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Abstract

In this talk, I will explain the importance of the homotopy branching space functor (and of the
homotopy merging space functor) in dihomotopy theory.
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1 Introduction

In [10], the reader will be able to find a survey of the different geometric
approaches of concurrency. The model category of flows was introduced in [8]
to model higher dimensional automata (HDA). It allows the study of HDA up
to homotopy (cf. also [6,7]). A good notion of homotopy of flows must preserve
the computer scientific properties of the HDA to be modeled like the initial
and final states, the deadlocks and the unreachable states. In particular, it
must preserve the direction of time, hence the terminology dihomotopy for a
contraction of directed homotopy. This way, instead of working in the category
of flows itself, one can work in the localization of the category of flows with
respect to dihomotopy equivalences.

I will explain in this talk the powerfulness of the homotopy branching
space functor in dihomotopy theory. The corresponding papers are “Homotopy
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branching space and weak dihomotopy” [4] and “A long exact sequence for
the branching homology” [3].

2 Model category

If C is a category, one denotes by Map(C) the category whose objects are the
morphisms of C and whose morphisms are the commutative squares of C.

In a category C, an object x is a retract of an object y if there exists
f : x −→ y and g : y −→ x of C such that g ◦ f = Idx. A functorial
factorization (α, β) of C is a pair of functors from Map(C) to Map(C) such
that for any f object of Map(C), f = β(f) ◦ α(f).

Definition 2.1 [12,11] Let i : A −→ B and p : X −→ Y be maps in a
category C. Then i has the left lifting property (LLP) with respect to p (or p
has the right lifting property (RLP) with respect to i) if for any commutative
square

A

i
��

α �� X
p

��
B

g
���

�
�

� β �� Y

there exists g making both triangles commutative.

There are several versions of the notion of model category. The following
definitions give the one we are going to use.

Definition 2.2 [12,11] A model structure on a category C is three subcate-
gories of Map(C) called weak equivalences, cofibrations, and fibrations, and
two functorial factorizations (α, β) and (γ, δ) satisfying the following proper-
ties :

(i) (2-out-of-3) If f and g are morphisms of C such that g ◦ f is defined and
two of f , g and g ◦ f are weak equivalences, then so is the third.

(ii) (Retracts) If f and g are morphisms of C such that f is a retract of g and
g is a weak equivalence, cofibration, or fibration, then so is f .

(iii) (Lifting) Define a map to be a trivial cofibration if it is both a cofibration
and a weak equivalence. Similarly, define a map to be a trivial fibration
if it is both a fibration and a weak equivalence. Then trivial cofibrations
have the LLP with respect to fibrations, and cofibrations have the LLP
with respect to trivial fibrations.

(iv) (Factorization) For any morphism f , α(f) is a cofibration, β(f) a trivial
fibration, γ(f) is a trivial cofibration , and δ(f) is a fibration.
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Definition 2.3 [12,11] A model category is a complete and cocomplete cat-
egory C together with a model structure on C.

Proposition and Definition 2.4 [12,11] A Quillen adjunction is a pair of
adjoint functors F : C � D : G between the model categories C and D such
that one of the following equivalent properties holds :

(i) if f is a cofibration (resp. a trivial cofibration), then so does F (f)

(ii) if g is a fibration (resp. a trivial fibration), then so does G(g).

One says that F is a left Quillen functor. One says that G is a right Quillen
functor.

Definition 2.5 [12,11] An object X of a model category C is cofibrant (resp.
fibrant) if and only if the canonical morphism ∅ −→ X from the initial object
of C to X (resp. the canonical morphism X −→ 1 from X to the final object
1) is a cofibration (resp. a fibration).

For any object X of a model category, the canonical morphism ∅X : ∅ −→
X from the initial object to X can be factored as a composite

∅
α(∅X) �� Q(X)

β(∅X) �� X

where, by definition, Q(X) is a cofibrant object which is weakly equivalent to
X. The functor Q : C −→ C is called the cofibrant replacement functor.

