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HOMOTOPICAL EQUIVALENCE OF COMBINATORIAL AND

CATEGORICAL SEMANTICS OF PROCESS ALGEBRA

PHILIPPE GAUCHER

Abstract. It is possible to translate a modified version of K. Worytkiewicz’s combinato-
rial semantics of CCS (Milner’s Calculus of Communicating Systems) in terms of labelled
precubical sets into a categorical semantics of CCS in terms of labelled flows using a geomet-
ric realization functor. It turns out that a satisfactory semantics in terms of flows requires
to work directly in their homotopy category since such a semantics requires non-canonical
choices for constructing cofibrant replacements, homotopy limits and homotopy colimits.
No geometric information is lost since two precubical sets are isomorphic if and only if the
associated flows are weakly equivalent. The interest of the categorical semantics is that
combinatorics totally disappears. Last but not least, a part of the categorical semantics of
CCS goes down to a pure homotopical semantics of CCS using A. Heller’s privileged weak
limits and colimits. These results can be easily adapted to any other process algebra for any
synchronization algebra.
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1. Introduction

This paper is the companion paper of [Gau07c]. The preceding paper was devoted to fixing
K. Worytkiewicz’s combinatorial semantics of CCS (Milner’s Calculus of Communicating
System) [Mil89] [WN95] in terms of labelled precubical sets [Wor04] in order to stick to the
higher dimensional automata paradigm. This paradigm states that the concurrent execution
of n actions must be abstracted by exactly one full n-cube: see [Gau07c] Theorem 5.2 for
a rigorous formalization of this paradigm and also Proposition 3.4 of this paper. There
was a problem in K. Worytkiewicz’s approach because of a version of the labelled coskeleton
construction adding too many cubes and therefore not satisfying Proposition 3.4. The purpose
of the preceding paper was also to built an appropriate geometric realization functor from
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2 P. GAUCHER

labelled precubical sets to labelled flows. The little bit surprising fact arising from this
construction was that a satisfactory geometric realization functor does require the use of the
model structure of flows introduced in [Gau03]. A consequence of the preceding paper was to
give a proof of the expressiveness of the category of flows. The geometric intuition underlying
these two semantics, i.e. in terms of precubical sets and in terms of flows, is extensively
explained in Section 2 which must be considered as a part of this introduction.

In this work, we push a little bit further the study of the semantics of CCS in terms of
labelled flows. Indeed, we explain the effect of the geometric realization functor on each oper-
ator of CCS. Section 6 is the section of the paper presenting these new results. In particular,
Theorem 6.6 presents an interpretation of the parallel composition with synchronization in
terms of flows without any combinatorial construction. This must be considered as the main
result of the paper.

The only case treated in this paper is the one of CCS without message passing. But all
the results can be easily adapted to any other process algebra with any other synchronization
algebra. The case of TCSP [BHR84] was explained in [Gau07c]. For general synchronization
algebras, all proofs of the paper are exactly the same, except the proof of Proposition 6.5
which must be very slightly modified: see the comment in the footnote 5.

Outline of the paper. Section 2 explains, with the example of the concurrent execution
of two actions a and b, the geometric intuition underlying the two semantics studied in this
paper. It must be considered as part of the introduction and it is strongly recommended the
reading for anyone not knowing the subject (and also for the other ones). In particular, the
notions of labelled precubical set and of labelled flow are reminded here. Section 3 recalls the
syntax of CCS and the construction of the combinatorial semantics of [Gau07c] in terms of
labelled precubical sets. The geometric realization functor is then introduced in Section 4.
Since we do need to work in the homotopy category of flows, Section 5 proving that two
precubical sets are isomorphic if and only if the associated flows are weakly S-homotopy
equivalent is fundamental. Finally Section 6 is an exposition of the effect of the geometric
realization functor from precubical sets to flows on each operator defining the syntax of CCS.
It is the technical core of the paper. And Section 7 is a bonus explaining some ideas towards
a pure homotopical semantics of CCS: Theorem 7.3 is a consequence of all the theorems of
Section 6 and of some known facts about realization of homotopy commutative diagrams over
free Reedy categories and their links with some kinds of weak limits and weak colimits in the
homotopy category of a model category.

Prerequisites. The reading of this work requires some familiarity with model category tech-
niques [Hov99] [Hir03], with category theory [ML98] [Bor94][GZ67], and also with locally pre-
sentable categories [AR94]. We use the locally presentable category of ∆-generated topological
spaces. Introductions about these spaces are available in [Dug03] [FR07] and [Gau07b].

Notations. Let C be a cocomplete category. The class of morphisms of C that are transfinite
compositions of pushouts of elements of a set of morphisms K is denoted by cell(K). An
element of cell(K) is called a relative K-cell complex. The category of sets is denoted by
Set. The class of maps satisfying the right lifting property with respect to the maps of K is
denoted by inj(K). The class of maps satisfying the left lifting property with respect to the
maps of inj(K) is denoted by cof (K). The cofibrant replacement functor of a model category
is denoted by (−)cof . The notation ≃ means weak equivalence or equivalence of categories,
the notation ∼= means isomorphism. The notation IdA means identity of A. The initial object
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Figure 1. Concurrent execution of two actions a and b

(resp. final object) of a category is denoted by ∅ (resp. 1). The cofibrant replacement functor
of any model category is denoted by (−)cof . The category of partially ordered set or poset
together with the strictly increasing maps (x < y implies f(x) < f(y)) is denoted by PoSet.
The set of morphisms from an object X to an object Y of a category C is denoted by C(X,Y ).

Acknowledgments. I thank very much Andrei Rădulescu-Banu for bringing Theorem 7.1
to my attention.

2. Example of two concurrent executions

We want to explain in this section what we mean by combinatorial semantics and categorical
semantics with the example of the concurrent execution of two actions a and b. This section
also recalls the definitions of labelled precubical set and of labelled flow. For other references
about topological models of concurrency, see [Gou03] for a survey.

Consider two actions a and b whose concurrent execution is topologically represented by
the square [0, 1]2 of Figure 1. The topological space [0, 1]2 itself represents the underlying
state space of the process. Four distinguished states are depicted on Figure 1. The state
0 = (0, 0) is the initial state. The state 2 = (1, 1) is the final state. At the state 1 = (1, 0),
the action a is finished and the action b is not yet started. At the state 3 = (0, 1), the action
b is finished and the action a is not yet started. So the boundary [0, 1]×{0, 1}∪{0, 1}× [0, 1]
of the square [0, 1]2 models the sequential execution of the actions a and b whereas their
concurrent execution is modeled by including the 2-dimensional square ]0, 1[×]0, 1[. In fact,
the possible execution paths from the initial state 0 = (0, 0) to the final state 2 = (1, 1) are
all continuous paths from 0 = (0, 0) to 2 = (1, 1) which are non-decreasing with respect to
each axis of coordinates. Nondecreasingness corresponds to irreversibility of time.

