceptance
condition is therefore reduced to the Rabin acceptance condition displayed, and
IAR can be used instead of CAR. (Using CAR would build at least 4 states.)
Finally SCC 3’s acceptance conditions reduces to Inf( 2 )∧Fin( 1 ). Renumbering
the colors to Fin( 1 ) ∧ Inf( 0 ) gives us a parity max odd acceptance.

To stitch all these results together, as in Figure 7, we adjust all automata to
use parity max odd : in SCC 1 this can be done for instance by decrementing all
colorsand in SCC 3 by incrementing them (handling any missing color as −1).

Our implementation uses an additional optimization that we call the parity
prefix detection. If the acceptance formula has the shape Inf(m0) ∨ (Fin(m1) ∧
(Inf(m2) ∨ (...β))), i.e., it starts like a parity max formula but does not have
the right shape because of β, we can apply CAR or IAR using only β while
preserving the color m0,m1,m2, . . . of the parity prefix, and later renumber all
colors so the formula becomes parity max. This limits the colors that CAR and
IAR have to track, so it reduces the number of states in the worst case.

Remark 4. The automaton used in the example 3 is the result of the propaga-
tion of colors on the example 2. We showed that the propagation can help the
simplification and in practice, we apply a propagation before a simplification but
in order to simplify our algorithm, we suppose that the propagation is not used
to simplify the condition.

6 Experimental Evaluation

The simple CAR described in Section 4.1, without the optimizations of Sec-
tion 4.4 was implemented in Spot 2.8 [8] as a function to_parity(). It can
be used by Spot’s ltlsynt tool with option --algo=lar; in that case the LTL
specification φ passed to ltlsynt is converted to a deterministic TELA Aφ

with arbitrary acceptance and then transformed into a parity automaton Pφ

with to_parity() before the rest of the LTL synthesis procedure is performed.
The TELA Aφ built internally by ltlsynt can be obtained using Spot’s

ltl2tgba -G -D command: the construction is similar to the delag tool [22] and
regards the original formula as a Boolean combination of LTL sub-formulas φi,
translating each φi to a deterministic TELA Aφi (by combining classical LTL-
to-generalized-Büchi translation [7] with specialized constructions for subclasses
of LTL [10], or a Safra-based procedure [24]), and combining those results using
synchronized products to obtain a TELA whose acceptance condition is the
Boolean combination of the acceptance conditions of all the Aφi

.
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Fig. 8. Comparison of the new multi-strategy paritization (Section 5) against the un-
optimized CAR (Section 4.1)

In Spot 2.9, to_parity() was changed to implement Section 5 and the op-
timizations of Section 4.4. We are therefore in position to compare the improve-
ments brought by those changes on the transformation of Aφ to Pφ. 1

We evaluate the improvements on two sets of automata:
syntcomp contains automata generated with ltl2tgba -G -D from LTL for-

mulas from the sequential TLSF track of SyntComp’2020. Among those
automata, we have removed those that already had a parity acceptance
(usually Büchi acceptance). The remaining set contains 25 automata with a
generalized-Büchi condition, 1 with a co-Büchi condition, 3 with a general-
ized Rabin condition, 17 with a generalized Streett condition and 84 with
a condition that mixes Fin and Inf terms. The average number of accepting
SCCs is 100.2 (min. 1, med. 2, max. 5741). The average number of states is
1966.1 (min. 1, med. 16.5, max. 81921).

randltl contains 346 automata built similarly, from random LTL formulas. Fur-
thermore, we have ensured that no automaton has parity acceptance, and all
of them use at least 5 colors (med. 5, avg. 5.2, max. 10). The average number
of accepting SCCs is 1.7 (min. 1, med. 1, max. 16). The average number of
states is 5.6 (min. 1, med. 4, max. 41). Only 21 of these automata have a
Rabin-like or Streett-like acceptance condition, 9 have a generalized Rabin
condition, 1 has a generalized Streett condition.
The improvement of our new paritization based on multiple strategies over

our old unoptimized CAR implementation is shown on Figure 8.