3 Reminder about the category of flows

In the sequel, any topological space will be supposed to be compactly gener-
ated (more details for this kind of topological spaces in [1,14], the appendix
of [13] and also the preliminaries of [8]).

Let n � 1. Let Dn be the closed n-dimensional disk. Let Sn−1 = ∂Dn

be the boundary of Dn for n � 1. Notice that S0 is the discrete two-point
topological space {−1, +1}. Let D0 be the one-point topological space. Let
S−1 = ∅ be the empty set. The following theorem is well-known.

Theorem 3.1 [11,12] The category of compactly generated topological spaces
Top can be given a model structure such that:

(i) The weak equivalences are the weak homotopy equivalences.

(ii) The fibrations (sometime called Serre fibrations) are the continuous maps
satisfying the RLP (right lifting property) with respect to the continuous
maps Dn −→ [0, 1] × Dn such that x �→ (0, x) and for n � 0.
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(iii) The cofibrations are the continuous maps satisfying the LLP (left lifting
property) with respect to any maps satisfying the RLP with respect to the
inclusion maps Sn−1 −→ Dn.

(iv) Any topological space is fibrant.

(v) The homotopy equivalences arising from this model structure coincide
with the usual one.

Definition 3.2 [8] A flow X consists of a topological space PX, a discrete
space X0, two continuous maps s and t from PX to X0 and a continuous
and associative map ∗ : {(x, y) ∈ PX × PX; t(x) = s(y)} −→ PX such that
s(x ∗ y) = s(x) and t(x ∗ y) = t(y). A morphism of flows f : X −→ Y consists
of a set map f 0 : X0 −→ Y 0 together with a continuous map Pf : PX −→ PY
such that f(s(x)) = s(f(x)), f(t(x)) = t(f(x)) and f(x ∗ y) = f(x) ∗ f(y).
The corresponding category will be denoted by Flow.

The topological space X0 is called the 0-skeleton of X. The topological
space PX is called the path space and its elements the non constant execution
paths of X. The initial object ∅ of Flow is the empty set. The terminal
object 1 is the flow defined by 10 = {0}, P1 = {u} and necessarily u ∗ u = u.

Definition 3.3 [8] Let Z be a topological space. Then the globe of Z is the
flow Glob(Z) defined as follows: Glob(Z)0 = {0, 1}, PGlob(Z) = Z, s = 0,
t = 1 and the composition law is trivial.

Theorem 3.4 [8] The category of flows can be given a model structure such
that:

(i) The weak equivalences are the weak S-homotopy equivalences, that is
a morphism of flows f : X −→ Y such that f : X0 −→ Y 0 is an
isomorphism of sets and f : PX −→ PY a weak homotopy equivalence of
topological spaces.

(ii) The fibrations are the continuous maps satisfying the RLP with respect to
the morphisms Glob(Dn) −→ Glob([0, 1]×Dn) for n � 0. The fibrations
are exactly the morphisms of flows f : X −→ Y such that Pf : PX −→
PY is a Serre fibration of Top.

(iii) The cofibrations are the morphisms satisfying the LLP with respect to any
map satisfying the RLP with respect to the morphisms Glob(Sn−1) −→
Glob(Dn) for n � 0 and with respect to the morphisms ∅ −→ {0} and
{0, 1} −→ {0}.

(iv) Any flow is fibrant.

Let Igl be the set of morphisms of flows Glob(Sn−1) → Glob(Dn) for
n � 0. Denote by Igl

+ be the union of Igl with the two morphisms of flows

P. Gaucher / Electronic Notes in Theoretical Computer Science 100 (2004) 95–10998



R : {0, 1} → {0} and C : ∅ ⊂ {0}.
Definition 3.5 [4] An Igl

+ -cell complex is a flow X such that the canonical
morphism of flows ∅ −→ X from the initial object of Flow to X is a transfinite
composition of pushouts of elements of Igl

+ . The full and faithful subcategory

of Flow whose objects are the Igl
+ -cell complexes will be denoted by Igl

+ cell.