In the combinatorial semantics, the preceding situation is abstracted by a 2-cube viewed
as a precubical set. Let us now recall the definition of these objects. A good reference for
presheaves is [MLM94].

2.1. Notation. Let [0] = {0} and [n] = {0, 1}n for n > 1. By convention, {0, 1}0 = {0}.

Let δαi : [n − 1] → [n] be the set map defined for 1 6 i 6 n and α ∈ {0, 1} by
δαi (ǫ1, . . . , ǫn−1) = (ǫ1, . . . , ǫi−1, α, ǫi, . . . , ǫn−1). The small category � is by definition the
subcategory of the category of sets with set of objects {[n], n > 0} and generated by the
morphisms δαi .
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Figure 2. Concurrent execution of a and b with a 6 b as labelled precubical set

2.2. Definition. [BH81] The category of presheaves over �, denoted by �opSet, is called the
category of precubical sets. A precubical set K consists of a family of sets (Kn)n>0 and of
set maps ∂αi : Kn → Kn−1 with 1 6 i 6 n and α ∈ {0, 1} satisfying the cubical relations

∂αi ∂
β
j = ∂

β
j−1∂

α
i for any α, β ∈ {0, 1} and for i < j. An element of Kn is called a n-cube.

Let �[n] := �(−, [n]). By the Yoneda lemma, one has the natural bijection of sets

�
opSet(�[n],K) ∼= Kn

for every precubical set K. The boundary of �[n] is the precubical set denoted by ∂�[n]
defined by removing the interior of �[n]:

• (∂�[n])k := (�[n])k for k < n

• (∂�[n])k = ∅ for k > n.

In particular, one has ∂�[0] = ∅.
So the 2-cube �[2] models the underlying time flow of the concurrent execution of a and

b. However, the same 2-cube models the underlying time flow of the concurrent execution of
any pair of actions. So we need a notion of labelling.

Let Σ be a set of labels, containing among other things the two actions a and b.

2.3. Proposition. [Gou02] Put a total ordering 6 on Σ. Let

• (!Σ)0 = {()} (the empty word)
• for n > 1, (!Σ)n = {(a1, . . . , an) ∈ Σ× . . .× Σ, a1 6 . . . 6 an}
• ∂0

i (a1, . . . , an) = ∂1
i (a1, . . . , an) = (a1, . . . , âi, . . . , an) where the notation âi means that

ai is removed.

Then these data generate a precubical set.

2.4. Remark. The isomorphism class of !Σ does not depend of the choice of the total ordering
on Σ.

2.5. Definition. (Goubault) A labelled precubical set is an object of the comma category
�opSet↓!Σ.

In the combinatorial semantics, the concurrent action of the two actions a and b is then
modeled by the labelled 2-cube ℓ : �[2] →!Σ sending the identity of [2] (the interior of the
square) to (a, b) if a 6 b or to (b, a) if b 6 a as depicted in Figure 2.

The categorical semantics is much simpler to explain. Each of the four distinguished states
0, 1, 2 and 3 of Figure 1 is represented by an object of a small category. Each execution path
of the boundary of the square is represented by a morphism with the composition of execution
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paths corresponding to the composition of morphisms. So one has 6 execution paths
−→
01,
−→
12,

−→
012,

−→
03,
−→
32 and

−→
032 with the algebraic rules

−→
01 ∗

−→
12 =

−→
012 and

−→
03 ∗

−→
32 =

−→
032 where ∗ is

of course the composition law. The interior of the square is then modeled by the algebraic

relation
−→
012 =

−→
032. This small category is nothing else but the small category corresponding

to the poset {0̂ < 1̂}2. And this poset is nothing else but the poset of vertices of the 2-cube.
The partial ordering models observable time ordering.

In fact, one needs to work with categories enriched over topological spaces in the sense of
[Kel05], i.e. with topologized homsets, for being able to model more complicated situations of
concurrency. In the situation above, the space of morphisms is of course discrete. For various
mathematical reasons, e.g. [Gau03] Section 20 and [GG03] Section 6, one also needs to work
with small category without identity maps. Note that the category of small categories without
identity maps and the usual one of small categories are certainly not equivalent since a round-
trip using the adjunction between them adds a loop to each object. And a lots of theorems
proved in the framework of flows (i.e. small categories without identity maps enriched over
topological spaces) are merely wrong whenever identity maps are added.

In this paper, one will also work with the locally presentable category of ∆-generated
topological spaces, denoted by Top, i.e. of spaces which are colimits of simplices. Several
introductions about these topological spaces are available in [Dug03] [FR07] and [Gau07b]
respectively. Let us only mention one striking property of ∆-generated topological spaces: as
the simplicial sets, they are isomorphic to the disjoint sum of their [path-]connected compo-
nents by [Gau07b] Proposition 2.8. This property has a lots of very nice consequences.

2.6. Definition. [Gau03] A flow X is a small category without identity maps enriched over
∆-generated topological spaces. The composition law of a flow is denoted by ∗. The set of
objects is denoted by X0. The space of morphisms from α to β is denoted by Pα,βX

1. Let
PX be the disjoint sum of the spaces Pα,βX. A morphism of flows f : X → Y is a set map
f0 : X0 → Y 0 together with a continuous map Pf : PX → PY preserving the structure. The
corresponding category is denoted by Flow.

Each poset P can be associated with a flow denoted in the same way. The set of objects
P 0 is the underlying set of P and there is one and only one morphism from α to β if and
only if α < β. The composition law is then defined by (α, β) ∗ (β, γ) = (α, γ) for any
α < β < γ ∈ P . Note that the flow associated with a poset is loopless, i.e. for every α ∈ P 0,
one has Pα,αP = ∅. This construction induces a functor PoSet → Flow from the category
of posets together with the strictly increasing maps to the category of flows.

In the categorical semantics, the underlying time flow of the concurrent execution of two
actions a and b is then modeled by the flow associated with the poset {0̂ < 1̂}2. Like in the
combinatorial semantics, one needs a notion of labelling.

