Transformations d'ω-automates pour la synthèse de contrôleurs réactifs Florian Renkin 7 octobre 2022

M. Olivier Carton M. Nicolas Markey Mme Hanna Klaudel Mme Laure Petrucci Mme Nathalie Sznajder M. Alexandre Duret-Lutz M. Adrien Pommellet Univ. Paris CitéRapporteurUniv. de RennesRapporteurUniv. d'Évry Paris-SaclayExaminatriceUniv. Sorbonne Paris NordExaminatriceSorbonne UniversitéExaminatriceEPITADirecteur de thèseEPITACo-encadrant de thèse

Problème que l'on cherche à résoudre

Obtenir un système correct à partir de spécifications.

Création de manière automatique d'une solution correcte à partir de spécifications.

Système réactif

Système discret synchrone associant à un flux de valuations de variables Booléennes d'entrée un flux de valuations de variables Booléennes de sortie.

Écosystème des outils de synthèse

S. Jacobs, G. A. Perez, R. Abraham, V. Bruyère, M. Cadilhac, M. Colange, C. Delfosse, T. van Dijk, A. Duret-Lutz, P. Faymonville, B. Finkbeiner, A. Khalimov, F. Klein, M. Luttenberger, K. J. Meyer, T. Michaud, A. Pommellet, F. Renkin, P. Schlehuber-Caissier, M. Sakr, S. Sickert, G. Staquet, C. Tamines, L. Tentrup, and A. Walker. The reactive synthesis competition (SYNTCOMP): 2018-2021. *STTT*, 2022. *Epd*, submitted 4/40

Spec \neg $F(i) \leftrightarrow F(o)$

 $F(i) \leftrightarrow F(o)$ Spec **₹0** Inf(1) iō iō DPA 0 \vee Fin(**()**) io T 🗊

E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic strikes back. *Science of Computer Programming*, 8(3):275–306, June 1987.

E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic strikes back. *Science of Computer Programming*, 8(3):275–306, June 1987.

E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic strikes back. *Science of Computer Programming*, 8(3):275–306, June 1987. ●doi

E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic strikes back. Science of Computer Programming, 8(3):275–306, June 1987. ●doi

E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic strikes back. *Science of Computer Programming*, 8(3):275–306, June 1987. ●doi

E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic strikes back. *Science of Computer Programming*, 8(3):275–306, June 1987.

E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic strikes back. Science of Computer Programming, 8(3):275–306, June 1987. ●doi

Emerson-Lei Büchi Büchi généralisée co-Büchi co-Büchi généralisée Rabin Streett parité maximale paire parité maximale impaire parité minimale paire parité minimale impaire

Combinaison de Inf et de Fin $lnf(\mathbf{0})$ $lnf(\mathbf{0}) \wedge lnf(\mathbf{0}) \wedge \ldots$ $Fin(\mathbf{0})$ $Fin(\mathbf{0}) \vee Fin(\mathbf{1}) \vee \ldots$ $(\operatorname{Fin}(\mathbf{0}) \wedge \operatorname{Inf}(\mathbf{1})) \vee (\operatorname{Fin}(\mathbf{2}) \wedge \operatorname{Inf}(\mathbf{3})) \vee \ldots$ $(\operatorname{Fin}(\mathbf{0}) \lor \operatorname{Inf}(\mathbf{1})) \land (\operatorname{Fin}(\mathbf{2}) \lor \operatorname{Inf}(\mathbf{3})) \land \ldots$ $(((\ln f(\mathbf{0}) \land Fin(\mathbf{1})) \lor \ln f(\mathbf{2})) \land Fin(\mathbf{3})) \lor \dots$ $(((Fin(\mathbf{0}) \lor Inf(\mathbf{1})) \land Fin(\mathbf{2})) \lor Inf(\mathbf{3})) \land \dots$ $Inf(\mathbf{0}) \lor (Fin(\mathbf{1}) \land (Inf(\mathbf{2}) \lor (Fin(\mathbf{3}) \land \ldots)))$ $\operatorname{Fin}(\mathbf{0}) \land (\operatorname{Inf}(\mathbf{0}) \lor (\operatorname{Fin}(\mathbf{2}) \land (\operatorname{Inf}(\mathbf{3}) \lor \ldots)))$

Transformation de spécification en ω-automate

S. Safra. On the complexity of ω -automata. FOCS'88.

J. Křetínský, T. Meggendorfer, C. Waldmann, and M. Weininger. Index appearance record with preorders. Acta Informatica, 2021. 201