The category Igl
+ cell of Igl

+ -cell complexes is a subcategory of the category
of flows which is sufficient to model higher dimensional automata (HDA), at
least those modeled by precubical sets [9,2]. This geometric model of HDA is
designed to define and study equivalence relations preserving the computer-
scientific properties of the HDA to be modeled so that it then suffices to work
in convenient localizations of Igl

+ cell. The properties which are preserved are
for instance the initial or final states, the presence or not of deadlocks and of
unreachable states [8].

The cofibrant replacement functor is a functor Q : Flow −→ Igl
+ cell. The

flows coming from concrete HDAs are all cofibrant.

4 The homotopy branching space functor

The branching space of a flow is the space of germs of non-constant execution
paths beginning in the same way. The branching space functor P

− from the
category of flows Flow to the category of compactly generated topological
spaces Top was also introduced in [8] to fit the definition of the branching semi-
globular nerve of a strict globular ω-category modeling an HDA introduced in
[5].

Proposition 4.1 [8,4] Let X be a flow. There exists a topological space P
−X

unique up to homeomorphism and a continuous map h− : PX −→ P
−X satis-

fying the following universal property:

(i) For any x and y in PX such that t(x) = s(y), the equality h−(x) =
h−(x ∗ y) holds.

(ii) Let φ : PX −→ Y be a continuous map such that for any x and y of
PX such that t(x) = s(y), the equality φ(x) = φ(x ∗ y) holds. Then there
exists a unique continuous map φ : P

−X −→ Y such that φ = φ ◦ h−.

Moreover, one has the homeomorphism

P
−X ∼=

⊔
α∈X0

P
−
αX

where P
−
αX := h−

(⊔
β∈X0 Pα,βX

)
. The mapping X �→ P

−X yields a functor
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P
− from Flow to Top.

Definition 4.2 [8,4] Let X be a flow. The topological space P
−X is called

the branching space of the flow X.

Proposition 4.3 [4] There exists a weak S-homotopy equivalence of flows
f : X −→ Y such that the topological spaces P

−X and P
−Y are not weakly

homotopy equivalent.

The idea for the proof of Proposition 4.3 is as follows. For a given flow
X, by Proposition 4.1, the topological space P

−X is the coequalizer of the
continuous map PX×X0 PX −→ PX induced by the composition law of X and
of the projection map PX×X0 PX −→ PX on the first factor. And one cannot
expect a coequalizer to transform a objectwise weak homotopy equivalence into
a weak homotopy equivalence. One must use a kind of homotopy coequalizer
instead.

If two flows are weakly S-homotopy equivalent, then they are supposed to
satisfy the same computer-scientific properties. With the example above, one
obtains two such flows but with very different branching spaces. But

Theorem 4.4 [4] If f : X −→ Y is a weak S-homotopy equivalence of flows
between cofibrant flows, then the topological spaces P

−X and P
−Y are homo-

topy equivalent.

This suggests that the definition of the branching space is the good one up
to homotopy for cofibrant flows. Indeed, we have the theorems:

Theorem 4.5 [4] There exists a functor C− : Top −→ Flow such that the
pair of functors P

− : Flow � Top : C− is a Quillen adjunction. In particular,
there is an homeomorphism P

−(lim−→Xi) ∼= lim−→P
−Xi.

Definition 4.6 The homotopy branching space hoP
− X of a flow X is by

definition the topological space P
−Q(X).

Theorem 4.7 [4] The functor hoP
− : Flow −→ Top −→ Ho(Top) satisfies

the following universal property: if F : Flow −→ Ho(Top) is another functor
sending weak S-homotopy equivalences to isomorphisms and if there exists a
natural transformation F ⇒ P

−, then the latter natural transformation factors
uniquely as a composite F ⇒ hoP

− ⇒ P
−.

Up to homotopy, the homotopy branching space hoP
−(X) is well-defined

and coincides with P
−X for any cofibrant flow, so in particular for any flow

coming from a HDA. The behavior of the branching space functor and the
homotopy branching space functor are the same up to homotopy for flows
modeling HDAs and may differ for other flows.
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5 The homotopy merging space functor

This is the dual version of the preceding functor. Some results are collected
in this section about it.