1 To reproduce these results, see https://www.lrde.epita.fr/~frenkin/atva20/

https://www.lrde.epita.fr/~frenkin/atva20/
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6.1 Influence of options

Table 6.1 selectively disables some optimizations to evaluate their effect on the
number of output states. Configuration “all − x” means that optimization x is
disabled. Rabin to Büchi is the detection of Rabin-like (or Streett-like) automata
that are Büchi (or co-Büchi) realizable at step 1d. Parity prefix is the optimiza-
tion mentioned at the very end of Section 5. Simplify acc, propagate colors, and
partial degen correspond respectively to steps 1c and 1g, and 1f. We can see
that enabling only partial degeneralization (“nothing + partial degen”) is better
than enabling all other options except partial- degeneralization (“all − partial
degen”). No other optimization has such a large effect.

The scatter plot of Figure 8 compares the cases summarized by lines all and
unoptimized CAR, while Figure 9 plots the data of lines all and all − partial
degen.

Partial degeneralization appears to be the most important optimization, be-
cause in addition to reducing the number of colors, it may help to use IAR or
even simpler construction. The propagation of colors, which allows more flexi-
bility in the selection of histories, is the second best optimization. Hist. reuse
corresponds to the history reuse described in Section 4.4. all − reuse latest has
history reuse enabled, but uses the oldest compatible state instead of the latest
— hence our heuristic of using the latest compatible state. Finally Unoptimized
CAR is a straightforward implementation of CAR given for comparison.

When partial degeneralization is not Desirable Applying the partial de-
generalization with m colors may remove m−1 colors, and multiply the number
of states by m in the worst case. Applying CAR on an automaton with n colors
will multiply the number of states by n!. Thus, in order to handle the worst
case scenario, partial degeneralization should be applied before CAR whenever
possible. For instance if we did not perform the partial degeneration on SCC1

of Figure 6 (page 20), CAR would have tracked four colors and would have built
a 6-state automaton.

Another argument in favor of doing a degeneralization is that it may help
shape the acceptance condition into something that is easier to paritize. As an
example, it may allow us to use IAR instead of CAR. From this perspective, it can
be useful to use a partial degeneralization even if it does not reduce the number
of colors of the automaton. However if the partial degeneralization process failed
to reduce the number of colors, and we still have to use CAR, then it is better
to apply CAR on the smaller, non-partially-degeneralized automaton.

A significant difference between the CAR/IAR procedures and the partial
degeneralization is that the latter has to fix an ordering of the colors. This way
it can keep track of the colors encountered using only a counter (an index in the
order) instead of a subset of colors, but this works best if the colors occur in
this order. Even if our implementation uses heuristics to select a more suitable
ordering for partial degeneralization (cf. Section 4.4), it may be the case that
it fails to find a good ordering, or that there is no good order for the entire
automaton.
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Table 2. Effect of various optimizations on the paritization procedure. Configura-
tion “all” corresponds to the algorithm of section 5. Configuration “unoptimized CAR”
corresponds to the basic CAR implementation of section 4.1. Configuration “nothing”
implements only the SCC-based paritization.