Z. Komárková and J. Křetínský. Rabinizer 3: Safraless translation of LTL to small deterministic automata. ATVA'14. • doi

J. Esparza, J. Křetínský, J.-F. Raskin, and S. Sickert. From LTL and limit-deterministic Büchi automata to deterministic parity automata. *TACAS'17*. • doi 10/40

Principe

- L'acceptation d'une exécution ne dépend que de l'ensemble des couleurs vues infiniment souvent
- Utilisation d'une mémoire

Principe

- L'acceptation d'une exécution ne dépend que de l'ensemble des couleurs vues infiniment souvent
- Utilisation d'une mémoire

Exemple

Exemple

Exemple

Exemple

Exemple

Exemple

Exemple

2 Index Appearance Record (IAR) : Rabin/Streett \Rightarrow parité

Exemple

J. Křetínský, T. Meggendorfer, C. Waldmann, and M. Weininger. Index appearance record with preorders. Acta Informatica, 2021. 13/40

3 Dégénéralisation : Büchi généralisé \Rightarrow Büchi

T. Babiak, T. Badie, A. Duret-Lutz, M. Křetínský, and J. Strejček. Compositional approach to suspension and other improvements to LTL translation. SPIN'13. doi 14/40

S. C. Krishnan, A. Puri, and R. K. Brayton. Deterministic ω-automata vis-a-vis deterministic Büchi automata. ISAAC'94

S. C. Krishnan, A. Puri, and R. K. Brayton. Deterministic ω-automata vis-a-vis deterministic Büchi automata. ISAAC'94

- ▶ Rabin + Büchi-type ⇒ Büchi (déjà présent)
- ► Emerson-Lei + Büchi-type \Rightarrow Büchi
- Emerson-Lei + parity-type \Rightarrow parité

S. C. Krishnan, A. Puri, and R. K. Brayton. Deterministic ω-automata vis-a-vis deterministic Büchi automata. ISAAC'94

3 versions :

- ▶ Rabin + Büchi-type ⇒ Büchi (déjà présent) activée par défaut
- Emerson-Lei + Büchi-type \Rightarrow Büchi désactivée par défaut
- Emerson-Lei + parity-type \Rightarrow parité désactivée par défaut

S. C. Krishnan, A. Puri, and R. K. Brayton. Deterministic ω-automata vis-a-vis deterministic Büchi automata ISAAC'94

Algorithme général

19/40

Exemple

 $\begin{array}{c} (\mathsf{Inf}(\textcircled{2}) \land \mathsf{Fin}(\textcircled{1})) \lor \\ ((\mathsf{Inf}(\textcircled{2}) \lor \mathsf{Inf}(\textcircled{1})) \land \\ \\ \mathsf{Fin}(\textcircled{0}) \land \\ (\mathsf{Fin}(\textcircled{1}) \lor \mathsf{Fin}(\textcircled{3})) \end{array})$

SCC 1 S + P0 0 $(Inf(2) \land Fin(1)) \lor$ $((Inf(2) \lor Inf(1)) \land$ $Fin(0) \wedge$ $(\mathsf{Fin}(\mathbf{0}) \lor \mathsf{Fin}(\mathbf{3})) \Big)$

SCC 1 S + Pdeg. 0 0_1 0_0 $(Inf(2) \land Fin(1)) \lor$ $((Inf(2) \lor Inf(1)) \land$ Fin(**()**) ∧ $\operatorname{Fin}(\mathbf{4})$

Conditions

945 LTL (SYNTCOMP'21)

Taille du résultat

22 / 40

Taille du résultat

Durée de traitement

🔋 F. Renkin, A. Duret-Lutz, and A. Pommellet. Practical "paritizing" of Emerson-Lei automata. ATVA'20. 🔽 🖊 🖉

🔋 F. Renkin, A. Duret-Lutz, and A. Pommellet. Practical "paritizing" of Emerson-Lei automata. ATVA'20. 🔽 🖊 🖉

A. Casares, T. Colcombet, and N. Fijalkow. Optimal transformations of games and automata using Muller conditions. *ICALP'21*. 100

A. Casares, A. Duret-Lutz, K. J. Meyer, F. Renkin, and S. Sickert. Practical applications of the Alternating Cycle Decomposition. Proc. of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems. • doi), • pdf

Alternating Cycle Decompostion (ACD)

Transformation ACD

Conditions

Taille du résultat

Taille du résultat

Durée de traitement

Méthode utilisée par ltlsynt

Minimisation de machine de Mealy

Problème NP-difficile

- Une approche consiste à :
 - Encoder la minimisation comme un problème SAT
 - Utiliser un SAT-solver pour le résoudre
- \blacktriangleright Outil existant : $M \, {\rm E} \, M \, {\rm IN}$ peut avoir besoin d'une restriction manuelle des sorties
- Implémentation dans Spot par Philipp Schlehuber-Caissier

A. Abel and J. Reineke. Memin: SAT-based exact minimization of incompletely specified Mealy machines. 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). Iterational Conference on Computer-Aided Design (ICCAD).

