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Abstract. It is proved that the set of execution paths of a locally finite cellular

multipointed d-space equipped with the compact-open topology is ∆-generated. Thus

the space of execution paths of a locally finite cellular multipointed d-space is metrizable

with the distance of the uniform convergence. Note: this note will be never published as

it is; the part about locally finite cellular spaces must be considered as well known and

the part about locally finite multipointed d-spaces does not have yet any application.
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1. Introduction

Presentation of the main result. Multipointed d-spaces are introduced in [5] as a

variant of Grandis’ notion of d-space [12]. They are sufficient to model concurrency in

computer science. The model structure constructed in [5], which is now called the q-model

structure after [11], is known to be Quillen equivalent to its (semi)categorical analogue

introduced on the category of topologically enriched small semicategories (a.k.a. flows) [8]

[9].

Recall that a cellular object in a cofibrantly generated model category with a set

of generating cofibrations I is an object X such that the canonical map ∅ → X is a

transfinite composition of pushouts of maps of I. In this note, the terminology of cellular

space refers to the cellular objects of the q-model category of a convenient category of

topological spaces (so it is a little bit more general than the notion of CW-complex)

and the terminology of cellular multipointed d-spaces refers to the cellular objects of the

q-model category of multipointed d-spaces.

All computer scientific examples are cellular objects of multipointed d-spaces or of

flows because they are basically nothing else than pastings of cubes of various dimension,

a n-cube representing the concurrent execution of n actions. For example, the papers

[4] [6] provide a method to associate a labelled precubical set to any process algebra of
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any synchronization algebra describing the space of execution paths and the concurrent

structure. It is the reason why cellular multipointed d-spaces are important to study.

In [9, Proposition 2.5, Proposition 6.3 and Lemma 6.9], it is proved, as a technical tool

for a proof, that the space of execution paths from the initial state to the final state of

a chain of globes (cf. Definition 3.2) of the form GlobG(Dn1) ∗ · · · ∗ GlobG(Dnp) where

Dn is the n-dimensional closed disk is homeomorphic to the product calculated in the

category of general topological spaces G(1, p)×Dn1 × . . .×Dnp where G(1, p) is the set

of nondecreasing homeomorphisms from [0, 1] to [0, p] equipped with the compact-open

topology and where the disks are equipped with the topology induced by the Euclidian

metric. The important fact is that this topology is already ∆-generated. In particular,

this space is metrizable. It is the key remark to conclude the proof of [9, Theorem 6.11]

which is recalled in Theorem 3.10.

A chain of globes is a very particular example of a finite cellular multipointed d-space.

It turns out that the result above can be generalized as follows:

Theorem. (Theorem 4.7 and Corollary 4.8) Let X be a locally finite cellular multipointed

d-space, i.e. such that the underlying space is locally finite as a cellular space. Then the

topology of the space of execution paths PGX is equal to the compact-open topology and it

is therefore metrizable.

The striking fact is that the compact-open topology is already ∆-generated in the

locally finite case: the ∆-kelleyfication is not required. Note that we already know by

[11, Theorem 8.6] that PGX has the homotopy type of a CW-complex for any q-cofibrant

multipointed d-space X, and in particular for any cellular (and not necessarily locally

finite) multipointed d-space X. Another way to see that is to observe that for any q-

cofibrant multipointed d-space X, MG(X) is a q-cofibrant Moore flow by [9, Corollary 7.5],

and then that the G-space of execution paths PMG(X) is projective q-cofibrant by [8,

Theorem 9.11], and then by [7, Proposition 7.1] we deduce that PMG(X) is injective

m-cofibrant, i.e. objectwise m-cofibrant. Since P1MG(X) = PGX by definition of PMG(X)

(see [9, Theorem 4.12]), we deduce that the space PGX is m-cofibrant, i.e. homotopy

equivalent to a CW-complex.

Organization of the note. Section 2 generalizes to cellular spaces the well-known

metrizability condition for CW-complexes (Theorem 2.17). We follow the proofs of [3,

Proposition 1.5.10 and Proposition 1.5.17]. They are adapted to the transfinite setting.

Some arguments of Fritsch and Piccinini’s book are also corrected and simplified. Some

material of the proof like Proposition 2.12 is used in the proof of Theorem 4.3. Section 3

expounds the definition of a locally finite cellular multipointed d-space and fixes some

notations used in Section 4. Finally, Section 4 proves the main result of the note in

Theorem 4.7 and Corollary 4.8 after analyzing the compact-open topology in the locally

finite case. The technical core of this note is Theorem 4.3 which is a variant of [9,

Theorem 5.18].

Prerequisites and notations. This note uses very little homotopy theory. It is only

required to know that a q-cofibration of topological spaces is a closed inclusion. The

techniques of this note belong to general topology. Some relevant bibliographical references

are given throughout the paper. This note is written with the French convention: a
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compact space is a quasicompact Hausdorff space. We work with the category, denoted by

Top, either of ∆-generated spaces or of ∆-Hausdorff ∆-generated spaces (cf. [10, Section 2

and Appendix B]). The internal hom functor of Top is denoted by TOP(−,−).

2. Locally finite cellular topological space

Let λ be an ordinal. We work with a colimit-preserving functor X : λ −→ Top such

that

• X0 = ∅ .

• For all ν < λ, there is a pushout diagram of topological spaces

Snν−1

��

gν
// Xν

��

Dnν
ĝν

// Xν+1

with nν > 0 where Snν−1 is the nν−1-dimensional sphere and Dnν is the nν-dimensional

disk.

