
Submitted to:
Syntcomp 2020

© F. Renkin, A. Duret-Lutz, A. Pommellet, P. Schlehuber
This work is licensed under the
Creative Commons Attribution License.

ltlsynt (Spot 2.9+)

Florian Renkin
LRDE, EPITA

Le Kremlin-Bicêtre, France
frenkin@lrde.epita.fr

Alexandre Duret-Lutz
LRDE, EPITA

Le Kremlin-Bicêtre, France
adl@lrde.epita.fr

Adrien Pommellet
LRDE, EPITA

Le Kremlin-Bicêtre, France
adrien@lrde.epita.fr

Philipp Schlehuber
LRDE, EPITA

Le Kremlin-Bicêtre, France
philipp@lrde.epita.fr

1 Introduction and History

The tool ltlsynt distributed in the Spot library[6] since version 2.5 was originally developed by
Thibaud Michaud and Maximilien Colange. They submitted it to the 2017 and 2018 [9] editions of
the SYNTCOMP. This short document summarizes the improvements brought to ltlsynt since then.

While both original authors left the project mid-2018 (the former graduated and the latter moved
to the industry), Maximilien had started working on an alternative approach called LAR (described
below) that was eventually included in the Spot 2.7 release. Without any submission of ltlsynt to
SYNTCOMP’19, the organizers installed the latest version distributed with Spot 2.7.4 themselves, and
uncovered a bug caused by an incorrect optimization in the LAR approach.

This optimization was simply reverted in Spot 2.8, and we started working on a reimplementation of
LAR with many optimizations for Spot 2.9. Moreover, this submission contains additional improvements
that have not been released yet and should be part of a future release, hence the “2.9+” name.

A quick summary of all versions submitted to SYNTCOMP over the years is given in Table 1.

2 Technical Details

We describe ltlsynt’s general approach in Figure 1. The main step of the synthesis process is to convert
the LTL specification constraining the input and output signals into a deterministic parity automaton
(DPA) where transitions labeled by Boolean combinations of input signals are followed by transitions
labeled by Boolean combinations of output signals, as shown in the blue-colored box and discussed in
Section 2.1. This DPA uses a transition-based max-odd parity acceptance, i.e., assuming its transitions
are also labeled by priorities (a.k.a. colors), only runs whose highest priority is odd are accepting. We
then interpret this DPA as a game between two players (the environment playing the input signals and the
controller playing the output signals) and search a winning strategy for the controller using a transition-
based version of Zielonka’s algorithm [11], then encode this strategy as an AIGER circuit.

Year Spot version Main news

2017 pre-2.4? + patches first implementation
2018 2.5.3 + patches optimizations to determ., and game solving; incr. determ. approach
2019 2.7.4 (bogus) LAR; improved LTL translation; incr. determ. removed
2020 2.9 + patches reimplemented LAR, split, and game solving; parity minimization

Table 1: Versions of Spot on which ltlsynt submissions to SYNTCOMP where based.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 ltlsynt

translate
to NBA

split I/O determinize
to DPA

translate
to NBA

determinize
to DPA

split I/O

translate
to DELA

paritize
(pure CAR)

translate
to DELA

paritize
(CAR,IAR,...)

translate
to DPA

--
al
go
=s

d
(2017)

--
al
go
=ds (2017)

--algo=lar.old

(lar in 2019)--algo=lar

(2020)

--algo=ps

(2020)

LTL
input

solve
parity game

AIGER
output

encode
in aiger

Y/N
output

-
-
a
i
g
e
r

-
-
r
e
a
l
i
z
a
b
il
it
y

Figure 1: The --algo option of ltlsynt selects between different pipelines for building a DPA.

2.1 Determinization pipelines

The algorithm ltlsynt uses to convert the LTL input into a DPA suitable for game solving depends
on the --algo command-line argument. The first two options, ds and sd, correspond to pipelines
that appeared in ltlsynt’s very first release. With --algo=ds, LTL inputs are first converted to non-
deterministic Büchi automata, then determinized to DPA using a variant of Safra. At this point, transi-
tions are labeled by an mix of input and output signals, so transitions of the form i1∧i2∧o1∧o2 are
split into i1∧i2 o1∧o2 . To preserve determinism, we ensure that multiple transitions sharing the
same inputs end up sharing the same new intermediate state. In the pipeline --algo=sd, we perform this
split before determinizing the automata. Intuitively, this choice may be explained by realizing that the
determinization function, in order to compute the successors of a given state, has to consider all compat-
ible assignments of the atomic propositions used by transitions leaving said state: in ds, there might be
up to 2|I|+|O| assignments to consider, whereas in sd a given state has at most either 2|I| or 2|O| possible
successors.