F. Renkin, P. Schlehuber-Caissier, A. Duret-Lutz, and A. Pommellet. Effective reductions of Mealy machines. FORTE'22. ● pdf

Spécialisation

Un état x est une spécialisation d'un état y si toute trace possible depuis l'état x est possible depuis l'état y.

Spécialisation

Un état x est une spécialisation d'un état y si toute trace possible depuis l'état x est possible depuis l'état y.

Théorème

Dans un contrôleur, rediriger une arête vers un état x qui est une spécialisation de sa destination originale y conduit à un contrôleur valide.

Spécialisation

Un état x est une spécialisation d'un état y si toute trace possible depuis l'état x est possible depuis l'état y.

Théorème

Dans un contrôleur, rediriger une arête vers un état x qui est une spécialisation de sa destination originale y conduit à un contrôleur valide.

Bisimulation avec spécialisation des sorties

Bisimulation avec spécialisation des sorties

Bisimulation avec spécialisation des sorties

Bisimulation avec spécialisation des sorties

Preuve de non-optimalité

Preuve de non-optimalité

Preuve de non-optimalité

Preuve de non-optimalité

LTL (SYNTCOMP'19)

Conditions

Conditions

Conditions

Qualité de la réduction

Taille du résultat

Qualité de la réduction

Taille du résultat

Comparaison des deux réductions

Durée de traitement

Conclusion

- Nouvelle procédure de paritisation combinant plusieurs techniques (ATVA'20)
- Comparaison avec ACD (TACAS'22)
- Réduction de machine de Mealy (FORTE'22)
- Implémentation dans Spot (CAV'22) et ltlsynt (FMSD'22, accepté)
- Plusieurs sujets omits (décomposition, bypass, optimisations, ...)

Pistes :

- Réduction de machines de Mealy
- Amélioration de la traduction
- Amélioration de la résolution de jeu

Titre
(Problème) (Solutions) (Synthèse) (Outils) ($tlsynt$) (TELA) (Emerson-Lei) (DPA) (Hiérarchie) (LTL $ ightarrow$ DPA)
(CAR) (CAR (exemple) (IAR) (Dégénéralisation) (Dégénéralisation partielle) (Propagation) (Parity-type) (to_parity)
(to_parity (exemple)) Conditions exp. (to_parity vs CAR (états)) (to_parity vs CAR (temps))
Histoire de la paritisation
(ACD) Conditions exp.) (to_parity vs ACD (états)) (to_parity vs ACD (temps))
(Réduction de contrôleur) (Minimisation de contrôleur) (BWOA) (BWOA (exemple)) (Non optim. BWOA) (Conditions exp.)
Imp. modèle BWOA vs minim. (états) BWOA vs minim. (temps)
Conclusion
Piste Mealy BSCC Imposition de l'ordre Décomposition Bypass

Réduction de machine de contrôleur (2)

Réduction de machine de contrôleur (2)

Réduction de machine de contrôleur (2)

Réduction de machine de contrôleur (2)

Heuristiques to_parity

Imposition de l'ordre

Décomposition

B. Finkbeiner, G. Geier, and N. E. Passing. Specification decomposition for reactive synthesis (full version). ArXiv abs/2103.08459, 2021 Décomposition

B. Finkbeiner, G. Geier, and N. E. Passing. Specification decomposition for reactive synthesis (full version). ArXiv abs/2103.08459, 2021

$G(o_1) \land (GF(i) \leftrightarrow GF(o_2))$

- Traduire GF(i) en automate de Büchi
- Associer o₂ aux arêtes portant ()

$\mathsf{G}(o_1) \land (\mathsf{GF}(i) \leftrightarrow \mathsf{GF}(o_2))$

- Traduire GF(i) en automate de Büchi
- 2 Associer o₂ aux arêtes portant ()
- S Ajouter o₁ à toutes les arêtes

$\mathsf{G}(o_1) \land (\mathsf{GF}(i) \leftrightarrow \mathsf{GF}(o_2))$

- Traduire GF(i) en automate de Büchi
- 2 Associer o₂ aux arêtes portant ()
- S Ajouter o₁ à toutes les arêtes
- 4 Supprimer les couleurs

$G(o_1) \land (GF(i) \leftrightarrow GF(o_2))$

- Traduire GF(i) en automate de Büchi
- 2 Associer o₂ aux arêtes portant ()
- 3 Ajouter o₁ à toutes les arêtes
- 4 Supprimer les couleurs