Let

Xλ = lim−→
ν<λ

Xν .

A cellular topological space is a topological space of the form Xλ: it is a cellular object

for the q-model structure of Top. A cellular space is finite (countable resp.) if λ is

finite (countable resp.). All cellular spaces are weakly Hausdorff. All cellular spaces

are ∆-generated and therefore sequential. It implies that a cellular space is connected

if and only if it is path-connected by [5, Proposition 2.8] and that a cellular space is

homeomorphic to the disjoint sum of its path-connected components. The following

proposition is a consequence of [2, Proposition 3.4] and [2, Proposition 3.10]. It can be

easily proved without using diffeological spaces.

2.1. Proposition. Every ∆-generated space, and in particular every cellular space, is

locally path-connected.

Proof. Let U be an open subset of a ∆-generated space X. Then U equipped with the

relative topology is ∆-generated by [10, Proposition 2.4]. Therefore U equipped with the

relative topology is homeomorphic to the disjoint sum of its path-connected components

by [5, Proposition 2.8]. Thus X is locally path-connected. �

2.2. Proposition. Every cellular space is normal (i.e. it separates disjoint closed subsets)

and Hausdorff.

Proof. Consider the first ordinal ν0 6 λ such that Xν0 is not normal. We have ν0 > 0

since X0 = ∅ is normal. Adding one cell preserves normality by [3, Proposition 1.1.2 (ii)].

Thus ν0 is a limit ordinal. Each Xµ for µ < ν0 is normal and weakly Hausdorff, and hence

Hausdorff since the points are closed. Let F0 and F1 be two disjoint closed subsets of Xν0 .

Consider the continuous map f : F → R defined as follows: F = F0 ∪F1, f = 0 on F0 and

f = 1 on F1. By induction on µ > 0, we construct a continuous map fµ : Xµ → R such

that for all µ′ 6 µ, fµ′ = fµ �Xµ′ and such that fµ �F∩Xµ = f �F∩Xµ as follows. If µ is a limit
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ordinal, we just take the colimit. Otherwise µ− 1 exists. There exists a unique continuous

map fµ : (F ∩ Xµ) ∪ Xµ−1 → R such that fµ � F∩Xµ = f � F∩Xµ and fµ � Xµ−1 = fµ−1.

Indeed, F ∩Xµ and Xµ−1 are two closed subsets of Xµ and (F ∩Xµ)∩Xµ−1 = F ∩Xµ−1.

Since (F ∩Xµ) ∪Xµ−1 is a closed subset of Xµ, we can extend fµ : Xµ → R by Tietze’s

extension theorem [1, Chapter IX Section 4.2 Theorem 2] since Xµ is normal Hausdorff.

By taking the colimit of all maps fµ for µ < ν0, we obtain a map fν0 : Xν0 → R which

extends f : F → R. Then F0 ⊂ f−1
ν0

(]− 1/2, 1/2[), F1 ⊂ f−1
ν0

(]1/2, 3/2[), which means that

F0 and F1 are separated by two disjoint open subsets of Xν0 . Thus Xν0 is normal, and

also Hausdorff since it is weakly Hausdorff. Contradiction. Hence ν0 does not exist. �

Denote by

cν = Dnν\Snν−1

the ν-th cell of Xλ. Like in the usual setting of CW-complexes, ĝν induces a homeo-

morphism from cν to ĝν(cν) equipped with the relative topology which will be therefore

denoted in the same way. It also means that ĝν(cν) equipped with the relative topology is

∆-generated. The closure of cν in Xλ is denoted by

ĉν = ĝν(D
nν ).

A point y belongs to a unique open cell cνy for some unique νy < λ. Let L ⊂ Xλ. The

smallest cellular subspace containing L is denoted by Xλ(L). Since a cellular subspace is

closed (the inclusion into Xλ is a q-cofibration, and therefore a closed inclusion), we have

Xλ(L) = Xλ(L̂) where L̂ is the closure of L in Xλ.

2.3. Definition. Let V ⊂ Xν for some ν < λ. The collar of V is by definition the subset

of Xν+1

C(V ) = V ∪ ĝν
({

ts | gν(s) ∈ V and
1

2
< t 6 1

})
.

2.4. Proposition. Let V ⊂ Xν for some ν < λ. Let µ < λ. If cµ ∩ C(V ) 6= ∅, then

ĉµ ∩ V 6= ∅.

Proof. For all µ > ν, cµ ∩Xν+1 = ∅. Since C(V ) ⊂ Xν+1, it means that either µ = ν and

the proof is complete, or µ < ν. In the latter case, let y ∈ cµ ∩ C(V ). If y /∈ V , then

y = ĝν(s) ∈ V since ĉµ ⊂ Xν . Thus y ∈ V . �

We can repeat the construction above and define Cµ(V ) for all µ > ν as follows:

(1) By convention, Cν(V ) = V .

(2) For all µ > ν, Cµ+1(V ) = C(Cµ(V )).

(3) For a limit ordinal µ > ν, let Cµ(V ) = lim−→µ′<µ
Cµ′(V ).

(4) If µ > λ, then Cµ(V ) = Cλ(V ).

2.5. Definition. Let V ⊂ Xν for some ν < λ. The infinite collar is the subset Cλ(V ) of

Xλ. It is denoted by C∞(V ) according to the usual notation for CW-complexes. Note that

the construction of the collar implies that Xµ ∩ C∞(V ) = Cµ(V ) for all µ > ν.