dataset randltl syntcomp both

config amean gmean amean gmean amean gmean

default + parity type 7.647 6.302 246.2 27.15 64.39 8.920
default + Büchi type 7.919 6.525 246.2 27.15 64.59 9.159
default 7.965 6.560 246.2 27.15 64.63 9.197
default - Rabin to Büchi 7.965 6.560 246.2 27.15 64.63 9.197
default - custom order 7.928 6.563 246.2 27.15 64.60 9.200
default - parity equiv. - parity prefix 7.986 6.580 246.2 27.15 64.64 9.218
default - parity prefix 7.986 6.580 246.2 27.15 64.64 9.218
default + TAR 8.130 6.652 246.2 27.15 64.75 9.295
default - hist. reuse 8.364 6.828 246.2 27.15 64.93 9.481
default - IAR 8.156 6.767 254.3 28.92 66.70 9.560
default - simplify acc. 8.873 6.946 246.2 27.15 65.32 9.606
default - BSCC 8.413 6.954 246.2 27.16 64.98 9.616
default - reuse last 8.653 7.089 246.2 27.15 65.15 9.757
default - partial degen 8.017 6.496 3264.3 50.16 782.65 10.564
default - propagate colors 22.584 11.982 246.2 27.15 75.77 14.555
nothing + parity type 28.613 16.323 6201.3 71.59 1497.00 23.203
nothing + propagate colors 22.098 16.262 5705.6 92.09 1374.11 24.565
nothing + partial degen 47.049 27.746 319.1 37.11 111.77 29.733
nothing + BSCC 47.179 25.599 6181.6 80.31 1506.47 33.600
nothing + Büchi type 51.081 27.975 6205.6 77.77 1515.16 35.678
nothing + simplify acc. 51.962 29.461 6183.2 76.92 1510.49 37.016
nothing + custom order 52.283 29.798 6046.3 92.98 1478.17 39.061
unoptimized CAR 55.260 31.280 6357.4 82.82 1554.46 39.433
nothing + hist. reuse (last) 54.777 31.613 5814.8 91.34 1425.01 40.690
nothing + parity prefix 54.121 31.609 6206.2 96.04 1517.61 41.173
nothing + IAR 56.523 33.109 7120.6 95.34 1736.96 42.581
nothing + hist. reuse (first) 58.309 34.420 6194.9 94.93 1518.13 43.815
nothing + Rabin to Büchi 58.931 35.130 6329.1 100.19 1550.52 45.076
nothing + parity equiv. 59.552 35.534 6582.5 103.33 1611.26 45.806
nothing 59.552 35.534 6582.5 103.33 1611.26 45.806
nothing + TAR 63.191 41.032 6591.4 103.51 1616.17 51.134
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dataset randltl syntcomp both

config amean gmean amean gmean amean gmean

default - parity - prefix 0.09074 0.09062 3.214 0.1845 0.9439 0.1100
default - propagate colors 0.09104 0.09092 3.108 0.1829 0.9151 0.1101
nothing + partial degen 0.09023 0.09009 3.791 0.1890 1.1010 0.1103
default - Rabin to Büchi 0.09068 0.09058 3.213 0.1870 0.9434 0.1104
default - hist. reuse 0.09162 0.09147 3.208 0.1829 0.9428 0.1105
default - parity equiv. - parity prefix 0.09264 0.09220 4.247 0.1929 1.2273 0.1128
default - reuse last 0.10009 0.09751 3.225 0.1909 0.9535 0.1171
default - BSCC 0.09826 0.09769 3.256 0.1934 0.9608 0.1177
default - simplify acc. 0.09805 0.09776 3.192 0.1935 0.9430 0.1178
default - custom order 0.09896 0.09864 3.255 0.1961 0.9608 0.1190
default - IAR 0.09962 0.09905 3.260 0.1965 0.9626 0.1194
default 0.09855 0.09824 3.287 0.2070 0.9695 0.1204
default + TAR 0.10857 0.10190 3.217 0.1913 0.9574 0.1210
nothing + hist. reuse (last) 0.09093 0.09079 8.440 0.3578 2.3711 0.1320
nothing + parity prefix 0.09169 0.09151 10.735 0.3656 2.9986 0.1336
nothing + simplify acc. 0.09039 0.09022 10.563 0.3807 2.9506 0.1337
nothing + propagate colors 0.09185 0.09170 10.693 0.3651 2.9871 0.1337
nothing + TAR 0.09200 0.09181 10.700 0.3701 2.9890 0.1343
nothing + hist. reuse (first) 0.09138 0.09123 8.439 0.3780 2.3712 0.1345
nothing 0.09152 0.09138 10.701 0.3778 2.9890 0.1346
nothing + IAR 0.09069 0.09055 10.900 0.3861 3.0427 0.1346
nothing + Rabin toBüchi 0.09208 0.09192 10.711 0.3789 2.9921 0.1353
nothing + parity equiv. 0.09396 0.09369 10.698 0.3681 2.9901 0.1361
nothing + BSCC 0.09006 0.08989 10.722 0.4282 2.9937 0.1377
nothing + custom order 0.09144 0.09128 54.769 0.4636 15.0244 0.1423
default - partial degen 0.09185 0.09165 82.190 0.5098 22.5135 0.1464
default + Büchi type 0.10220 0.09792 109.179 0.5023 29.8920 0.1530
default + parity type 0.11004 0.10351 113.414 0.4730 31.0545 0.1568
nothing + parity type 0.09118 0.09099 125.426 0.7183 34.3213 0.1600
nothing + Büchi type 0.09203 0.09180 121.184 0.7027 33.1633 0.1601
unoptimized CAR 18.27499 18.27497 1117.727 51.6140 318.5455 24.2664
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Fig. 9. Effect of disabling the partial degeneralization in the new paritization.