2.7. Definition. The flow of labels ?Σ is defined as follows: (?Σ)0 = {0} and P?Σ is the dis-
crete free associative monoid without unit generated by the elements of Σ and by the algebraic
relations a ∗ b = b ∗ a for all a, b ∈ Σ.

2.8. Definition. A labelled flow is an object of the comma category Flow↓?Σ.

So the concurrent execution of the two actions a and b will be modeled by the labelled flow

ℓ : {0̂ < 1̂}2 →?Σ with ℓ(
−→
012) = ℓ(

−→
032) = a ∗ b, ℓ(

−→
01) = a, ℓ(

−→
12) = b, ℓ(

−→
03) = b and ℓ(

−→
32) = a

as in Figure 3.

1Sometimes, an object of a flow is called a state and a morphism a (non-constant) execution path.
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Figure 3. Concurrent execution of a and b as labelled flow

3. Combinatorial semantics of CCS

Syntax of the process algebra CCS. A short introduction about process algebra can be
found in [WN95]. An introduction about CCS for mathematician is available in the companion
paper [Gau07c]. Let Σ be a non-empty set. Its elements are called labels or actions or events.
From now on, the set Σ is supposed to be equipped with an involution a 7→ a. Moreover,
the set Σ contains a distinct action τ with τ = τ . The process names are generated by the
following syntax:

P ::= nil | a.P | (νa)P | P + P | P ||P | rec(x)P (x)

where P (x) means a process name with one free variable x. The variable x must be guarded,
that is it must lie in a prefix term a.x for some a ∈ Σ.

Parallel composition with synchronization of labelled precubical sets.

3.1. Definition. Let ℓ : K →!Σ be a labelled precubical set. Let n > 1. A labelled n-shell of
K is a commutative diagram of precubical sets

∂�[n+ 1]
x //

��

K

ℓ

��
�[n+ 1] // !Σ.

Suppose moreover that K0 = [p] for some p > 2. The labelled n-shell above is non-twisted if
the set map x0 : [n+ 1] = ∂�[n+ 1]0 → [p] = K0 is a composite

x0 : [n+ 1]
φ
−→ [q]

ψ
−→ [p]

where ψ is a morphism of the small category � and where φ is of the form (ǫ1, . . . , ǫn+1) 7→
(ǫi1 , . . . , ǫiq) such that 1 = i1 6 . . . 6 iq = n+ 1 and {1, . . . , n+ 1} ⊂ {i1, . . . , iq}.

The map φ is not necessarily a morphism of the small category �. For example φ : [3]→ [5]
defined by φ(ǫ1, ǫ2, ǫ3) = (ǫ1, ǫ1, ǫ2, ǫ3, ǫ3) is not a morphism of �. Note the set map x0 is
always one-to-one.

All labelled shells of this paper will be supposed non-twisted.

3.2. Definition. Let �n ⊂ � be the full subcategory of � whose set of objects is {[k], k 6

n}. The category of presheaves over �n is denoted by �
op
n Set. Its objects are called the

n-dimensional precubical sets.
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Let K be an object of �
op
1 Set↓!Σ such that K0 = [p] for some p > 2. Let K(n) be the

object of �
op
n Set↓!Σ inductively defined for n > 1 by K(1) = K and by the following pushout

diagram of labelled precubical sets (the shells are always non-twisted by hypothesis):
⊔

labelled n-shells
∂�[n + 1] //

��

K(n)

��⊔

labelled n-shells
�[n+ 1] // K(n+1).

Since (∂�[n + 1])p = (�[n + 1])p for p 6 n, one has (K(n+1))p = (K(n))p for p 6 n. And by

construction, (K(n+1))n+1 is the set of non-twisted labelled n-shell of K. There is an inclusion

map K(n) → K(n+1).

3.3. Notation. Let K be a 1-dimensional labelled precubical set with K0 = [p] for some p > 2.
Then let

COSK(K) := lim
−→
n>1

K(n).

The important property of the COSK operator, also used in the proof of Proposition 6.5, is
the following one ensuring that the higher dimensional automata paradigm is satisfied indeed:

3.4. Proposition. ([Gau07c] Proposition 3.16) Let �[n] be a labelled precubical set with n > 2.
Then one has the isomorphism of labelled precubical sets COSK(�[n]61) ∼= �[n].

Roughly speaking, Proposition 3.4 states that for all 1 6 p 6 n− 1, there is a bijection be-
tween the non-twisted labelled p-shells of �[n] and the (p+ 1)-cubes of �[n]. If the condition
non-twisted is removed, i.e. if we work with a too naive notion of labelled coskeleton construc-
tion as in [Wor04], then Proposition 3.4 is no longer true. Indeed, a naive labelled coskeleton
construction adds too many cubes whereas the higher dimensional automata paradigm states
that one must recover exactly �[n] from �[n]61 which corresponds to the concurrent execu-
tion of n actions. That was the problem in K. Worytkiewicz’s coskeleton construction, which
was corrected in the companion paper [Gau07c].

3.5. Definition. Let K and L be two labelled precubical sets. The synchronized tensor product
is by definition

K ⊗σ L := lim
−→

�[m]→K

lim
−→

�[n]→L

COSK(Z)

where Z is the 1-dimensional precubical set defined by:

• Z0 := �[m]0 ×�[n]0
• Z1 := (�[m]1 ×�[n]0)⊕ (�[m]0 ×�[n]1)⊕{(x, y) ∈ �[m]1 ×�[n]1, ℓ(x) = ℓ(y)} with

an obvious definition of the face maps and the labelling τ = ℓ(x, y) if ℓ(x) = ℓ(y).

Construction of the labelled precubical set of paths.

3.6. Definition. A labelled precubical set ℓ : K →!Σ decorated by process names is a labelled
precubical set together with a set map d : K0 → ProcΣ called the decoration.
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�JnilK := �[0]

�Jµ.nilK := µ.nil
(µ)
−→ nil

�[0] = {0}
07→nil //

07→P
��

�Jµ.nilK

��
�JP K // �Jµ.P K

�JP +QK := �JP K⊕�JQK
with the binary coproduct taken in {i}↓�opSet↓!Σ

�J(νa)P K //

��

�JP K

��
!(Σ\({a, a})) // !Σ

�JP ||QK := �JP K⊗σ �JQK
�Jrec(x)P (x)K := lim

−→
n

�JPn(nil)K

Table 1. Combinatorial semantics of CCS

It is recalled in Table 1 the construction of the labelled precubical set �JP K of [Gau07c] by
induction on the syntax of the name. The labelled precubical set �JP K has a unique initial
state canonically decorated by the process name P and its other states will be decorated
as well in an inductive way. Therefore for every process name P , �JP K is an object of
{i}↓�opSet↓!Σ.