2.6. Proposition. Let V ⊂ Xν for some ν < λ. Suppose that V is an open subset of Xν.

Then C∞(V ) is an open subset of Xλ.

Proof. By [3, Lemma 1.1.7], C(V ) is an open subset of Xν+1. The transfinite sequence of

spaces (Cµ(V ))µ>ν is equipped with the final topology because it is a tower of one-to-one
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maps (see [10, Proposition B.16]). We complete the proof by an easy transfinite induction.

Let µ be a limit ordinal such that for all µ′ < µ, Cµ′(V ) is an open subset of Xµ′ . Since

the inverse image of Cµ(V ) in any Xµ′ is equal to Cµ′(V ), and since Xµ is equipped with

the final topology, we obtain than Cµ(V ) is an open subset of Xµ. �

2.7. Proposition. Let K be a compact subspace of Xλ. Then K intersects finitely many

cν.

Proof. It is an adaptation of [13, Proposition A.1]. Assume that there exists an infinite

set S = {mj | j > 0} with mj ∈ K ∩ cνj . Then by transfinite induction on ν > 0, we

prove that S is closed in Xν for all 0 6 ν 6 λ. The same argument proves that every

subset of S is closed in Xλ. Thus S has the discrete topology. But it is compact, and

therefore finite. Contradiction. �

2.8. Proposition. Let ν < λ. Then Xλ(cν) is a finite cellular space. In particular, it is

compact.

Proof. The proof is by induction on ν > 0. If ν = 0, then Xλ(cν) is a point. Suppose

that Xλ(cµ) is a finite cellular space for any µ < ν with ν > 1. Then ĉν\cν = ĝν(S
nν−1)

is a compact of Xλ which, by Proposition 2.7, intersects finitely many cµ for µ < ν, say

cµ1 , . . . , cµp . By induction hypothesis, X(µi) is a finite cellular space for i = 1, . . . , p. We

deduce that Xλ(cν) is a finite cellular space. Note that the argument holds whether ν is a

limit ordinal or not. Consider a sequence of Xλ(cν). Since Xλ(cν) is finite, there exists a

subsequence included in one closed cell. Since the cell is compact, this subsequence has a

convergent subsequence. We deduce that Xλ(cν) is sequentially compact, and therefore

compact since it is sequential. �

2.9. Definition. The cellular space Xλ is locally finite if for all ν < λ, the set

Ων = {ν ′ < λ | ĉν′ ∩ cν 6= ∅}

is finite. Note that every finite cellular space is locally finite.

2.10. Definition. The star of a subset L ⊂ Xλ is

St(L) =
⋃
ν<λ

ĉν∩L6=∅

Xλ(cν).

One has St(L) = St(L̂) where L̂ is the closure of L in Xλ.

2.11. Proposition. Let cν be an open cell of Xλ. If Xλ is locally finite, then St(cν) is a

finite cellular subspace. In particular, it is compact.

Proof. It is a consequence of Proposition 2.8 and Proposition 2.7. �

2.12. Proposition. If Xλ is locally finite, then for all ν < λ, St(cν) is a compact neigh-

borhood of cν for the topology of Xλ.

Proof. We follow the proof of [3, Lemma 1.5.9] by fixing some mistakes. Choose ν < λ.

Each closed cell is a compact of the weakly Hausdorff space Xλ. Since Xλ is locally finite,

the set

W =
⋃
ν′∈Ων

ĉν′
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is therefore closed being a finite union of closed subsets. Every sequence of W has a

subsequence living in one closed cell ĉν0 for some ν0 ∈ Ων . Therefore W is sequentially

compact. Since Xλ is sequential, we deduce that W is compact. Let

Ω′ = {ν ′ < λ | ĉν′ ∩W 6= ∅ and ĉν′ ∩ cν = ∅}.

and

C =
⋃
ν′∈Ω′

ĉν′ .

By Proposition 2.7, Ω′ is finite because W is compact. For the same reason as for W , C

is compact, and therefore closed in Xλ. By Proposition 2.6, C∞(cν) is an open subset of

Xλ. Thus C∞(cν)\C is an open neighborhood of cν . Let

Vµ = Xµ ∩ (C∞(cν)\C)

for µ > ν. There is the equality Vν = cν ⊂ W . Let µ > ν be an ordinal such that Vµ′ ⊂ W

for all ν 6 µ′ < µ. If µ is a limit ordinal, then Vµ =
⋃
µ′<µ Vµ′ ⊂ W . It remains the case

µ = µ′ + 1. There is nothing to do if Vµ = Vµ′ . Assume that there exists y ∈ Vµ\Vµ′ . Let

y ∈ cµy for some unique µy (which is not necessarily µ′). Since y ∈ C(Vµ′), we obtain

ĉµy ∩ Vµ′ 6= ∅ by Proposition 2.4. We deduce that ĉµy ∩W 6= ∅ by induction hypothesis.

If µy /∈ Ων , then µy ∈ Ω′. It implies that ĉµy ⊂ C, which is a contradiction since y /∈ C.