Proposition 5.1 [4] Let X be a flow. There exists a topological space P
+X

unique up to homeomorphism and a continuous map h+ : PX −→ P
+X satis-

fying the following universal property :

(i) For any x and y in PX such that t(x) = s(y), the equality h+(y) =
h+(x ∗ y) holds.

(ii) Let φ : PX −→ Y be a continuous map such that for any x and y of
PX such that t(x) = s(y), the equality φ(y) = φ(x ∗ y) holds. Then there
exists a unique continuous map φ : P

+X −→ Y such that φ = φ ◦ h+.

Moreover, one has the homeomorphism

P
+X ∼=

⊔
α∈X0

P
+
αX

where P
+
αX := h+

(⊔
β∈X0 Pβ,αX

)
. The mapping X �→ P

+X yields a functor

P
+ : Flow −→ Top.

Definition 5.2 [4] Let X be a flow. The topological space P
+X is called the

merging space of the flow X.

Theorem 5.3 [4] There exists a functor C+ : Top −→ Flow such that the
pair of functors P

+ : Flow � Top : C+ is a Quillen adjunction. In particular,
there is an homeomorphism P

+(lim−→Xi) ∼= lim−→P
+Xi.

Definition 5.4 [4] The homotopy merging space hoP
+ X of a flow X is by

definition the topological space P
+Q(X).

Theorem 5.5 [4] The functor hoP
+ : Flow −→ Top −→ Ho(Top) satisfies

the following universal property : if F : Flow −→ Ho(Top) is another functor
sending weak S-homotopy equivalences to isomorphisms and if there exists a
natural transformation F ⇒ P

+, then the latter natural transformation factors
uniquely as a composite F ⇒ hoP

+ ⇒ P
+.

6 First application: studying weak dihomotopy

The class S of weak S-homotopy equivalences is an example of class of mor-
phisms of flows which is supposed to preserve various computer-scientific prop-
erties. This class of morphisms of flows satisfies the following properties:
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(i) The two-out-of-three axiom, that is if two of the three morphisms f , g
and g ◦ f belong to S, then so does the third one: this condition means
that the class S defines an equivalence relation.

(ii) The embedding functor I : Igl
+ cell −→ Flow induces a functor I :

Igl
+cell[S−1] −→ Flow[S−1] between the localization of respectively the

category of Igl
+ -cell complexes and the category of flows with respect

to weak S-homotopy equivalences which is an equivalence of categories.
In particular, it reflects isomorphisms, that is X ∼= Y if and only if
I(X) ∼= I(Y ). In this case, one can use the whole category of flows which
is a richer mathematical framework.

The class of T-homotopy equivalences was introduced in [8] to identify Igl
+ -

cell complexes equivalent from a computer-scientific viewpoint and which are
not identified in Igl

+cell[S−1]. Indeed, if two objects X and Y of Igl
+ cell[S−1]

are isomorphic, then the 0-skeletons X0 and Y 0 are isomorphic. The merging
of the notions of weak S-homotopy equivalence and T-homotopy equivalence
yields the class ST 0 of 0-dihomotopy equivalences.

Definition 6.1 [8] Let X be a flow. Let A and B be two subsets of X0. One
says that A is surrounded by B (in X) if for any α ∈ A, either α ∈ B or there
exists execution paths γ1 and γ2 of PX such that s(γ1) ∈ B, t(γ1) = s(γ2) = α
and t(γ2) ∈ B. We denote this situation by A ≪ B.

Definition 6.2 [8] Let X be a flow. Let A be a subset of X0. Then the
restriction X �A of X over A is the unique flow such that (X �A)0 = A and

P (X �A) =
⊔

(α,β)∈A×A

Pα,βX

equipped with the topology induced by the one of PX.