4. Categorical semantics of CCS

The categorical semantics of CCS is obtained from the combinatorial semantics by applying
the geometric realization functor |− | : �opSet→ Flow introduced in [Gau07c] 2. As already
explained in [Gau07c], it is necessary to use the model structure introduced in [Gau03], and
adapted in [Gau07b] for the framework of ∆-generated topological spaces. Equivalent geo-
metric realization functors are defined in [Gau07a]. We will use the construction of [Gau07c]
in this paper.

Let Z be a topological space. The flow Glob(Z) is defined by

• Glob(Z)0 = {0̂, 1̂},
• PGlob(Z) = Pb0,b1Glob(Z) = Z,

• s = 0̂, t = 1̂ and a trivial composition law.

It is called the globe of the space Z.
The model structure of [Gau07b] is characterized as follows:

• The weak equivalences are the weak S-homotopy equivalences, i.e. the morphisms of
flows f : X −→ Y such that f0 : X0 −→ Y 0 is a bijection of sets and such that
Pf : PX −→ PY is a weak homotopy equivalence.

2Of course, all theorems proved in the case of compactly generated topological spaces in [Gau07c] are still
available in the case of ∆-generated topological spaces since they only depend on the model structure on Flow.
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• The fibrations are the morphisms of flows f : X −→ Y such that Pf : PX −→ PY is
a Serre fibration.

This model structure is cofibrantly generated. The set of generating cofibrations is the set

I
gl
+ = Igl ∪ {R : {0, 1} −→ {0}, C : ∅ −→ {0}} with

Igl = {Glob(Sn−1) ⊂ Glob(Dn), n > 0}

where Dn is the n-dimensional disk and Sn−1 the (n− 1)-dimensional sphere. By convention,
the (−1)-dimensional sphere is the empty space. The set of generating trivial cofibrations is

Jgl = {Glob(Dn × {0}) ⊂ Glob(Dn × [0, 1]), n > 0} .

The mapping from Obj(�) (the set of objects of �) to Obj(Flow) (the class of flows)

defined by [0] 7→ {0} and [n] 7→ {0̂ < 1̂}n for n > 1 induces a functor from the category � to
the category Flow by composition

� ⊂ PoSet −→ Flow.

4.1. Notation. A state of the flow {0̂ < 1̂}n is denoted by a n-uple of elements of {0̂, 1̂}.
The unique morphism/execution path from (x1, . . . , xn) to (y1, . . . , yn) is denoted by a n-uple

(z1, . . . , zn) with zi = xi if xi = yi and zi = ∗ if xi < yi. For example in the flow {0̂ < 1̂}2

depicted in Figure 4, one has the algebraic relation (∗, ∗) = (0̂, ∗) ∗ (∗, 1̂) = (∗, 0̂) ∗ (1̂, ∗).

4.2. Definition. [Gau07c] Let K be a precubical set. By definition, the geometric realization
of K is the flow

|K| := lim
−→

�[n]→K

({0̂ < 1̂}n)cof .

The following proposition is helpful to understand what this geometric realization functor
is. The principle of its proof will be reused in the paper.

4.3. Proposition. Let K be a precubical set. One has a natural weak S-homotopy equivalence

|K| ≃ holim
−−−→

�[n]→K

{0̂ < 1̂}n.

Proof. Consider the category of cubes �↓K of K. It is defined by the pullback diagram of
small categories

�↓K //

��

�opSet↓K

��
� // �opSet.

In other terms, an object of �↓K is a morphism �[m] → K and a morphism of �↓K is a
commutative diagram

�[m]

""EE
EE

EE
EE

// �[n]

||zz
zz

zz
zz

K.
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(0̂, 0̂)
(b0,∗) //

(∗,b0)

��

(∗,∗)

!!C
CC

CC
CC

CC
CC

CC
CC

CC
(0̂, 1̂)

(∗,b1)

��

(1̂, 0̂)
(b1,∗)

// (1̂, 1̂)

Figure 4. The flow |�[2]|bad = {0̂ < 1̂}2 ((∗, ∗) = (0̂, ∗) ∗ (∗, 1̂) = (∗, 0̂) ∗ (1̂, ∗))

The category �↓K is a Reedy direct category with the degree function d(�[n] → K) = n.
Since this Reedy category is direct, the matching category is always empty. So by [Hir03]
Proposition 15.10.2, the Reedy category has fibrant constants and the colimit functor lim

−→
:

Flow�↓K → Flow is a left Quillen functor if Flow�↓K is equipped with the Reedy model
structure by [Hir03] Theorem 15.10.8. Consider the functor D : �↓K → Flow defined by

D(�[n]→ K) := ({0̂ < 1̂}n)cof . One has to check that the diagram D is Reedy cofibrant and
the proof will be complete. By definition of the Reedy model structure, it suffices to show
that for all n > 0, and with α = �[n] → K, the map LαD → D(α) is a cofibration where
LαD is the latching object at α. It is easy to see that the latter map is the morphism of flows
|∂�[n] ⊂ �[n]| which is a cofibration of flows by Theorem 4.5 below. �

The functor [n] 7→ {0̂ < 1̂}n from � to Flow also induces a bad realization functor from
�opSet to Flow defined by

|K|bad := lim
−→

�[n]→K

{0̂ < 1̂}n .

This functor is a bad realization because of the following bad behaviour:

4.4. Theorem. ([Gau07c] Theorem 7.2) Let n > 3. The inclusion of precubical sets ∂�[n] ⊂
�[n] induces an isomorphism |∂�[n]|bad ∼= |�[n]|bad.

On the contrary, the geometric realization functor is well-behaved:

4.5. Theorem. ([Gau07c] Proposition 7.6 and [Gau07c] Theorem 7.8) For any n > 0, the
map of flows |∂�[n] ⊂ �[n]| is a non-trivial cofibration of flows. Moreover, the path space
Pb0...b0,b1...b1|∂�[n]| is homotopy equivalent to Sn−2 and the path space Pb0...b0,b1...b1|�[n]| is con-

tractible.

Let K →!Σ be a labelled precubical set. Then the composition |K| → |!Σ| → |!Σ|bad ∼=?Σ
gives rise to a labelled flow by [Gau07c] Proposition 8.1.