We deduce that µy ∈ Ων and that Vµ ⊂ W . We have proved by transfinite induction

the inclusion Vµ ⊂ W for all ν 6 µ 6 λ. We deduce that C∞(cν)\C ⊂ W . Therefore

W is a compact neighborhood of cν . It remains to observe that St(cν) is compact by

Proposition 2.11 and that W ⊂ St(cν) to complete the proof. �

2.13. Proposition. A cellular space Xλ is locally finite if and only if it is locally compact.

Proof. If Xλ is locally finite, then it is locally compact by Proposition 2.12. Now suppose

that Xλ is locally compact. We follow the proof of [3, Proposition 1.5.10]. Let cν be an

open cell of Xλ. Every point of the closed cell ĉν has a compact neighborhood. Since ĉν is

compact, cν is covered by finitely many of these compact neighborhoods. Therefore cν has

a compact neighborhood V in Xλ. Now observe that, on one hand, cν does not intersect

the closure of any cell of Xλ contained in Xλ\V because V is a neighborhood of cν and,

on the other hand, V intersects only finitely many open cells of Xλ by Proposition 2.7,

V being compact. These observations prove that the open cell cν intersects only finitely

many closed cells of Xλ. �

2.14. Proposition. If Xλ is locally finite and connected (or equivalently path-connected),

then λ is countable.

Proof. We adapt the proof of [3, Proposition 1.5.12]. Let ν0 < λ. For each n > 0, let

An = {(ν0, ν1, . . . , νn) ∈ λn+1 | ĉνi ∩ ĉνi+1
6= ∅, i = 1, . . . , n}.

Since Xλ is locally finite, each St(cν) = St(ĉν) is a finite cellular subspace for each ν < λ

by Proposition 2.11. Thus each An is finite since for i = 1, . . . , n, cνi belongs to St(ĉνi−1
).

Now consider

A =
⋃
n>0

An
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and consider the map

α : A −→ λ

which takes (ν0, ν1, . . . , νn) to νn. Since Xλ is connected, it is path-connected being a

∆-generated space. Each continuous path intersects finitely many open cells by Proposi-

tion 2.7. Thus, the map α is onto. Therefore λ is countable. �

2.15. Proposition. Suppose that λ is a countable ordinal and that Xλ is locally finite.

Then there exists an increasing sequence of finite cellular subspaces (Yn)n>0 of Xλ such

that for all n > 0, the inclusion Yn ⊂ Yn+1 is a q-cofibration, such that Yn is contained in

the interior
◦

Yn+1 of Yn+1 for the topology of Xλ and such that⋃
n>0

◦
Yn =

⋃
n>0

Yn = Xλ.

In other terms, for any countable locally finite cellular space Xλ, one can suppose

without lack of generality that λ = ℵ0 and that each Xn for n < ℵ0 is a finite cellular

space. Thanks to Proposition 2.15, it is possible to get rid of the transfinite construction

in the locally finite countable case.

Proof. It is an adaptation of [3, Proposition 1.5.13]. Since λ is a countable ordinal, write

λ = {νi | i ∈ N}.

Define Y0 as the empty set and assume that Yn has been constructed. Consider the integer

i defined by

i = min{j | cνj * Yn},
and also the finite set Ωn of all cells contained in Yn. Then let

Yn+1 = St(cνi) ∪
⋃
c∈Ωn

St(c).

Because of Proposition 2.11, Yn+1 is a finite cellular subspace of Xλ. By Proposition 2.12,

Yn is in the interior of Yn+1 for the topology of Xλ. Finally, by construction,
⋃
n>0 Yn

contains all cells of Xλ. �

2.16. Proposition. Suppose that λ is a countable ordinal and that Xλ is locally finite.

Then Xλ is metrizable and it can be embedded in the Hilbert cube.

Proof. We adapt the proof of [3, Theorem 1.5.16] by also fixing the argument 1. By

Proposition 2.15, one can suppose that λ = ℵ0 and that each Xn is a finite cellular space.

Each Xn can then be embedded by a closed inclusion into a finitely dimensional Euclidian

space by [13, Corollary A.10]. We deduce the existence of a countable basis Bn of open

subsets of the interior
◦
Xn of Xn in Xλ. Let

x ∈ Xλ =
⋃
n>0

◦
Xn.

Then x ∈
◦
Xn for some n > 0. Let Ω be an open neighborhood of X in Xλ. Then Ω ∩

◦
Xn

is an open neighborhood of x in Xλ. There exists B ∈ Bn such that x ∈ B ⊂ Ω∩
◦
Xn ⊂ Ω.

1I thank Joao Faria Martins and Tim Porter for helping me clarifying the argument of the book which
seems to be incorrect. The book invokes the Cantor diagonalization argument for an unknown reason.

7



Thus the countable union ⋃
n>0

Bn

is a countable basis of open subsets of Xλ. Because Xλ is normal and Hausdorff by

Proposition 2.2, it is regular. Urysohn’s metrization theorem then implies the metrizability

of Xλ. Thus, Xλ is metrizable and has a countable open basis. Consequently it can be

embedded in the Hilbert cube by [1, Chapter IX Section 2.8 Proposition 12]. �

We can conclude the section by the generalization to cellular spaces of a well-known

statement about CW-complexes:

2.17. Theorem. For a cellular topological space Xλ, the following properties are equivalent:

(1) locally finite

(2) locally compact

(3) metrizable

(4) first countable.