The option --algo=lar.old in Spot 2.9 was called --algo=lar in Spot 2.7 and 2.8, and relies
on Spot’s ability to translate LTL formulas into automata with Emerson-Lei acceptance condition (i.e.,
any acceptance condition). To do so, this algorithm decomposes the input LTL formula on Boolean
operators, translates sub-formulas into deterministic automata (possibly using algorithms specialized for
a particular class of formulas), recombines the resulting automata using synchronous products, then
applies the relevant Boolean operations on the acceptance conditions. If we are lucky enough, we may
avoid Safra-based determinization entirely. However, the resulting deterministic automaton may feature
some arbitrary conditions that have yet to be paritized. Therefore, we use a transition-based adaptation
of the state appearance record algorithm, typically used to convert state-based Muller acceptance to
state-based parity. This option was named LAR as a reference to the latest appearance record family of
algorithms to which SAR belongs (to the extent some variants of SAR are often called LAR). In a paper
submitted to ATVA’20, we have renamed this algorithm CAR, because our method actually uses a color
appearance record, i.e., it tracks only the colors but not the states nor the transitions.

The CAR implementation in Spot 2.7 featured an optimization that reduced the number of colors

F. Renkin, A. Duret-Lutz, A. Pommellet, P. Schlehuber 3

tracked by computing the classes of symmetric colors in the acceptance condition (two colors are sym-
metric if swapping them in the acceptance formula results in an equivalent formula). The intent was to
keep track of a smaller number of acceptance classes instead of colors, but this optimization was found
to be incorrect during SYNTCOMP’19. This optimization was removed from Spot 2.8 for correctness
sake, then replaced by many new optimizations in Spot 2.9.

In this version of ltlsynt, option --algo=lar triggers a new implementation of the paritization
procedure (described in our ATVA’20 submission). It combines CAR (a generic transformation to par-
ity) with IAR (a conversion of Rabin-like or Streett-like acceptance conditions to parity) as well as a
partial-degeneralization (in order to reduce conjunctions of Inf or disjunctions of Fin that occur in the
acceptance condition to a single term, as intended by the original symmetry-based optimization) and
multiple simplifications of the acceptance conditions. All these transformations are performed on each
SCC separately, and it may for instance happen that one SCC is paritized using CAR while another SCC
is partially degeneralized to produce an acceptance condition that can be paritized with IAR. Our bench-
marks performed on data from SYNTCOMP’17 suggest that the option --algo=lar often produces
significantly smaller DPAs than --algo=lar.old.

Finally, a new option, not yet available in Spot 2.9, is --algo=ps. This is a close variant of
--algo=ds, that relies on the translation code that powers ltl2tgba -P -D. This procedure splits
the top-level LTL formulas on Boolean operators in order to translate subformulas corresponding to obli-
gations formulas separately. The remaining subformulas are separately translated to NBA, determinized
using Safra if needed, then combined back with the obligation part. Our preliminary experiments showed
this option to be inferior to the other methods, and since we had to pick three configurations for this year’s
competition, we excluded this procedure. In the future it could be improved by tagging the subformulas
based on their corresponding acceptance conditions, as performed by Strix [8].

2.2 Various optimizations

We now discuss other optimizations that were introduced since the 2018 release.

Translation Since Spot 2.7, the LTL translation engine (which stands behind the “translate to xxA” boxes
in Figure 1) learned to split the input formula on Boolean operators in order to separately translate parts
to automata then combine these to produce the desired result. This is similar to the process used by
the delag tool [10], but we use slightly improved algorithms. Extracting obligations subformulas is
beneficial because those can be converted to minimal weak deterministic automata [4]. Subformulas
of the form GF(guarantee) or FG(safety) can be converted to DBA or DCA using dedicated algorithms
(our implementation is a crossover between two different works [7, 10]). Finally, the products combining
the resulting automata handle weak-automata and suspendable properties [1] specifically. The heuristics
used depend on the type of automata to produce. For instance, in order to generate NBA or DBA, we
only split the LTL formula on conjunctions. The post-Spot-2.9 version submitted to SYNTCOMP also
deals with xor and equivalence operators while converting to DELA (following Strix’s [8] footsteps).
Additionally, several new LTL simplifications rules have been added to improve the translation process.

Parity minimization Spot 2.8 features a function that minimizes the number of colors in a DPA [3], now
called in ltlsynt once a DPA is produced, before merging states with identical successors.