4.6. Notation. For every process name P , let JP K := |�JP K|. The flow JP K is always cofibrant
by [Gau07c] Proposition 7.7.

Note that a decorated labelled precubical set gives rise to a decorated labelled flow in the
following sense:

4.7. Definition. A labelled flow ℓ : X →?Σ decorated by process names is a labelled flow
together with a set map d : X0 → ProcΣ called the decoration.
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5. Relevance of weak S-homotopy for concurrency theory

The translation of the combinatorial semantics of CCS into a categorical semantics in terms
of flows requires the use of non-canonical constructions, more precisely, a non-canonical choice
of a cofibrant replacement functor, and also later non-canonical choices for homotopy limits
and homotopy colimits. The following theorem is therefore very important:

5.1. Theorem. For any flow X, there exists at most one precubical set K up to isomorphism
such that |K| ≃ X. In other terms, the functor

K 7→ weak S-homotopy type of |K|

from �opSet to the homotopy category of flows Ho(Flow) reflects isomorphisms.

The precubical set K does not necessarily exist. For example, Glob(S1) is not weakly
S-homotopy equivalent to any geometric realization of any precubical set. Indeed, if there
existed a precubical set K with |K| ≃ Glob(S1), then K would have a unique initial state 0̂

and a unique final state 1̂, so K0 = {0̂, 1̂}. So the only possibility is a set of 1-cubes from 0̂

to 1̂. Thus the space P(|K|) would be homotopy equivalent to a discrete space.
Before proving Theorem 5.1, we need to establish several preliminary results involving

among other things the simplicial structure of the category of flows.
In any flow X, if two execution paths x and y are in the same path-connected component

of some Pα,βX, then there exists a continuous map φ : [0, 1] → Pα,βX with φ(0) = x and
φ(1) = y. So for any execution path z such that x ∗ z and y ∗ z exist, the continuous map ψ

from [0, 1] to PX defined by ψ(t) = φ(t) ∗ z is a continuous path from x ∗ z to y ∗ z. Hence:

5.2. Notation. Any flow X induces a flow over the category of sets denoted by π̂0(X) defined
by π̂0(X)0 = X0, Pπ̂0(X) = π0(PX) where π0 is the path-connected component functor and
with the composition law induced by the one of X.

5.3. Notation. Let Flow(Set) be the category of flows enriched over sets, i.e. of small
categories without identity maps.

5.4. Proposition. The functor π̂0 : Flow → Flow(Set) is a left adjoint. In particular, it is
colimit-preserving.

Proof. It suffices to prove that the path-connected component functor π0 : Top → Set is a
left adjoint (let us repeat that we are working with ∆-generated topological spaces). Here
are two possible arguments:

(1) Every space is homeomorphic to the disjoint sum of its path-connected components
by [Gau07b] Proposition 2.8. In fact, a space is even connected if and only if it is
path-connected. So it is easy to see that the right adjoint is the functor from Set to
Top taking a set S to the discrete space S.

(2) The functor from Set to Top taking a set S to the discrete space S commutes with
limits because there is no non-discrete totally disconnected ∆-generated spaces, and
with colimits as in the category of general topological spaces. In particular it is
accessible. So by [AR94] Theorem 1.66, it has a left adjoint and it is easy to see that
the left adjoint is the path-connected component functor.

�

5.5. Proposition. (Compare with [Gau07b] Proposition 4.9) The path space functor P :
Flow→ Top is a right adjoint. In particular, it is accessible.
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In fact, the functor P : Flow→ Top is of course finitely accessible.

Proof. Let Z be a topological space. By [Gau07b] Proposition 2.8, Z is homeomorphic to the
disjoint union of its path-connected components. Let us write this situation by

Z ∼=
⊔

Zi∈π0(Z)

Zi.

Then one has for any flow X

Top(Z,PX) ∼=
∏

Zi∈π0(Z)

Top(Zi,PX)

∼=
∏

Zi∈π0(Z)

Flow(Glob(Zi),X)

∼= Flow(
⊔

Zi∈π0(Z)

Glob(Zi),X).

So the path space functor P : Flow → Top is accessible by [AR94] Theorem 1.66. �

5.6. Proposition. Let i : A→ X be a cofibration of flows between cofibrant flows. Then the
continuous map Pi : PA→ PX is a cofibration between cofibrant spaces.

Note that Proposition 5.6 remains true if we only suppose that the space PA is cofibrant.
Proposition 5.6 is a generalization of [Gau07b] Proposition 7.5.

Proof. Let us suppose first that there is a pushout diagram of flows

Glob(Sn−1) //

��

A

i

��
Glob(Dn) // X.

By [Gau03] Proposition 15.1, the continuous map Pi : PA→ PX is a transfinite composition
of pushouts of maps of the form IdX1

× . . . × in × . . . × IdXp
where the spaces Xi are spaces

of the form Pα,βA and where in : Sn−1 ⊂ Dn is the inclusion with n > 0. Any space of
the form Pα,βA is cofibrant by [Gau07b] Proposition 7.5 since A is cofibrant. So the map
Pi : PA→ PX is a cofibration because the model category (Top,×) is monoidal.

Let us treat now the general case. The cofibration i is a retract of a map j : A → Y

of cell(Igl+ ) by a map which fixes A by [Hov99] Corollary 2.1.15. So the continuous map
Pi : PA→ PX is a retract of the continuous map Pj : PA→ PY . The map of flows j : A→ Y

is the composition of a transfinite sequence Z : λ → Flow for some ordinal λ with Z0 = A.
By Proposition 5.5, one has the homeomorphism lim

−→
PZα ∼= PY . The first part of this proof

implies that Pj : PA→ PY is then a cofibration of spaces, and therefore that Pi : PA→ PX

is a cofibration as well. �

5.7. Notation. The associative monoid without unit (N∗,+) of strictly positive integers to-
gether with the addition can be viewed as a flow with one object, the discrete path space N∗

and the composition law +.
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5.8. Notation. Let K be a precubical set. Let K6n be the precubical set obtained from K by
keeping the p-dimensional cubes of K only for p 6 n. In particular, K60 = K0.

5.9. Proposition. Let K be a precubical set. There exists a unique morphism of flows LK :
π̂0(|K|) → N∗, natural with respect to K, such that for any x ∈ K1, for any z ∈ P(|�[1]|),
one has LK(|x|(z)) = 1.