Proof. We follow the proof of [3, Proposition 1.5.17] by fixing some arguments. The

equivalence (1)⇔ (2) is Proposition 2.13. Suppose that Xλ is locally compact. Being a ∆-

generated space, it is homeomorphic to the disjoint sum of its path-connected components,

which are countable cellular subcomplexes by Proposition 2.14. So, by Proposition 2.16,

Xλ is homeomorphic to the disjoint sum of subsets of the Hilbert cube equipped with the

`2 metric. The latter is bounded: the maximal distance is π√
6
. By setting d(x, y) = π√

6
if

x and y are two elements of Xλ not belonging to the same path-connected component,

we obtain a metric on Xλ. Hence (2)⇒ (3). The implication (3)⇒ (4) is obvious. The

implication (4) ⇒ (1) goes as in the proof of [3, Proposition 1.5.17]. Assume that Xλ

is not locally finite. There there is an open cell cν which meets the closure of infinitely

many closed cells {ĉνi | i ∈ N}. Choose xi ∈ ĉνi ∩ cν . Because cν is relatively sequentially

compact, one can assume without lack of generality that the sequence (xi)i>0 converges

to a point x ∈ ĉν . Take a countable basis U0 ⊃ U1 ⊃ U2 . . . of open neighborhoods of

x. Each Ui meets infinitely many open cells cνi . Define a sequence of natural numbers

{ji | i ∈ N} by taking

• j0 = min{j ∈ N | U0 ∩ cνj 6= ∅},
• ji+1 = min{j ∈ N | j > ji and Ui+1 ∩ cνj 6= ∅}.

For every i ∈ N, choose zi ∈ Ui ∩ cνji . Any open cell of Xλ contains at most one point

of Z = {zi | i ∈ N}. Thus any closed cell, which intersects finitely many open cells by

Proposition 2.7 contains at most finitely many points of Z. Therefore Z is discrete in Xλ.

It is a contradiction since the sequence (zi)i>0 converges to x. �

3. Locally finite cellular multipointed d-space

A multipointed d-space X is a triple (|X|, X0,PGX) where

• The pair (|X|, X0) is a multipointed space. The space |X| is called the underlying space

of X and the set X0 the set of states of X.

• The set PGX is a set of continous maps from [0, 1] to |X| called the execution paths,

satisfying the following axioms:

– For any execution path γ, one has γ(0), γ(1) ∈ X0.
8



– Let γ be an execution path of X. Then any composite γφ with φ ∈ G(1, 1) is an

execution path of X where G(1, 1) is the set of nondecreasing homeomorphisms

from [0, 1] to itself.

– Let γ1 and γ2 be two execution paths of X with γ1(1) = γ2(0); then the normalized

composition γ1 ∗N γ2 defined by

t 7→

{
γ1(2t) if 0 6 t 6 1/2

γ2(2t− 1) if 1/2 6 t 6 1

is an execution path of X.

A map f : X → Y of multipointed d-spaces is a map of multipointed spaces from (|X|, X0)

to (|Y |, Y 0) such that for any execution path γ of X, the map

PGf : γ 7→ f.γ

is an execution path of Y . The following examples are used in this note.

(1) Any set E will be identified with the multipointed d-space (E,E,∅).

(2) The topological globe of Z, which is denoted by GlobG(Z), is the multipointed d-space

defined as follows

• the underlying topological space is the quotient space (it is the suspension of Z)

{0, 1} t (Z × [0, 1])

(z, 0) = (z′, 0) = 0, (z, 1) = (z′, 1) = 1

• the set of states is {0, 1}
• the set of execution paths is the set of continuous maps

{δzφ | φ ∈ G(1, 1), z ∈ Z}

with δz(t) = (z, t). It is equal to the underlying set of G(1, 1)× Z.

• The directed segment is the multipointed d-space
−→
I G = GlobG({0}).

In particular, GlobG` (∅) is the multipointed d-space {0, 1} = ({0, 1}, {0, 1},∅).

The category of multipointed d-spaces is denoted by GdTop. The subset of execution

paths from α to β is the set of γ ∈ PGX such that γ(0) = α and γ(1) = β; it is denoted

by PGα,βX: α is called the initial state and β the final state. It is equipped with the ∆-

kelleyfication of the relative topology induced by the inclusion PGα,βX ⊂ TOP([0, 1], |X|).
In other terms, a set map U → PGα,βX is continuous if and only if the composite set map

U → PGα,βX ⊂ TOP([0, 1], |X|) is continuous. The category GdTop is locally presentable

by [5, Theorem 3.5]. Therefore, it is bicomplete.

3.1. Definition. Let X be a multipointed d-space X. Denote again by PGX the topological

space

PGX =
⊔

(α,β)∈X0×X0

PGα,βX.

3.2. Definition. Let Z1, . . . , Zp be p nonempty topological spaces with p > 1. The multi-

pointed d-space

X = GlobG(Z1) ∗ · · · ∗GlobG(Zp).

with p > 1 means that the final state of a globe is identified with the initial state of the

next one by reading from the left to the right.
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Let λ be an ordinal. We work with a colimit-preserving functor

X : λ −→ GdTop

such that

• The multipointed d-space X0 is a set, in other terms X0 = (X0, X0,∅) for some finite

set X0.

• For all ν < λ, there is a pushout diagram of multipointed d-spaces

GlobG(Snν−1)

��

gν
// Xν

��

GlobG(Dnν )
ĝν

// Xν+1

with nν > 0 where Snν−1 is the nν−1-dimensional sphere and Dnν is the nν-dimensional

disk.

A cellular multipointed d-space is a multipointed d-space of the form Xλ: it is a cellular

object for the q-model structure of [11]. Let Xλ = lim−→ν<λ
Xν . For all ν 6 λ, there is the

equality X0
ν = X0. Denote by

cν = |GlobG(Dnν )\|GlobG(Snν−1)|

the ν-th cell of Xλ. It is called a globular cell. Like in the usual setting of CW-complexes,

ĝν induces a homeomorphism from cν to ĝν(cν) equipped with the relative topology which

will be therefore denoted in the same way. It also means that ĝν(cν) equipped with the

relative topology is ∆-generated. The closure of cν in |Xλ| is denoted by

ĉν = ĝν(|GlobG(Dnν )|).