Comparing the number of states produced by our paritization procedure with
and without partial-generalization reveals a few cases where partial degeneral-
ization is actually harmful. See the few dots above the diagonal in Figure 9.

The following automaton illustrates a case where partial degeneralization
produces an automaton larger than direct application of CAR.

Consider the following input automaton:

0 10 1

2 3

10
1 2 (

Fin( 3 ) ∧ (Inf( 1 )∨Fin( 0 ))
)
∨
(
Inf( 0 )∧Inf( 2 )∧Inf( 3 )

)
Applying partial degeneralization on { 0 , 2 , 3 } yields the following automa-

ton. (The ordering of colors chosen heuristically is d0 = 0 , d1 = 2 , and d2 = 3 .)

01 00 02

11 12

0
1

0
1

0
1

3

3 4 43

1
0

1
0

1

(
Fin( 3 ) ∧ (Inf( 1 )∨Fin( 0 ))

)
∨ Inf( 4 )

By chance, the shape of the acceptance formula corresponds to a parity max
odd formula, up to a renaming of colors. After renaming 3 , 4 to 2 , 3 , and
keeping only the maximum color on each edge, we end up with a parity automa-
ton:
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01 00 02

11 12

11 12

3 3

1 1

1

Inf( 3 ) ∨
(
Fin( 2 ) ∧ (Inf( 1 )∨Fin( 0 ))

)
parity max odd

The number of colors can be further lowered, but the point here is that using
the partial degeneralization created a 5 state parity automaton, and “saved” us
from using CAR or IAR.

However, in this case, had was used CAR directly on the input automaton,
we would have produced the following 4-state parity automaton instead:

0⟨0123⟩

0⟨2301⟩ 1⟨0123⟩

1⟨1203⟩
4

85

8
4

4 4

6

Inf( 8 ) ∨ (Fin( 7 ) ∧ (Inf( 6 ) ∨
(Fin( 5 ) ∧ (Inf( 4 ) ∨ (Fin( 3 ) ∧

(Inf( 2 ) ∨ (Fin( 1 ) ∧ Inf( 0 ))))))))
parity max odd

While this example shows that CAR’s performance may sometimes improve
if we don’t run the partial degeneralization first, our experiments suggest that
it is more often better to use it.

Note that this specific automaton was fixed by implementing2 an additional
simplification of the acceptance condition. For instance, in the input automaton,
one can notice that 3 always appears along with 2 , thus the formula Inf(2) ∧
Inf(3) can be reduced to Inf(3). Both CAR and partial degeneralization would
then produce a 3-state parity automaton.

Conversion to a generalized-Rabin condition As described in section 4.2,
we prefer to apply IAR instead of CAR when possible. In order to do it, just
before the step 1f of the algorithm, we convert ASi to a generalized-Rabin au-
tomaton. Then the partial degeneralization gives us a Rabin automaton that can
be converted to a parity automaton by using IAR.