Definition 6.3 [8] A morphism of flows f : X −→ Y is a 0-dihomotopy
equivalence if and only if the following conditions are satisfied :

(i) The morphism of flows f : X −→ Y �f(X0) is a weak S-homotopy equiva-
lence of flows. In particular, the set map f 0 : X0 −→ Y 0 is one-to-one.

(ii) For α ∈ Y 0\f(X0), the topological spaces P
−
αY and P

+
αY are singletons.

(iii) Y 0 ≪ f(X0).

The class of 0-dihomotopy equivalences is denoted by ST 0.

But it turns out that

Theorem 6.4 [4] The functor Igl
+ cell[ST −1

0 ] −→ Flow[ST −1
0 ] does not re-

flect isomorphisms. More precisely, there exists an I gl
+ -cell complex C3 cor-
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responding to the concurrent execution of three calculations which is not iso-
morphic in Igl

+ cell[ST −1
0 ] to the directed segment I, although the same flow

C3 is isomorphic to I in Flow[ST −1
0 ].

The correct behavior is the one of ST 0 in Flow[ST −1
0 ]. Indeed, an HDA

representing the concurrent execution of n processes must be equivalent to
the directed segment in a good homotopical approach of concurrency. The
interpretation of this fact is therefore that the class ST 0 of 0-dihomotopy
equivalences is not big enough.

Definition 6.5 [4] A morphism of flows f : X −→ Y is a 1-dihomotopy
equivalence if and only if the following conditions are satisfied :

(i) The morphism of flows f : X −→ Y �f(X0) is a weak S-homotopy equiva-
lence of flows. In particular, the set map f 0 : X0 −→ Y 0 is one-to-one.

(ii) For α ∈ Y 0\f(X0), the topological spaces P
−
αY and P

+
αY are weakly

contractible.

(iii) Y 0 ≪ f(X0).

The class of 1-dihomotopy equivalences is denoted by ST 1.

Any 0-dihomotopy equivalence is of course a 1-dihomotopy equivalence.
Moreover, the composite of a weak S-homotopy equivalence with a T-homoto-
py equivalence can already give an element of ST 1\ST 0 ! And

Theorem 6.6 [4] By slightly weakening the notion of T-homotopy as above,
one obtains a class of morphisms ST 1 with ST 0 ⊂ ST 1 and such that the
flows C3 and I become isomorphic in the localization Igl

+ cell[ST −1
1 ].

There are actually two natural ways of weakening the definition of ST 0.
One can replace in the statement the word singleton either by the word weakly
contractible, or by the word contractible. This way, one obtains another class
of morphisms ST ′

1 with ST ′
1 ⊂ ST 1 and one has:

Theorem 6.7 [4] The localizations Igl
+ cell[ST ′−1

1 ] and Igl
+ cell[ST −1

1 ] are equi-
valent.

Unfortunately, one has

Proposition 6.8 [4] The composite of two morphisms of ST 1 does not nec-
essarily belong to ST 1.

Using the homotopy branching space functor, a new class ST 2 of mor-
phisms of flows is introduced.

Definition 6.9 [4] A morphism of flows f : X −→ Y is a 2-dihomotopy
equivalence if and only if the following conditions are satisfied :
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(i) The morphism of flows f : X −→ Y �f(X0) is a weak S-homotopy equiva-
lence of flows. In particular, the set map f 0 : X0 −→ Y 0 is one-to-one.

(ii) For α ∈ Y 0\f(X0), the topological spaces hoP
−
α Y and hoP

+
α Y are weakly

contractible.

(iii) Y 0 ≪ f(X0).

The class of 2-dihomotopy equivalences is denoted by ST 2.

And:

Theorem 6.10 [4] One has the equivalence of categories

Igl
+ cell[ST −1

1 ] � �� Igl
+cell[ST −1

2 ]

where Igl
+ cell[ST −1

1 ] (resp. Igl
+ cell[ST −1

2 ]) is the localization of the category of

Igl
+ -cell complexes with respect to 1-dihomotopy equivalences (resp. 2-dihomo-

topy equivalences). ST 2 is closed under composition. Moreover the embedding
functor I : Igl

+ cell −→ Flow induces an equivalence of categories

I : Igl
+ cell[ST −1

2 ] � �� Flow[ST −1
2 ] .