Proof. We construct LK : π̂0(|K6n|) → N∗ for any precubical set K by induction on n > 0.
There is nothing to do for n = 0. The passage from |K6n| to |K6n+1| is done as usual by the
following pushout diagram of flows:

⊔
x:∂�[n+1]→K |∂�[n+ 1]|

��

// |K6n|

��⊔
x:∂�[n+1]→K |�[n+ 1]| // |K6n+1|

where the sum is over all n-shells x : ∂�[n + 1] ⊂ �[n + 1] → K. Let n > 0. By induction
hypothesis, the flow π̂0(|∂�[n+1]|) and π̂0(|K6n|) are defined. We know that the map of flows
|∂�[n + 1]| → |�[n + 1]| is a cofibration by Theorem 4.5. In fact, this map of flows induces

the identity maps Pα,β(|∂�[n+ 1]|) = Pα,β(|�[n+ 1]|) for (α, β) 6= (0̂ . . . 0̂, 1̂ . . . 1̂) and a non-

trivial cofibration 3 between cofibrant spaces Pb0...b0,b1...b1(|∂�[n+ 1]|)→ Pb0...b0,b1...b1(|�[n+ 1]|) by

Proposition 5.6. Then let L�[n+1](x) = n + 1 for any x ∈ Pb0...b0,b1...b1(|�[n + 1]|). One obtains

the commutative square of Flow(Set):
⊔
x:∂�[n+1]→K π̂0(|∂�[n + 1]|)

��

// π̂0(|K6n|)

��⊔
x:∂�[n+1]→K π̂0(|�[n+ 1]|) // N∗.

By Proposition 5.4 and by the universal property of the pushout, one obtains the natural map
π̂0(|K6n+1|) → N∗. Since the functor K 7→ π̂0(|K|) is a left adjoint, one obtains a natural
map π̂0(|K|) ∼= lim

−→
π̂0(|K6n|)→ N∗. �

5.10. Definition. The integer LK(x) for x ∈ P(|K|) is called the length of x.

Proposition 5.9 means that the length of x ∈ P(|K|) satisfies the following (intuitive)
algebraic rules:

• LK(x ∗ y) = LK(x) + LK(y) if x and y are composable
• LK(x) = LK(y) if x and y are in the same path-connected component of the space

P(|K|)
• LK(x) = 1 if x corresponds to an edge, i.e. a 1-cube, of the precubical set K

3Let us recall that the space Pb0...b0,b1...b1(|�[n + 1]|) is contractible and that by Theorem 4.5, there is a

homotopy equivalence Pb0...b0,b1...b1(|∂�[n + 1]|) ≃ S
n−1.
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• the naturality of the morphism of flows LK : π̂0(|K|) → N∗ means that length is
preserved by a map of precubical sets.

The model category Flow is simplicial by [Gau07a] Section 3 and [Gau07b] Appendix B.
Let Map(X,Y ) be the function complex from X to Y . It is equal to the simplicial nerve of
the space FLOW(X,Y ) of morphisms of flows from X to Y equipped with the Kelleyfication
of the relative topology.

5.11. Proposition. Let K be a precubical set. Let n > 0. The natural set map Kn →
Flow(|�[n]|, |K|) defined by taking x ∈ Kn to |x| : |�[n]| → |K| is one-to-one.

Proof. One has |K| = lim
−→�[n]→K

|�[n]| by definition. If x and y are two different n-cubes of

K, then they correspond to two different copies of |�[n]| in the colimit calculating K. Let

γ ∈ Pb0...b0,b1...b1|�[n]|\Pb0...b0,b1...b1|∂�[n]|.

Then |x|(γ) 6= |y|(γ). Therefore |x| 6= |y|. �

5.12. Notation. Let K be a precubical set. The precubical set K̂ is defined by

K̂ = π0 Map(|�[∗]|, |K|) = π0FLOW(|�[∗]|, |K|) .

Since |�[n]| is cofibrant and since all flows are fibrant, the function complex Map(|�[n]|, |K|)

is weakly equivalent to the homotopy function complex from |�[n]| to |K|. Thus K̂n =
Ho(Flow)(|�[n]|, |K|) for all n > 0 where Ho(Flow) is the homotopy category of Flow.

The natural map of precubical sets K → Flow(|�[∗]|, |K|) induces a natural map of pre-

cubical sets K → K̂.

5.13. Proposition. Let K be a precubical set. Let n > 0. The continuous map jn :
FLOW(|�[n]|, |K6n|) → FLOW(|�[n]|, |K|) induced by the inclusion of precubical sets
K6n ⊂ K is an inclusion of ∆-generated spaces in the sense that one has a homeomorphism

FLOW(|�[n]|, |K6n|) ∼= jn(FLOW(|�[n]|, |K6n|))

with the right-hand topological space equipped with the Kelleyfication of the relative topology.

Sketch of proof. The map jn : FLOW(|�[n]|, |K6n|)→ FLOW(|�[n]|, |K|) is clearly one-to-
one. It suffices to prove that for any continuous map φ : Z → FLOW(|�[n]|, |K|) such that
φ(Z) ⊂ jn(FLOW(|�[n]|, |K6n|)), the unique set map Z → FLOW(|�[n]|, |K6n|) induced
by φ is continuous.

By Theorem 4.5, the map |K6n| → |K| is a cofibration of flows. One has |K6n|
0 = |K|0 =

K0 and the continuous map P(|K6n|)→ P(|K|) is a cofibration of spaces by Proposition 5.6.
So the latter continuous map is a closed T1-inclusion of general topological spaces by [Hov99]
Lemma 2.4.5, and also an inclusion of ∆-generated spaces.

By [Gau07b] Appendix B, the category of flows enriched over ∆-generated topological
spaces is tensored and cotensored over the ∆-generated spaces in the sense of [Col06]. So
the continuous map φ : Z → FLOW(|�[n]|, |K|) corresponds by adjunction to a morphism
of flows |�[n]| ⊗ Z → |K|. By hypothesis, the map Pφ factors uniquely as a set map as a
composite

P(|�[n]| ⊗ Z)→ P(|K6n|)→ P(|K|).

Since the right-hand map is a closed T1-inclusion of general topological spaces, the left-hand
map P(|�[n]| ⊗Z)→ P(|K6n|) is continuous. Hence the factorization |�[n]| ⊗Z → |K6n| →
|K|. By adjunction, one obtains the continuous map Z → FLOW(|�[n]|, |K6n|). �
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5.14. Proposition. The functor K 7→ K̂ reflects isomorphisms, i.e a map of precubical sets

f : K → L is an isomorphism if and only if the map of precubical sets f̂ : K̂ → L̂ is an
isomorphism.