In the table 6.1, we describe on the same set of automata than before the
influence of this option on the time needed to paritize the automata. We see
that there is no influence for the set of automata created from a set of random
LTL formula but on the set of automaton converted from the LTL formula of the
Syntcomp, disabling this option increases the geometric mean by 10 percent while
the arithmetic mean increases by 4 percent. Now if we take the table 6.1, the
results are more contrasted. We see that using a generalized-Rabin automaton
reduces by 6 percent the geometric mean of the number of states on the set
randltl while on the set syntcomp it decreases by 7 percent.

Why parity-type and Büchi-type are not enabled? In the table 6.1, we see
that our automata are smaller when we try to convert a parity-type automaton to

2 https://gitlab.lrde.epita.fr/spot/spot/-/issues/406

https://gitlab.lrde.epita.fr/spot/spot/-/issues/406
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Table 3. Effect of the conversion to a generalized-Rabin automaton before using LAR
on the time of paritization.

dataset randltl syntcomp both

config amean gmean amean gmean amean gmean

With generalized-Rabin 0.11 0.10 3.14 0.19 0.94 0.12
Without generalized-Rabin 0.10 0.10 3.29 0.21 0.97 0.12

Table 4. Effect of the conversion to a generalized-Rabin automaton before using LAR
on the number of states of the resulting DPA.

dataset randltl syntcomp both

config amean gmean amean gmean amean gmean

With generalized-Rabin 7.66 6.16 12122.56 66.88 3316.36 11.82
Without generalized-Rabin 7.97 6.56 12116.84 62.48 3315.01 12.14

a parity automaton than without this option. This option is disabled by default
because the complexity is too great to be applied on large automata in practice.

We start by describing how we convert a Büchi-type automaton to a Büchi-
automaton. The principle is to search all the transitions that are always accept-
ing. In Spot, we had an implementation for Rabin as it is easy to find such
transitions. In order to apply it to the general case, we adapted an emptiness
check algorithm to get all the transitions that are in at least one accepting cycle.
The idea is that we take the dual of the condition of the original automaton, any
transition that is not in any accepting cycle of this automaton will be always
accepting in the original automaton. If we assign to this set of transitions the
color 0 and we use a Büchi condition, we get an automaton that recognizes a
subset of the language of the original automaton and we just have to test the
inclusion of the original automaton to determine if the result is equivalent to
the original. In this procedure, the hardest part is to find which transitions are
accepting.

When we convert a parity-type automaton (we suppose parity max even),
we use the same idea. All the transitions that are always accepting get the
maximal even colors. Those transitions are removed and we search the always
rejecting transitions in the resulting automaton. Those transitions get an odd
color lower than the previous one. We repeat this process while we have uncolored
transitions. The resulting automaton is equivalent if is there is not any uncolored
transition.

In the figure 6.1, we see that for many automata that the algorithm can
process in more than one second, trying to convert a parity type automaton
leads to the algorithm not finishing in less than 1000s.
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Fig. 10. Comparison of the multi-strategy paritisation against the version that tries
to convert parity-type automata. Crosses are the cases that were not done in less than
1000s.

6.2 Application to reactive synthesis

To assert the effect of the improved paritization on ltlsynt, we ran the entire
SyntComp’20 benchmark (including formulas omitted before) with a timeout of
1000 seconds, and counted the number of cases solved by different configura-
tions of ltlsynt, as reported in Table 5. We can see that improving CAR with
all the tricks of Section 5 allowed the ltlsynt’s LAR-based approach to perform
better than ltlsynt’s Safra-based approaches.

While table 5 shows that the new version of LAR solves more cases than
the other configurations of ltlsynt, it does not actually tell whether the set of
cases solved is a superset of the other configurations or not. Table 7 reveals that
despite the number of solved cases increasing, some cases are solved by other
configurations but not by the new LAR.

