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Abstract. Spot is a C++17 library for LTL and ω-automata manip-
ulation, with command-line utilities, and Python bindings. This paper
summarizes its evolution over the past six years, since the release of Spot
2.0, which was the first version to support ω-automata with arbitrary ac-
ceptance conditions, and the last version presented at a conference. Since
then, Spot has been extended with several features such as acceptance
transformations, alternating automata, games, LTL synthesis, and more.
We also shed some lights on the data-structure used to store automata.

1 Availability, Purpose, and Evolution

Spot is a library for LTL and ω-automata manipulation, distributed under a
GPLv3 license. Its source code is available from https://spot.lrde.epita.

fr/. We provide packages for some Linux distributions like Debian and Fedora,
but other packages can also be found for Conda-Forge [15] (for Linux & Darwin),
Arch Linux, FreeBSD...

Spot can be used via three interfaces: a C++17 library, a set of command-
line tools that give easy access to many features of the library, and Python
bindings, that makes prototyping and interactive work very attractive. Our web
site now contains many examples of how to perform some tasks using these three
interfaces, and we have a public mailing list for questions.

In our last tool paper [18], Spot 2.0 had just converted from being a library
for working on Transition-based Generalized Büchi Automata and had become
a library supporting ω-automata with arbitrary Emerson-Lei [19, 32] acceptance
conditions, as enabled by the development of the HOA format [5].

In the HOA format, transitions can carry multiple colors, and acceptance
conditions are expressed as a positive Boolean formulas over atoms like Fin(i) or
Inf(i) that tell if a color should be seen finitely or infinitely often for a run to be
accepting. Table 1 gives some examples.

While Spot 2.0 was able to read automata with arbitrary acceptance condi-
tions, not all of its algorithms were able to support such a generality. For instance
testing an automaton for emptiness or finding an accepting word, would only
work on automata with “Fin-less” acceptance conditions. For other conditions,
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Table 1. Acceptance formulas corresponding to classical names.

Büchi Inf(0)
generalized Büchi

∧
i Inf(i)

Fin-less [9] any positive formula of Inf(...)
co-Büchi Fin(0)
generalized co-Büchi

∨
i Fin(i)

Rabin
∨

i (Fin(m2i) ∧ Inf(m2i+1))
generalized Rabin [23]

∨
i(Fin(mi) ∧

∧
j∈Ji

Inf(mj))

Streett
∧

i (Inf(m2i) ∨ Fin(m2i+1))
parity min even Inf(0) ∨ (Fin(1) ∧ (Inf(2) ∨ (Fin(3) ∧ . . .)))
parity min odd Fin(0) ∧ (Inf(1) ∨ (Fin(2) ∧ (Inf(3) ∨ . . .)))
parity max even . . . ∨ (Fin(3) ∧ (Inf(2) ∨ (Fin(1) ∧ Inf(0))))
parity max odd . . . ∧ (Inf(3) ∨ (Fin(2) ∧ (Inf(1) ∨ Fin(0))))

Spot 2.0 would rely on a procedure called remove_fin() to convert automata
with arbitrary acceptance conditions into “Fin-less” acceptance conditions [9].
This was ultimately fixed by developing a generic emptiness check [6]. Addition-
ally the support for arbitrary acceptance conditions has allowed us to implement
many useful algorithms; the most recent being the Alternating Cycle Decompo-
sition [13, 14] a powerful data structure with many applications (conversion to
parity acceptance, degeneralization, typeness checks...)3.

There have been over 2400 commits and 55 releases of Spot since version
2.0, but only 10 of these are major releases. Releases are numbered 2.x.y where
y is updated for minor upgrades that mostly fix bugs, and x is updated for
major release that add new features. (The leading 2 would be incremented in
case of a serious redesign of the API.) Table 2 summarizes the highlights of
the various releases in chronological order. Not appearing in this list are many
micro-optimizations and usability improvements that Spot has accumulated over
the years. The rest of the text mostly focuses on how the storage for automata
evolved to support alternation, games, and Mealy machines.

2 Automata Representation

The main automaton class of Spot is called twa_graph and inherits from the
twa class. The letters twa stand for Transition-based ω-Automaton.

The class twa implements an abstract interface that allows on-the-fly explo-
ration of an automaton similar to what had been present in Spot from the start:
essentially, one can query the initial state, and query the transitions leaving any
known state. In particular, before exploring the state-space of a twa, it is un-
known how many states are reachable. Various subclasses of twa are provided in
Spot, for instance to represent the state-space of Promela or Divine models [18].
Users may create subclasses, for instance to create a Kripke structure on-the-fly.4

3 https://spot.lrde.epita.fr/ipynb/zlktree.html
4 As demonstrated by https://spot.lrde.epita.fr/tut51.html
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Table 2. Milestones in the history of Spot.