Proof. It turns out that the natural map of precubical sets K → K̂ is a monomorphism.
Indeed, take two elements x and y of Kn such that |x| and |y| are in the same path-
connected component of FLOW(|�[n]|, |K|). By definition, there exists a continuous map
φ : [0, 1] → FLOW(|�[n]|, |K|) such that φ(0) = |x| and φ(1) = |y|. For any z ∈ P(|�[n]|),
one has the inequality LK(φ(t)(z)) 6 n for all t ∈ [0, 1] because L�[n](z) 6 n and be-
cause maps of precubical sets preserve length. But any execution path of P(|K|)\P(|K6n|)
is of length strictly greater than n. So the map φ factors uniquely as a composite [0, 1] →
FLOW(|�[n]|, |K6n|)→ FLOW(|�[n]|, |K|) by Proposition 5.13. Since a non-trivial homo-
topy φ would necessarily use higher dimensional cubes of K\K6n, the homotopy φ is trivial.
Therefore |x| = |y|, and by Proposition 5.11 one obtains x = y.

So the precubical set K is naturally isomorphic to a precubical subset of K̂. Take a map
f : K → L. Then, by naturality, there is a commutative square of precubical sets

K

f

��

//
K̂

bf

��
L //

L̂.

If f is not an isomorphism, then two situations may happen:

• There exist n > 0 and two distinct n-cubes x and y of K, and therefore of K̂, with

f(x) = f(y). Then f̂(x) = f̂(y) and therefore f̂ is not an isomorphism.
• There exist n > 0 and a n-cube x of L which does not belong to the image of f . Since

the map f̂ factors as a composite K̂ → f̂(K) → L̂, the n-cube x does not have any

antecedent by f̂ . So f̂ is not an isomorphism.

�

Proof of Theorem 5.1. Let K and L be two precubical sets with |K| ≃ |L|. For all n > 0,
the functor Map(|�[n]|,−) : Flow → ∆opSet preserves weak equivalences between fibrant
objects by [Hir03] Corollary 9.3.3 since this functor is a right Quillen functor. So there is

an isomorphism K̂ ∼= L̂ since both |K| and |L| are fibrant 4. And by Proposition 5.14, one
obtains an isomorphism K ∼= L. �

In conclusion, we can safely work up to weak S-homotopy without losing any kind of
computer-scientific information already present in the structure of the precubical set.

6. Effect of the geometric realization functor when it is a left adjoint

One has the isomorphism JP +QK ∼= JP K ⊕ JQK of {i}↓Flow↓!Σ since the geometric real-
ization functor is a left adjoint.

4All flows are actually fibrant.
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6.1. Proposition. One has the pushout diagram of labelled flows

{0}
07→nil //

07→i

��

Jµ.nilK

��
JP K // Jµ.P K

and this diagram is also a homotopy pushout diagram.

Proof. The diagram above is a pushout diagram since the geometric realization functor is
a left adjoint. This diagram is also a homotopy pushout diagram by [Hov99] Lemma 5.2.6
since the three flows {0}, Jµ.nilK and JP K are cofibrant and since the map {0} → JP K is a
cofibration. �

6.2. Proposition. Let P (x) be a process name with one free guarded variable x. Then one
has the isomorphism

Jrec(x)P (x)K ∼= lim
−→
n

JPn(nil)K

and the colimit is also a homotopy colimit.

Proof. The isomorphism comes again from the fact that the geometric realization functor is
a left adjoint. The tower of flows n 7→ JPn(nil)K is a tower of cofibrant flows and each map
JPn(nil)K→ JPn+1(nil)K is a cofibration by Theorem 4.5. So the colimit is also a homotopy
colimit by [Hir03] Proposition 15.10.12. �

6.3. Proposition. Let K →!Σ be a labelled precubical set. Let Σ′ ⊂ Σ. Consider the pullback
diagram of precubical sets

L //

��

K

��
!Σ′ // !Σ.

Then the commutative diagram of flows

|L| //

��

|K|

��
?Σ′ // ?Σ
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obtained by taking the realization of the first diagram and by composing with the commutative
square

|!Σ′| //

��

|!Σ|

��
?Σ′ // ?Σ

is a pullback and a homotopy pullback diagram of flows.

Proof. It is well-known that every precubical set K is a {∂�[n] ⊂ �[n], n > 0}-cell complex
since the passage from K6n−1 to K6n for n > 1 is done by the following pushout diagram:

⊔
x∈Kn

∂�[n] //

��

K6n−1

��⊔
x∈Kn

�[n] // K6n

where the map ∂�[n] → K6n−1 indexed by x ∈ Kn is induced by the (n − 1)-shell ∂�[n] ⊂

�[n]
x
→ K. One also has the pullback diagram of sets

Ln ∼= �opSet(�[n], L) //

��

Kn
∼= �opSet(�[n],K)

��
(!Σ′)n ∼= �opSet(�[n], !Σ′) // (!Σ)n ∼= �opSet(�[n], !Σ)

by the Yoneda lemma and because pullbacks are calculated pointwise in the category of
precubical sets. So the precubical set L is the {∂�[n] ⊂ �[n], n > 0}-cell subcomplex obtained
by keeping the cells ∂�[n] ⊂ �[n] induced by the n-dimensional cubes �[n] → K such that
the composite �[n] → K →!Σ factors as a composite �[n] →!Σ′ →!Σ. Thus, the map
L → K is a relative {∂�[n] ⊂ �[n], n > 0}-cell complex. One has the bijection (!Σ′)0 ∼=
(!Σ)0. Therefore L0

∼= K0 and the map L → K is a relative {∂�[n] ⊂ �[n], n > 1}-cell
complex. Since the realization functor K 7→ |K| is a left adjoint, the map |L| → |K| is then
a relative {|∂�[n]| ⊂ |�[n]|, n > 1}-cell complex. By Theorem 4.5, we deduce that the map
|L| → |K| is a cofibration of flows with |L|0 = |K|0. By Proposition 5.6, the continuous map
P(|L|) → P(|K|) is a [closed T1-]inclusion of general topological spaces in the sense that for
any continuous map f : Z → P(|K|) such that f(Z) is in the image of P(|L|), there exists a
unique continuous map f : Z → P(|L|) such that the composition Z → P(|L|) → P(|K|) is
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equal to f . Consider a commutative diagram of flows