7 Conclusion

We have presented a procedure that converts any TELA into a transition-based
parity automaton. Our algorithm combines algorithms that are transition-based
adaptations or generalizations of known procedures (e.g., CAR is a adaption of
the classical SAR and partial degeneration extends the standard generalization
technique), thus this paper can also be read as a partial survey of acceptance
condition transformations presented under a unified framework.
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Table 5. Number of SyntComp’20 cases solved by ltlsynt under different configura-
tions, with a timeout of 1000 seconds. PAR-2 (penalized average runtime) sums the
time of all successful instances, plus twice the timeout for unsuccessful ones.

option approach to paritization # solved PAR-2

--algo=sd LTL to Büchi, then split input/output variables,
then Safra-based determinization [21]

255 206014s

--algo=ps LTL to DPA, then split input/output variables 282 152451s
--algo=lar.old LTL to determ. TELA, then CAR of Section 4.1 287 142032s
--algo=ds LTL to Büchi, then Safra-based determinization,

then split input/output variables [21]
292 132308s

--algo=lar LTL to determ. TELA, then approach of Section 5 309 98505s

Table 6. Number of cases of the SyntComp’20 for which at least one configuration
of ltlsynt with the option synthesis succeeded and at least one configuration failed.
The number n at line i and column j means that the configuration i solved n cases
that j was not able to do.

lar lar.old ds sd ps
lar - 22 21 58 27
lar.old 0 - 5 41 7
ds 4 10 - 39 10
sd 4 9 2 - 7
ps 0 2 0 34 -

The CAR construction, which is the general case for our paritization al-
gorithm, produces smaller automata than the classical SAR, as it tracks colors
instead of states, and uses transition-based acceptance. We further improved this
construction by applying more specialized algorithms in each SCC (IAR [16], de-
tection of Büchi-realizable SCCs [15], detection of empty SCCs [4], detection of
parity) after simplifying their acceptance.

The proposed partial degeneralization procedure is used as a preprocessing
step to reduce conjunctions of Inf or disjunction of Fin in the acceptance condi-
tion, and to reduce the number of colors that CAR and IAR have to track. Since
partial degeneralization only causes a linear blowup in the number of colors re-
moved, it generally helps the CAR construction whose worst case scenario incurs
a factorial blowup in the number of colors. Furthermore, after partial degener-
alization, the acceptance condition may match more specialized algorithms.

The implementation of the described paritization procedure is publicly avail-
able in Spot 2.9. While our motivation stems from one approach to produce
deterministic parity automata used in Spot, this paritization also works with
non-deterministic automata: it preserves the determinism of the input.
Acknowledgment. The unoptimized CAR definition of Section 4.1 was first im-
plemented in Spot by Maximilien Colange.
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A Differences Between ltlsynt Configurations

Table 7: Specifications of the SyntComp’20 benchmark for which
at least one configuration of ltlsynt with the option synthesis
succeeded (✓) and at least one configuration failed (−).

file sd ps lar.old ds lar

ltl2dba_beta_10.tlsf ✓ − − − −
ModdifiedLedMatrix4X.tlsf ✓ − − − −
amba_case_study_2.tlsf − − − ✓ −
collector_v3_7.tlsf − − − ✓ −
ltl2dba_beta_8.tlsf ✓ − − ✓ −
tictactoe.tlsf ✓ − − ✓ −
detector_10.tlsf − − − − ✓
detector_12.tlsf − − − − ✓
detector_8.tlsf − − − − ✓
full_arbiter_enc_10.tlsf − − − − ✓
full_arbiter_enc_12.tlsf − − − − ✓
full_arbiter_enc_8.tlsf − − − − ✓
ltl2dba_C2_10.tlsf − − − − ✓
ltl2dba_C2_12.tlsf − − − − ✓
ltl2dba_C2_8.tlsf − − − − ✓
ltl2dba_theta_10.tlsf − − − − ✓
ltl2dba_theta_12.tlsf − − − − ✓
ltl2dba_theta_8.tlsf − − − − ✓
prioritized_arbiter_10.tlsf − − − − ✓
prioritized_arbiter_enc_10.tlsf − − − − ✓
prioritized_arbiter_enc_12.tlsf − − − − ✓
prioritized_arbiter_enc_8.tlsf − − − − ✓
lilydemo18.tlsf − − ✓ − ✓
ltl2dba_Q_10.tlsf − − ✓ − ✓
ltl2dba_theta_6.tlsf − − ✓ − ✓