The state ĝν(0) ∈ X0 (ĝν(1) ∈ X0 resp.) is called the initial (final resp.) state of cν . We

want to recall

3.3. Proposition. [9, Proposition 5.2] The space |Xλ| is a cellular space. It contains X0 as

a discrete closed subspace. For every 0 6 ν1 6 ν2 6 λ, the continuous map |Xν1| → |Xν2|
is a q-cofibration of spaces, and in particular a closed T1-inclusion.

Hence the following definition makes sense:

3.4. Definition. A multipointed d-space is locally finite (finite resp.) if it is a cellular

multipointed d-space of the form Xλ such that the underlying cellular space |Xλ| is locally

finite (finite resp.).

3.5. Notation. In the sequel, α and β are two elements of X0.

3.6. Notation. The set of execution paths PGα,βXλ equipped with the compact-open topology

is denoted by (PGα,βXλ)co.

3.7. Definition. An execution path γ of a multipointed d-space X is minimal if

γ(]0, 1[) ∩X0 = ∅.

10



3.8. Theorem. [9, Theorem 5.9] Let γ be an execution path of Xλ. Then there exist

minimal execution paths γ1, . . . , γn and `1, . . . , `n > 0 with
∑

i `i = 1 such that

γ = (γ1µ`1) ∗ · · · ∗ (γnµ`n).

Moreover, if there is the equality

γ = (γ1µ`1) ∗ · · · ∗ (γnµ`n) = (γ′1µ`′1) ∗ · · · ∗ (γn′µ`′
n′

)

such that all γ′j are also minimal and with `′1, . . . , `
′
n′ > 0, then n = n′ and γi = γ′i and

`i = `′i for all 1 6 i 6 n.

Let γ be an execution path of Xλ. Consider the normal form

γ = (γ1µ`1) ∗ · · · ∗ (γnµ`n).

of Theorem 3.8. There exists a unique sequence [cν1 , . . . , cνn ] of globular cells such that for

all 1 6 i 6 n, γi(]0, 1[) ⊂ cνi , γi(0) = ĝνi(0) and γi(1) = ĝνi(1). This leads to the following

notion:

3.9. Definition. With the notations above. The sequence of globular cells

Carrier(γ) = [cν1 , . . . , cνn ]

is called the carrier of γ. The integer n is called the length of the carrier.

Each carrier c = [cν1 , . . . , cνn ] gives rise to a map of multipointed d-spaces from a chain

of globes to Xλ

ĝc : GlobG(Dnν1 ) ∗ · · · ∗GlobG(Dnνn ) −→ Xλ

by “concatenating” the attaching maps of the cells cν1 , . . . , cνn . Let αi−1 (αi resp.) be the

initial state (the final state resp.) of GlobG(Dnνi ) for 1 6 i 6 n in

GlobG(Dnν1 ) ∗ · · · ∗GlobG(Dnνn ).

It induces a continuous map

PG ĝc : Xc −→ PGXλ.

with

Xc = PGα0,αn
(GlobG(Dnν1 ) ∗ · · · ∗GlobG(Dnνn )).

We have the important (even if Xc is not relatively compact, as explained in [9]):

3.10. Theorem. [9, Theorem 6.11] Let c be the carrier of some execution path of Xλ.

(1) Consider a sequence (γk)k>0 of the image of PG ĝc which converges pointwise to γ∞ in

PGXλ. Let

γk = (PG ĝc)(φk, z1
k, . . . , z

n
k )

with φk ∈ G(1, n) and zik ∈ Dnνi for 1 6 i 6 n and k > 0. Then there exist

φ∞ ∈ G(1, n) and zi∞ ∈ Dnνi for 1 6 i 6 n such that

γ∞ = (PG ĝc)(φ∞, z1
∞, . . . , z

n
∞)

and such that (φ∞, z
1
∞, . . . , z

n
∞) is a limit point of the sequence ((φk, z

1
k, . . . , z

n
k ))k>0.

(2) The image of PG ĝc is closed in PGXλ.
11



4. Space of execution paths in the locally finite case

4.1. Proposition. Suppose that Xλ is locally finite. Then the space (PGα,βXλ)co is metriz-

able.

Proof. By Theorem 2.17, |Xλ| is metrizable. By [13, Proposition A.13], the compact-open

topology is then metrizable with the distance of the uniform convergence. �

We want to recall:

4.2. Proposition. ([9, Proposition 5.16 and Proposition 5.17]) Let cν be a globular cell

of Xλ. Let 0 < h < 1. Let

ĉν [h] =

{
ĝν(z, h) | (z, h) ∈ |GlobG(Dnν )|

}
For any minimal execution path γ and any h ∈]0, 1[, the cardinal of the set{

t ∈]0, 1[| γ(t) ∈ ĉν [h]

}
is at most one. Moreover, there exists hν ∈]0, 1] such that for all h ∈]0, hν ], one has

ĉν [h] ∩X0 = ∅.

4.3. Theorem. Suppose Xλ locally finite. Let γ∞ be an execution path of Xλ with

Carrier(γ∞) = [cν1 , . . . , cνn ].