2004 0.x C++03 Prehistory of the project. [17]
2012 0.9 Support for some PSL operators.
2013 1.0 Command-line tools, mostly focused on LTL/PSL input [16]. In-

cludes ltlcross, a clone of LBTT [33]. Python bindings.
1.1 Automatic detection of stutter-invariant formulas. [27]
1.2 SAT-based minimization [3, 4]. ltlcross and the new dstar2tgba

can read Rabin and Streett automata produced by ltl2dstar [22].
2016 2.0 C++11 Rewrite of the LTL formulas representation. Rewrite of the au-

tomaton class to allow arbitrary acceptance. Support for the HOA
format. More command-line tools, now that automata can be ex-
changed with other tools. [18] New determinization procedure.

2.1 Conversion to generalized Streett or Rabin. Small usability im-
provements all around (like better support for CSV files).

2.2 LTLf→LTL conversion [21]. Faster simulation-based reduction of
deterministic automata.

2017 2.3 Initial support for alternating automata and alternation removal.
400% faster emptiness check. Incremental SAT-based minimization.
Classification in the temporal hierarchy of Manna & Pnueli [25].

2.4 C++14 New command-line tools: autcross to check and compare automata
transformations, genaut to generate families of automata. Dualiza-
tion of automata. Conversion from Rabin to Büchi [24] updated to
support transition-based input. Relabeling of LTL formulas with
large Boolean subformulas to speedup their translation.

2018 2.5 New command-line tool ltlsynt for synthesis of AIGER circuits
from LTL specifications. [26] Conversions to co-Büchi [10]. Utilities
for converting between parity acceptance conditions. Detection of
stutter-invariant states. Determinization optimized.

2.6 Compile-time option to support more than 32 colors. Specialized
translation for formulas of the type GF(φ) if φ is a guarantee. New
translation mode to output automata with unconstrained accep-
tance condition. Semi-deterministic complementation [8]. Faster de-
tection of obligation properties. Online LTL translator replaced by
a new web application (see Figure 4).

2.7 LAR-based paritization in ltlsynt. Generic emptiness check [6].
Detection of liveness properties [2].

2019 2.8 Accepting run extraction for arbitrary acceptance. Introduction of
an “output_aborter” to abort constructions that are too large.
Support for SVA’s delay syntax, and first_match operator [1].
Minimization of parity acceptance [12].

2020 2.9 Better paritization, partial degeneralization, and acceptance sim-
plifications [30]. Weak and strong variants of X. Xor product of
automata, used while translating formulas to automata with un-
constrained acceptance.

2021 2.10 C++17 ltlsynt overhauled [31]. Support for games and Mealy machines.
Mealy machines simplifications. Multiple encodings from Mealy
machine to AIGER. Experimental twacube class for parallel al-
gorithms. Support for transition-based Büchi. Zielonka Trees and
Alternating Cycle Decomposition [13, 14]
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Fig. 1. Internal representation of a twa_graph as two vectors.

The class twa_graph, introduced in Spot 2.0, implements an explicit, graph-
based, representation of an automaton, in which states and edges are designated
by integers. This makes for a much simpler interface5 and usually simplifies the
data structures used in algorithms (since states and edges can be used as indices
in arrays). The data structure is best illustrated by using the show_storage()

method of the Python bindings, as shown by Figure 1. Essentially, a twa_graph

is stored as two C++ vectors: a vector of states, and a vector of edges. For each
state, the first vector stores two edge numbers: succ is the first outgoing edge,
and succ_tail is the last one. These number are indices into the edge vector,
which stores five pieces of information per edge. Four of them are related to the
identity of the edge: src, dst, cond, acc are respectively the source, destination,
guard, and color sets of the edge. The remaining field, next_succ gives the next
outgoing edge, effectively creating a linked list of all edges leaving a given state.
There is no edge 0, so this value is used as terminator for such lists. Outgoing
edges of the same state are not necessarily adjacent in that structure. When a

5 Contrast on-the-fly and explicit APIs at https://spot.lrde.epita.fr/tut50.html.

https://spot.lrde.epita.fr/tut50.html
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new edge is added to the automaton, it is simply appended to the edge vector,
and the succ_tail field of the state is used to locate the previous end of the list
to update it.

To iterate over successors of state 1 in C++ or Python, one can ignore the
above linked list implementation and write one of the following loops:

for (auto& e: aut->out(1))

// use e.cond, e.acc, e.dst

for e in aut.out(1):

# use e.cond, e.acc, e.dst

The twa_graph::out methods simply returns a lightweight temporary object
which can be iterated upon using iterators that will follow the linked list. Then
the object e is effectively a reference to a column of the edge vector.