http://www.lrde.epita.fr/dload/papers/michaud.18.synt.pdf
http://www.lrde.epita.fr/dload/papers/michaud.18.synt.pdf
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ltl2dba_U1_10.tlsf − − ✓ − ✓
ltl2dba_U1_12.tlsf − − ✓ − ✓
simple_arbiter_enc_12.tlsf − − − ✓ ✓
prioritized_arbiter_8.tlsf ✓ − − ✓ ✓
simple_arbiter_enc_10.tlsf ✓ − − ✓ ✓
simple_arbiter_enc_8.tlsf ✓ − − ✓ ✓
simple_arbiter_10.tlsf ✓ ✓ − ✓ ✓
simple_arbiter_12.tlsf ✓ ✓ − ✓ ✓
amba_decomposed_arbiter_6.tlsf − − ✓ ✓ ✓
round_robin_arbiter_6.tlsf − − ✓ ✓ ✓
amba_decomposed_arbiter_2.tlsf − ✓ ✓ ✓ ✓
amba_decomposed_arbiter_4.tlsf − ✓ ✓ ✓ ✓
amba_decomposed_tburst4.tlsf − ✓ ✓ ✓ ✓
collector_v3_2.tlsf − ✓ ✓ ✓ ✓
collector_v3_3.tlsf − ✓ ✓ ✓ ✓
collector_v3_4.tlsf − ✓ ✓ ✓ ✓
collector_v3_5.tlsf − ✓ ✓ ✓ ✓
collector_v3_6.tlsf − ✓ ✓ ✓ ✓
lilydemo20.tlsf − ✓ ✓ ✓ ✓
lilydemo22.tlsf − ✓ ✓ ✓ ✓
lilydemo24.tlsf − ✓ ✓ ✓ ✓
load_balancer_10.tlsf − ✓ ✓ ✓ ✓
load_balancer_4.tlsf − ✓ ✓ ✓ ✓
load_balancer_6.tlsf − ✓ ✓ ✓ ✓
load_balancer_8.tlsf − ✓ ✓ ✓ ✓
loadcomp2.tlsf − ✓ ✓ ✓ ✓
loadcomp3.tlsf − ✓ ✓ ✓ ✓
loadcomp4.tlsf − ✓ ✓ ✓ ✓
loadcomp5.tlsf − ✓ ✓ ✓ ✓
loadfull2.tlsf − ✓ ✓ ✓ ✓
loadfull3.tlsf − ✓ ✓ ✓ ✓
loadfull4.tlsf − ✓ ✓ ✓ ✓
loadfull5.tlsf − ✓ ✓ ✓ ✓
ltl2dba_E_12.tlsf − ✓ ✓ ✓ ✓
round_robin_arbiter_2.tlsf − ✓ ✓ ✓ ✓
round_robin_arbiter_3.tlsf − ✓ ✓ ✓ ✓
round_robin_arbiter_4.tlsf − ✓ ✓ ✓ ✓
round_robin_arbiter_5.tlsf − ✓ ✓ ✓ ✓
round_robin_arbiter_unreal1_2_12.tlsf − ✓ ✓ ✓ ✓
round_robin_arbiter_unreal1_2_15.tlsf − ✓ ✓ ✓ ✓
round_robin_arbiter_unreal1_2_18.tlsf − ✓ ✓ ✓ ✓
round_robin_arbiter_unreal1_2_3.tlsf − ✓ ✓ ✓ ✓
round_robin_arbiter_unreal1_2_6.tlsf − ✓ ✓ ✓ ✓
round_robin_arbiter_unreal1_2_9.tlsf − ✓ ✓ ✓ ✓
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