In particular, the functor Igl
+ cell[ST −1

2 ] −→ Flow[ST −1
2 ] reflects isomor-

phisms.

The property f ∈ ST 2 and g ◦ f ∈ ST 2 =⇒ g ∈ ST 2 has no reasons to be
satisfied by 2-dihomotopy equivalences. Indeed, if both g ◦ f and f are two
one-to-one set maps, then g has no reasons to be one-to-one as well. Therefore
in order to understand the isomorphisms of Flow[ST −1

2 ], we may introduce
another construction.

Definition 6.11 [4] Let X be a flow. Then a subset A of X0 is essential if
X0 ≪ A and if for any α /∈ A, both topological spaces hoP

−
α X and hoP

+
α X

are weakly contractible.

Definition 6.12 [4] A morphism of flows f : X −→ Y is a 3-dihomotopy
equivalence if the following conditions are satisfied :

(i) A ⊂ X0 is essential if and only if f(A) ⊂ Y 0 is essential

(ii) for any essential A ⊂ X0 there exists an essential subset B ⊂ A such that
the restriction f : X �B−→ Y �f(B) is a weak S-homotopy equivalence.

The class of 3-dihomotopy equivalences is denoted by ST 3.

Theorem 6.13 [4] The localizations Igl
+ cell[ST −1

2 ] and Igl
+cell[ST −1

3 ] are equ-
ivalent and the class of morphisms ST 3 satisfies the two-out-of-three axiom.
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Moreover the embedding functor I : Igl
+cell −→ Flow induces an equivalence

of categories

I : Igl
+ cell[ST −1

3 ] � �� Flow[ST −1
3 ] .

In particular, the functor Igl
+ cell[ST −1

3 ] −→ Flow[ST −1
3 ] reflects isomor-

phisms.

The class ST 2 does not satisfy the two-out-of-three axiom but is invariant
by retract. The class ST 3 does satisfy the two-out-of-three axiom but is
probably not invariant by retract. So none of the definitions above allows to
describe the isomorphisms of Igl

+ cell[ST −1
2 ]. The situation can be summarized

with the following diagram:

Igl
+ cell

�� ��������������

����
Igl
+ cell[S−1]

�
��

�� �� Igl
+ cell[ST −1

0 ]

��
��

�� �� Igl
+ cell[ST −1

1 ]

�??

��

� �� Igl
+ cell[ST −1

2 ] � Igl
+ cell[ST −1

3 ]

�
��

Flow[S−1]
�� �� Flow[ST −1

0 ] �?? �� Flow[ST −1
1 ] Flow[ST −1

2 ] � Flow[ST −1
3 ]�??��

Flow

�� ���������������

�� 		

The symbol 	?? means that we do not know whether the functor is an
equivalence of categories or not. The symbol 
	 means that the corresponding
functor is not an equivalence.

7 Second application: a long exact sequence for the

branching homology

The category of flows is a simplicial model category [3] in the following sense:

Definition 7.1 [15,12,11] x A simplicial model category is a model category
C together with a simplicial set Map(X, Y ) for any object X and Y of C
satisfying the following axioms:

(i) the set Map(X, Y )0 is canonically isomorphic to C(X, Y )

(ii) for any object X, Y and Z, there is a morphism of simplicial sets

Map(Y, Z) × Map(X, Y ) −→ Map(X, Z)

which is associative
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(iii) for any object X of C and any simplicial set K, there exists an object
X ⊗ K of C such that there exists a natural isomorphism of simplicial
sets

Map(X ⊗ K, Y ) ∼= Map(K, Map(X, Y ))

(iv) for any object X of C and any simplicial set K, there exists an object
XK such that there exists a natural isomorphism of simplicial sets

Map(X, Y K) ∼= Map(K, Map(X, Y ))

(v) for any cofibration i : A −→ B and any fibration p : X −→ Y of C, the
morphism of simplicial sets

Q(i, p) : Map(B, X) −→ Map(A, X) ×Map(A,Y ) Map(B, Y )

is a fibration of simplicial sets. Moreover if either i or p is trivial, then
the fibration Q(i, p) is trivial as well.