Split — from automata to arenas The split operation described above transforms an automaton into a
two-player arena. Even though this step is merely a technicality, benchmarks on Spot 2.9 have shown
that it can consume up to 20% of the total run time. In the submitted version, this process has been
optimized thanks to caching operations, as labels are often shared among multiple transitions. Moreover,

4 ltlsynt

the number of edges and states has been reduced by sharing the introduced intermediate states.
Solving the game The parity game solver of ltlsynt is derived from Zielonka’s algorithm [11]. The
implementation in the submitted version is inspired by the one described in [5] but adapted to transition-
based acceptance. In particular, it supports (non-recursive) SCC decomposition, parity compression (also
called priority compression) and detection of sub-arenas having a single parity. In the majority of the
SYNTCOMP benchmarks, solving the parity game is not the bottleneck of ltlsynt, but nonetheless
remains a crucial step as it also determines the strategy which directly influences the size of the resulting
AIGER circuit.
Optimizing the output circuit For the synthesis track submission, the AIGER output of ltlsynt is run
through abc for simplification [2]. This is done in the driver script for starexec, not by ltlsynt itself.

References
[1] Tomáš Babiak, Thomas Badie, Alexandre Duret-Lutz, Mojmı́r Křetı́nský & Jan Strejček (2013): Composi-

tional Approach to Suspension and Other Improvements to LTL Translation. In: Proceedings of the 20th
International SPIN Symposium on Model Checking of Software (SPIN’13), Lecture Notes in Computer Sci-
ence 7976, Springer, pp. 81–98, .

[2] Robert Brayton & Alan Mishchenko (2010): ABC: An Academic Industrial-Strength Verification Tool. In:
Proceedings of the 22nd Conference on Computer Aided Verification (CAV’10), Springer, pp. 24–40, .

[3] Olivier Carton & Ramón Maceiras (1999): Computing the Rabin index of a parity automaton. Informatique
théorique et applications 33(6), pp. 495–505. Available at http://www.numdam.org/item/ITA_1999_
_33_6_495_0/.

[4] Christian Dax, Jochen Eisinger & Felix Klaedtke (2007): Mechanizing the Powerset Construction for Re-
stricted Classes of ω-Automata. In Kedar S. Namjoshi, Tomohiro Yoneda, Teruo Higashino & Yoshio Oka-
mura, editors: Proceedings of the 5th International Symposium on Automated Technology for Verification
and Analysis (ATVA’07), Lecture Notes in Computer Science 4762, Springer.

[5] Tom van Dijk (2018): Oink: An implementation and evaluation of modern parity game solvers. In: Pro-
ceedings of the 24th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’18), Springer, pp. 291–308, .

[6] Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne Renault &
Laurent Xu (2016): Spot 2.0 — a framework for LTL and ω-automata manipulation. In: Proceedings of the
14th International Symposium on Automated Technology for Verification and Analysis (ATVA’16), Lecture
Notes in Computer Science 9938, Springer, pp. 122–129, .

[7] Javier Esparza, Jan Křetı́nský & Salomon Sickert (2018): One Theorem to Rule Them All: A Unified Trans-
lation of LTL into ω-Automata. In Anuj Dawar & Erich Grädel, editors: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS’18), ACM, pp. 384–393, .

[8] Michael Luttenberger, Philipp J. Meyer & Salomon Sickert (2020): Practical Synthesis of Reactive Systems
from LTL Specifications via Parity Games. Acta Informatica 57, pp. 3—-36. Originally published on 21
November 2019.

[9] Thibaud Michaud & Maximilien Colange (2018): Reactive Synthesis from LTL Specification with Spot. In:
Proceedings of the 7th Workshop on Synthesis (SYNT’18). Available at http://www.lrde.epita.fr/
dload/papers/michaud.18.synt.pdf.

[10] David Müller & Salomon Sickert (2017): LTL to Deterministic Emerson-Lei Automata. In Patricia Bouyer,
Andrea Orlandini & Pierluigi San Pietro, editors: Proceedings of the Eighth International Symposium on
Games, Automata, Logics and Formal Verification (GandALF’17), EPTCS 256, pp. 180–194, .

[11] Wieslaw Zielonka (1998): Infinite games on finitely coloured graphs with applications to automata on infinite
trees. Theoretical Computer Science 200(1–2), pp. 135–183, .

http://www.numdam.org/item/ITA_1999__33_6_495_0/
http://www.numdam.org/item/ITA_1999__33_6_495_0/
http://www.lrde.epita.fr/dload/papers/michaud.18.synt.pdf
http://www.lrde.epita.fr/dload/papers/michaud.18.synt.pdf

	Introduction and History
	Technical Details
	Determinization pipelines
	Various optimizations