There exists an open neighborhood Ω of γ∞ in (PGα,βXλ)co and a finite set of nonzero

dimensional globular cells

{cνj | νj ∈ J}
such that for all execution paths γ ∈ Ω, the length of Carrier(γ) does not exceed n and

such that Carrier(γ) contains only globular cells of {cνj | νj ∈ J}.

Proof. Consider the decomposition of Theorem 3.8

γ∞ = (γ1
∞µ`1) ∗ · · · ∗ (γn∞µ`n)

with
∑

i `i = 1 and all execution paths γi∞ minimal for i = 1, . . . , n. For 1 6 i 6 n, let

νi < λ, φi ∈ G(1, 1) and zi ∈ Dnνi\Snνi−1 such that

Carrier(γi∞) = [cνi ],

γi∞(]0, 1[) ⊂ cνi ,

γi∞ = δziφi.

Since Xλ is locally finite, the set of ordinals

K = {ν < λ | ∃i ∈ {1, . . . , n}, cνi ∩ ĉν 6= ∅}

is finite. By Proposition 2.12, the finite cellular subspace of |Xλ|( ⋃
ν∈K

St(cν)

)
∪

⋃
α∈γ∞([0,1])∩X0

St({α})

is a compact neighborhood of γ∞([0, 1]) in |Xλ|. Let

{cνj | νj ∈ J}
12



be its finite set of nonzero dimensional globular cells. There exists an open subset Ω of

|Xλ| such that

γ∞([0, 1]) ⊂ Ω ⊂
( ⋃
ν∈K

St(cν)

)
∪

⋃
α∈γ∞([0,1])∩X0

St({α}).

Since the space |GlobG(Dnν )| is compact for all ν < λ, the subset ĉν is a compact subspace

of the Hausdorff space |Xλ| for all ν < λ. The set ĉν ∩X0 is therefore finite because X0

is discrete in |Xλ|. Consequently, the set(⋃
ν∈J

ĉν

)
∩X0 =

⋃
ν∈J

(
ĉν ∩X0

)
is finite as well since J is finite. Using Proposition 4.2, consider

h = min{hν | ν ∈ J} > 0

Then, for all ν ∈ J , ĉν [h] does not intersect X0. For all 1 6 i 6 n and all ν ∈ J , the set{
t ∈]0, 1[| γi∞(t) ∈ ĉν [h]

}
contains at most one point ti,ν by Proposition 4.2; if the set above is empty, let ti,ν = 1/2.

For all 1 6 i 6 n, let Li and L′i be two real numbers such that

0 < Li < min{ti,ν | ν ∈ J} 6 max{ti,ν | ν ∈ J} < L′i < 1.

For 1 6 i 6 n, consider the covering of the segment [
∑

j<i `j,
∑

j6i `j] in three contiguous

segments of strictly positive length:

K−i =

[∑
j<i

`j,
∑
j<i

`j + µ−1
`i
φ−1
i (Li)

]
,

Km
i =

[∑
j<i

`j + µ−1
`i
φ−1
i (Li),

∑
j<i

`j + µ−1
`i
φ−1
i (L′i)

]
,

K+
i =

[∑
j<i

`j + µ−1
`i
φ−1
i (L′i),

∑
j6i

`j

]
.

The restriction γ∞ � [
∑
j<i `j ,

∑
j6i `j ]

goes from the initial state of the globular cell cνi to its

final state. We have therefore

γ∞(Km
i ) ⊂ cνi .

We deduce

γ∞(Km
i ) ∩X0 = ∅.
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We also have for all ν ∈ J

γ∞(K−i ) ∩ ĉν [h] =

(
γ∞({

∑
j<i

`j}) ∪ γ∞
(]∑

j<i

`j,
∑
j<i

`j + µ−1
`i
φ−1
i (Li)

]))
∩ ĉν [h]

=

(
{ĝνi(0)} ∪ γ∞

(]∑
j<i

`j,
∑
j<i

`j + µ−1
`i
φ−1
i (Li)

]))
∩ ĉν [h]

⊂
(
{ĝνi(0)} ∪ γ∞

(]∑
j<i

`j,
∑
j<i

`j + µ−1
`i
φ−1
i (ti)

[))
∩ ĉν [h]

= ∅,

the first equality by formal set identities, the second equality by definition of ĝνi(0), the

inclusion because Li < ti, and the last equality because ĝνi(0) ∈ X0 and by definition of

ti. In the same way, we also have for all ν ∈ J

γ∞(K+
i ) ∩ ĉν [h] =

(
γ∞
([∑

j<i

`j + µ−1
`i
φ−1
i (L′i),

∑
j6i

`j
[)
∪ γ∞({

∑
j6i

`j})
)
∩ ĉν [h]

=

(
γ∞
([∑

j<i

`j + µ−1
`i
φ−1
i (L′i),

∑
j6i

`j
[)
∪ {ĝνi(1)}

)
∩ ĉν [h]

⊂
(
γ∞
(]∑

j<i

`j + µ−1
`i
φ−1
i (ti),

∑
j6i

`j
[)
∪ {ĝνi(1)}

)
∩ ĉν [h]

= ∅,

the first equality by formal set identities, the second equality by definition of ĝνi(1), the

inclusion because ti < L′i, and the last equality because ĝνi(1) ∈ X0 and by definition of

hi. Since |Xλ| is Hausdorff, the set ĉν [h] is a closed subset of |Xλ| for all ν < λ. Therefore

F =
⋃
ν∈J

ĉν [h]

is a closed subset of |Xλ|. Moreover, X0 is a closed subset of the space |Xλ| as well by

Proposition 3.3. Consequently, the set

Ω = W ([0, 1],Ω) ∩
i=n⋂
i=1

(
W

(
K−i , |Xλ|\F

)
∩W

(
Km
i , |Xλ|\X0

)
∩W

(
K+
i , |Xλ|\F

))
where

W ([a, b], U) = {f ∈ PGα,βXλ | f([a, b]) ⊂ U}
is an open neighborhood of γ∞ in (PGα,βXλ)co. For all γ ∈ Ω, one has

γ(Km
i ) ∩X0 = ∅

and, for all ν ∈ J , one has

γ(K−i ) ∩ ĉν [h] = γ(K+
i ) ∩ ĉν [h] = ∅.