Recall that there exists a pair of adjoint functors | − | : SSet � Top : S∗
where | − | is the geometric realization functor and S∗ the singular nerve
functor. The n-simplex of SSet is denoted by ∆[n]. Its boundary is denoted
by ∂∆[n − 1]. Let ∆n be the n-dimensional simplex.

The category of compactly generated topological spaces Top is a simplicial
model category by setting Map(X, Y )n := Top(X×∆n, Y ), X⊗K := X×|K|
and XK := TOP(|K|, X). The category of simplicial sets SSet is a simplicial
model category as well by setting Map(X, Y )n := Top(X×∆[n], Y ), X⊗K :=
X × K and XK := Map(K, X) [15].

This means that the model category of flows can be enriched over the
category of simplicial sets and that the enrichment is compatible with the
model structure in the sense of Definition 7.1. The symbol ∆n is the simplicial
set corresponding to the n-dimensional simplex.

Because of the existence of this enrichment, there exist explicit formulae
for homotopy colimits [11]. In particular, the homotopy pushout of a diagram
of flows looks as follows:

Definition 7.2 [11] The homotopy pushout of the diagram of flows

A ��

��

B

C
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is the colimit of the diagram of flows

A ⊗ ∆0

��

�� B

A ⊗ ∆0

��

�� A ⊗ ∆1

C

It is then very easy to prove the:

Theorem 7.3 [3] Let X be a diagram of flows. Then the topological spaces
holim−−−→ hoP

−(X) and hoP
−(holim−−−→X) are homotopy equivalent (they are both

cofibrant indeed). So in particular, the homotopy branching space functor
commutes with homotopy pushouts.

Definition 7.4 [3] Let f : X −→ Y be a morphism of flows. The cone Cf of
f is the homotopy pushout in the category of flows

X
f ��

��

Y

��
1 �� Cf

where 1 is the terminal flow.

From the theorem

Theorem 7.5 [3] The homotopy branching space of the terminal flow is con-
tractible.

one can easily deduce a long exact sequence for the branching homology.

Definition 7.6 [3] Let X be a flow. Then the (n + 1)st branching homol-
ogy group H−

n+1(X) is defined as the nst homology group of the augmented
simplicial set N−

∗ (X) defined as follows:

(i) N−
n (X) = Sn(hoP

− X) for n � 0

(ii) N−
−1(X) = X0

(iii) the augmentation map ε : S0(hoP
− X) −→ X0 is induced by the mapping

γ �→ s(γ) from hoP
− X = S0(hoP

− X) to X0.

Theorem 7.7 [3] For any flow X, one has

(i) H−
0 (X) = ZX0/Im(s)
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(ii) the short exact sequence

0 → H−
1 (X) → H0(hoP

− X) → Z hoP
− X/Ker(s) → 0

(iii) H−
n+1(X) = Hn(hoP

− X) for n � 1.

Theorem 7.8 [3] For any morphism of flows f : X −→ Y , one has the long
exact sequence

· · · → H−
n (X) → H−

n (Y ) → H−
n (Cf) → . . .

· · · → H−
3 (X) → H−

3 (Y ) → H−
3 (Cf) →

H−
2 (X) → H−

2 (Y ) → H−
2 (Cf) →

H0(hoP
− X) → H0(hoP

− Y ) → H0(hoP
− Cf) → 0.

The functors X �→ H−
n (X) for n � 0 are invariant up to 2-dihomotopy

equivalence. The functor X �→ H0(hoP
− X) is only invariant up to weak S-

homotopy equivalence. So the long exact sequence above is not satisfactory.
It still remains to find an exact sequence whose each term would be a functor
invariant up to 2-dihomotopy equivalence.
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