As seen on Figure 1, the automaton additionally stores an initial state (Spot
only supports a single initial state), a number of colors (num_sets), an accep-
tance condition, a list of atomic propositions (Spot only supports alphabets of
the form 2AP ), and 10 fields storing structural properties of the automaton.

These property fields have only three possible values: they default to maybe,
but can be set to no or yes by algorithms that work on the automaton. They can
also be read and written in the HOA format. For instance if prop_universal is
set to yes, it means that automaton does not have any existantial choice (a.k.a.
non-determinism). Spot’s is deterministic() algorithm can return in constant
time if prop_universal is known, otherwise it will inspect the automaton and
set that property before returning, so that the next call to is deterministic()
will be instantaneous. Some algorithms know how to take advantage of any hint
they get from those properties: for instance the product() of two automata is
optimized to use fewer colors when one of the arguments is known to be weak
(i.e., in an SCC all transitions have the same colors).

A drawback of these properties, is that algorithms that modify an automaton
in place always have to remember that they may need to update the properties.
This has caused a couple of bugs over the years.

3 Introduction of Alternating Automata

Support for alternating ω-automata, as defined in the HOA format, was added
to Spot in version 2.3 without introducing a new class. Rather, the twa_graph

class was extended to support alternation in such a way that existing algorithms
would not require any modifification to continue working on automata without
universal branching. This was done by reserving the sign bit of a state number
to denote a universal destination group. Testing whether the destination of an
edge has its sign bit set can be done efficiently by the processor, and when that
is detected, the complement of that number can be used as an index in a third
vector that stores the sequences of states that form those universal destination
groups.

Figure 2 shows an example of Alternating automaton (top-left) with co-Büchi
acceptance. In many works on alternating automata, it is conventional to not
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Fig. 2. Internal representation of alternating automata.

represent accepting sinks, and instead have transition without destination. The
top-right picture shows that Spot has a rendering option to hide accepting sinks.

The bottom of the figure shows that the automaton has prop_state_acc set,
which means that the automaton is meant to be interpreted as using state-based
acceptance. Colors are still stored on edges internally, but all edges leaving a
state have the same colors. Seeing that the condition is co-Büchi (Fin(0)), the
display code automatically switched to the convention of using double-circles for
rejecting states.

Universal destination groups appear as pink in the figure. There are two
groups here: ~0 and ~3. The complement of these numbers can be used as indices
in the dests vector. At the given index, one can read the size n of the destination
group, followed by the state number of the n destinations.

Algorithms that work on alternating automata need to be able to iterate
over all destinations of an edge. The process of checking the sign bit of the des-
tination to decide if its a group, and to iterate on that group is hidden by the
univ_dests() method:
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for(auto& e: aut->out(1)) {

// use e.cond, e.acc, e.src

for(unsigned d:aut->univ_dests(e))

// use d

}

for e in aut.out(1):

# use e.cond, e.acc, e.src

for d in aut.univ_dests(e):

# use d

Note that this code works on non-universal branches as well: if e.dst is unsigned,
univ_dests(e) will simply iterate on that unique value.

Spot has two alternation removal procedures. One is an on-the-fly implemen-
tation of the Breakpoint construction [28] which transforms an n-state alternat-
ing Büchi automaton into a non-alternating Büchi automaton with at most 3n

states. For very weak alternating automata, it is know that a powerset-based
procedure can produce a transition-based generalized Büchi automaton with 2n

states [20]; in fact that algorithm even works on ordered automata [11], i.e.,
alternating automata where the only rejecting cycles are self-loops. The second
alternation removal procedure of Spot is a mix between these two procedures
but does not work on the fly: it takes a weak automaton as input, and uses the
break-point construction on rejectings SCCs that have more than one state, and
uses the powerset construction for other SCCs.

4 Extending Automata via Named Properties

Spot’s automata have a mechanism to attach arbitrary data to automata, called
named properties. (This is similar to the notion of attributes in the R language.)
An object can be attached to the automaton with:

aut->set_named_prop("property-name", new mytype(...));

and later retrieved with:

mytype* data = aut->get_named_prop<mytype>("property-name");

Ensuring that mytype is the correct type for the retrieved property is the
programmer’s responsability.

Spot has grown a list of many such properties over time.6 For instance
automaton-name stores a string that would be displayed as the name of the
automaton. The highlight-edges and highlight-states properties can be
used to color edges and states. The state-names is a vector of strings that
gives a name to each state, etc. While those examples are mostly related to the
graphical rendering of the automata, some algorithms store useful byproducts as
properties. For instance the product() algorithm will define a product-states

named property that store a vector of pairs of the original states.
These named properties are sometimes used to provide additonnal semantics

to the automaton, for instance to obtain a game or a Mealy machine.