It turns out that the segments of strictly positive length K−i , K
m
i , K

+
i for 1 6 i 6 n are a

finite partition of [0, 1] into nonoverlapping segments because we have by definition of the

14



K−i , K
m
i , K

+
i for 1 6 i 6 n:

[0, 1] =
i=n⋃
i=1

[∑
j<i

`j,
∑
j6i

`j

]
=

i=n⋃
i=1

(
K−i ∪Km

i ∪K+
i

)
.

Since Ω ⊂ W ([0, 1],Ω), the only possible globular cells appearing in Carrier(γ) for γ ∈ Ω

are the globular cells of {cνj | νj ∈ J}. Each cν for ν ∈ J appearing in the carrier Carrier(γ)

corresponds to a minimal execution path from ĝν(0) to ĝν(1) of the decomposition of γ

obtained using Theorem 3.8. It necessarily intersects ĉν [h] and therefore F . Thus, the

length of the carrier of γ cannot exceed the number of Km
i . �

4.4. Definition. A topological space X is weakly locally path-connected if for every x ∈ X
and every neighborhood W of x, there exists a path-connected neighborhood (not necessarily

open) W ′ of x such that W ′ ⊂ W .

4.5. Lemma. Every weakly locally path-connected space is locally path-connected.

Proof. Let W be a neighborhood of x ∈ X. Then there exists a path-connected neighbor-

hood W ′ of x such that W ′ ⊂ W . It means that W ′ is included in the path-connected

component C of x in W . Therefore x is in the interior of C. Thus C is open and X is

locally path-connected. �

4.6. Theorem. Assume Xλ locally finite. The space (PGα,βXλ)co is locally path-connected.

Proof. By Lemma 4.5, it suffices to prove that (PGα,βXλ)co is weakly locally path-connected.

Consider an execution path γ∞ of PGα,βXλ. Let Ω be an open subset of (PGα,βXλ)co
containing γ∞. We want to construct a path-connected neighborhood of γ∞ included in

Ω. We can suppose that Ω ⊂ Ω where Ω is the open subset constructed in Theorem 4.3.

Then the set of carriers

T = {Carrier(γ) | γ ∈ Ω}
is finite by Theorem 4.3. For each c ∈ T and for each Γ ∈ (Pĝc)−1(γ∞), there exists an

open neighborhood ΩΓ of Γ such that (Pĝc)(ΩΓ) ⊂ Ω. Since Xc is ∆-generated, it is locally

path-connected by Proposition 2.1. We can therefore suppose that ΩΓ is path-connected.

Consider

U =
⋃
c∈T

⋃
Γ∈(Pĝc)−1(γ∞)

(Pĝc)(ΩΓ).

Then U is path-connected and U ⊂ Ω. Suppose that γ∞ is not in the interior of U in

(PGα,βXλ)co. The space (PGα,βXλ)co is metrizable by Corollary 4.1. Therefore it is sequential.

It means that there exists a sequence (γk)k>0 of execution paths not belonging to U

converging to γ∞ in (PGα,βXλ)co. There exists N > 0 such that for all k > N , γk ∈ Ω.

Since the set {Carrier(γk) | k > N} ⊂ T is finite, we can always suppose that the sequence

of carriers (Carrier(γk))k>0 is constant and e.g. equal to some c ∈ T by extracting a

subsequence. Therefore we can write γk = (Pĝc)(Γk) with Γk ∈ Xc. By Theorem 3.10, we

can suppose that the sequence (Γk)k>0 converges to Γ∞ ∈ Xc. By continuity, we obtain

the equality γ∞ = (Pĝc)(Γ∞). There exists N > 0 such that for all k > N , Γk ∈ ΩΓ∞ .

Contradiction. Thus γ∞ is in the interior of U . �
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4.7. Theorem. Suppose Xλ locally finite. The topological space (PGα,βXλ)co equipped with

the compact-open topology is ∆-generated. In other terms, the canonical map

PGα,βXλ −→ (PGα,βXλ)co

is a homeomorphism.

Proof. The space (PGα,βXλ)co is locally path-connected by Theorem 4.6. It is first countable

by Corollary 4.1. The proof is complete thanks to [2, Proposition 3.11]. �

4.8. Corollary. Suppose Xλ locally finite. The topological space

PGXλ =
⊔

(α,β)∈X0×X0

PGα,βXλ

is metrizable with the distance of the uniform convergence.

Proof. The category of metric spaces is not cocomplete. Instead, we observe that the set

of all execution paths equipped with the compact-open topology (PGXλ)co satisfies

(PGXλ)co ∼=
⊔

(α,β)∈X0×X0

(PGα,βXλ)co

because X0 is a discrete subspace of |Xλ|. Hence (PGXλ)co is ∆-generated by Theorem 4.7

and metrizable by Proposition 4.1. �
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