6 https://spot.lrde.epita.fr/concepts.html#named-properties

https://spot.lrde.epita.fr/concepts.html#named-properties
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Fig. 3. (top) Solving a game to display the strategy. States with green borders are
winning for player 1, who wants to satisfy the acceptance condition, by following the
green arrows. States with red color are winning for player 0, who wants to fail the
acceptance condition, by following the red arrow. (bottom) Conversion of the winning
strategy to a Mealy machine and then an AIGER circuit.

5 Games, Mealy Machines, and LTL Synthesis

The application of Spot to LTL synthesis was introduced in Spot 2.5 in the form
of the ltlsynt tool [26], but the inner workings of this tool were progressively
redesigned and publicly exposed until version 2.10.

An automaton can now be turned into a game by attaching the state-player
property to it.7 Only two-player games are supported, so state-player should
be a std::vector<bool>. Currently Spot has solvers for safety games or for
games with parity max odd acceptance, but we plan to at least generalize the
later to any kind of parity condition. Once a game has been solved, it contains two
new named properties: state-winner (another std::vector<bool> indexed by
state numbers), and strategy (a std::vector<unsigned> that gives for each
state the edge that its owner should follow).

Figure 3 shows an example of game generated by ltlsynt, and how we can
display the winning strategy once the game is solved. The winning strategy can
be extracted and converted into a Mealy machine, which is just an automaton
that uses the synthesis-output property to specify which atomic propositions

7 https://spot.lrde.epita.fr/tut40.html illustrates how a game you be used to
decide if a state simulates another one.

https://spot.lrde.epita.fr/tut40.html
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belong to the output. Such a Mealy machine can then be encoded into an AND-
inverter graph, and saved into the AIGER format [7]. Here L0 represents a latch,
basically one bit of memory, that stores the previous value of a so that the circuit
can output b if and only if a is true in the present and in the previous step.

6 Online Application for LTL Formulas

The Python ecosystem makes it easy to develop web interfaces for convenient
access to a subset of features of Spot. For instance Figure 4 shows screenshots
(taken on a mobile phone) of a web application built using a React frontend, and
running Spot on the server. It can transform LTL formulas into automata using
various acceptance conditions, can display many properties of a formula (mem-
bership to the Manna & Pnueli hierarchy [25], Safety/Liveness classification [2],
Rabin and Streett indices [12], stutter-invariance [27]), or simply compare two
formulas. In the latter case the two given LTL formula are related using a Venn
diagram, and an example word belonging to each zone is given.

7 Shortcomings and one Future Direction

While Spot has been used for many applications8, there are two recurrent issues:
they are related to the types used for some fields of the edge vector (see Figures 1–
2). By default, the set of colors that labels an edge (the acc field) is stored as a
32-bit bit-vector, the transition label (cond, a formula over 2AP ), is stored as a
BDD identified by a unique 32-bit integer, and the other three fields (src, dst,
next_succ) are all 32-bit integers. One edge therefore takes 20 bytes.

While limiting the number of states to 32-bit integers has never been a prob-
lem so far, the limit of 32 colors can be hit easily. Spot 2.6 added a compile-time
option to enlarge the number of supported colors to any multiple of 32; this
evidently has a memory cost (and therefore also a runtime cost) as the acc field
will be larger for each edge. However this constraint generally means that all the
algorithms we implement try to be “color-efficient”, i.e., to not introduce useless
colors. For instance while the product of an automaton with x colors and an au-
tomaton with y colors is usually an automaton with x+y colors, the product()
implementation will output fewer colors in presence of a weak automaton.

The use of BDDs as edge labels causes another type of issues. Spot uses a
customized version of the BuDDy library, with additional functions, and several
optimizations (more compact BDD nodes for better cache friendliness, most op-
erations have been rewritten to be recursion-free). However BuDDy is inherently
not thread safe, because of its global unicity table and caches. This prevents us
from doing any kind of parallel processing on automata. A long term plan is
to introduce a new class twacube that represent an automaton in which edges
are cubes (i.e., conjunctions of literals) represented using two bit-vectors. Such
a class was experimentally introduced in Spot 2.10 and is currently used in some
parallel emptiness check procedures [29].

8 The previous tool paper [18] has over 250 citations according to Google scholar

https://scholar.google.ca/scholar?oi=bibs&cites=3741341698957703284
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Fig. 4. A web application, built on top of Spot. https://spot.lrde.epita.fr/app/

https://spot.lrde.epita.fr/app/
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