W
k

!!B
B

B
B u

%%

v

��

|L| //

��

|K|

ℓ

��
?Σ′ // ?Σ

Let γ ∈ PW . By definition, one has

|K| = lim
−→

�[n]→K

({0̂ < 1̂}n)cof

with one copy of ({0̂ < 1̂}n)cof corresponding to one element x ∈ Kn. Thus, u(γ) = γ1∗· · ·∗γr
with γi ∈ P({0̂ < 1̂}ni)cof corresponding to a ni-dimensional cube xi ofK. And ℓ(γ1∗· · ·∗γr) =
a1∗· · ·∗as with ai ∈ Σ′ for all i = 1, . . . , s (note r is not necessarily equal to s). By construction
of L, the ni-dimensional cube xi of K then belongs to L. By definition, one has

|L| = lim
−→

�[n]→K

({0̂ < 1̂}n)cof

with one copy of ({0̂ < 1̂}n)cof corresponding to one element x ∈ Ln. So u(γ) belongs to the
image of the inclusion of spaces P(|L|)→ P(|K|). Hence the existence and the uniqueness of
k. So the commutative square

|L| //

��

|K|

��
?Σ′ // ?Σ

is a pullback diagram of flows. A map of flows f : X → Y is a fibration if and only if the
continuous map Pf : PX → PY is a Serre fibration. Therefore all objects of Flow are fibrant.
And the map |K| →?Σ is a fibration of flows since the path space P(?Σ) is discrete. Thus,
the pullback diagram

|L| //

��

|K|

��
?Σ′ // ?Σ

is also a homotopy pullback diagram of flows by e.g. [Hov99] Lemma 5.2.6. �
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6.4. Corollary. Let P be a process name. Then the commutative diagram

J(νa)P K //

��

JP K

��
?(Σ\({a, a})) // ?Σ

is both a pullback diagram and a homotopy pullback diagram of flows.

The following proposition is crucial to get rid of the coskeleton construction in the inter-
pretation of the parallel composition with synchronization.

6.5. Proposition. Let �[m] be a labelled m-cube with m > 0. Let �[n] be a labelled n-cube
with n > 0. Then the map |�[m]⊗σ �[n]| → |�[m]⊗σ �[n]|bad is a trivial fibration of flows.

Proof. By Theorem 4.4 saying that |∂�[n]|bad ∼= |�[n]|bad for n > 3, and since the bad
geometric realization is a left adjoint, one has the pushout diagram of flows:

⊔

labelled 1-shells
|∂�[2]|bad

��

// |(�[m]⊗σ �[n])61|bad

��⊔

labelled 1-shells
|�[2]|bad // |�[m]⊗σ �[n]|bad

The path space P(|(�[m] ⊗σ �[n])61|bad) contains the free compositions of (composable) 1-
cubes of �[m]⊗σ�[n]. The effect of the map P(|(�[m]⊗σ�[n])61|bad)→ P(|�[m]⊗σ�[n]|bad)
is to add algebraic relations v ∗w = x ∗ y whenever ℓ(v) = ℓ(y), ℓ(w) = ℓ(x) and ℓ(v) ∗ ℓ(w) =
ℓ(w) ∗ ℓ(v).

The map |�[m]⊗σ�[n]| → |�[m]⊗σ�[n]|bad induces a bijection |�[m]⊗σ�[n]|0 ∼= |�[m]⊗σ
�[n]|0bad. The continuous map P(|�[m]⊗σ �[n]|)→ P(|�[m]⊗σ �[n]|bad) is a Serre fibration
since the space P(|�[m]⊗σ�[n]|bad) is discrete. Therefore, it remains to prove that the fibre of
the fibration P(|�[m]⊗σ�[n]|)→ P(|�[m]⊗σ�[n]|bad) over x1∗· · ·∗xr ∈ P(|�[m]⊗σ�[n]|bad)
where x1, . . . , xr ∈ (�[m]⊗σ�[n])1 is contractible. Since the labels of x1, . . . , xr commute with
one another 5, this fibre is equal to the path space Pb0...b0,b1...b1(|COSK(�[r]61)|) of execution

paths from the initial state to the final state of the r-cube filled out by the COSK operator.
So the fibre is contractible by Proposition 3.4. �

6.6. Theorem. Let P and Q be two process names of ProcΣ. Then the flow associated with
the process P ||Q is weakly S-homotopy equivalent to the flow

holim
−−−→

�[m]→�JP K

holim
−−−→

�[n]→�JQK

|(�[m]⊗σ �[n])62|bad.

5For more general synchronization algebras, it is not true that all the labels necessarily commute with one
another. One has first to set x1 ∗ · · · ∗ xr = y1 ∗ · · · ∗ ys where the labels contained in each yi commute with
one another and one has then to say that the fibre over x1 ∗ · · · ∗ xr is the product of the contractible fibres
over the yi.
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Note that by the Fubini theorem for homotopy colimits (e.g., [CS02] Theorem 24.9) the
order of homotopy colimits is not important.

Sketch of proof. By Proposition 6.5 and Theorem 4.4, one has a weak S-homotopy equivalence

holim
−−−→

�[m]→�JP K

holim
−−−→

�[n]→�JQK

|�[m]⊗σ �[n]|
≃
−→ holim

−−−→
�[m]→�JP K

holim
−−−→

�[n]→�JQK

|(�[m]⊗σ �[n])62|bad.

For similar reasons to the proof of Proposition 4.3, the double colimit

lim
−→

�[m]→�JP K

lim
−→

�[n]→�JQK

|�[m]⊗σ �[n]|

is a homotopy colimit because the diagram is Reedy cofibrant over a fibrant constant Reedy
category. So the canonical map

holim
−−−→

�[m]→�JP K

holim
−−−→

�[n]→�JQK

|�[m]⊗σ �[n]|
≃
−→ lim

−→
�[m]→�JP K

lim
−→

�[n]→�JQK

|�[m]⊗σ �[n]|

is a weak S-homotopy equivalence. Since the geometric realization functor is a left adjoint,
the right-hand double colimit is isomorphic to

∣∣∣∣∣ lim
−→

�[m]→�JP K

lim
−→

�[n]→�JQK

�[m]⊗σ �[n]

∣∣∣∣∣ ,

hence the result by [Gau07c] Proposition 4.6 saying that the operator ⊗σ preserves colimits.
�

The flow |(�[m]⊗σ �[n])62|bad is obtained from the flow |(�[m]⊗σ �[n])61|bad by adding
an algebraic rule x ∗ y = z ∗ t for each 4-uple (x, y, z, t) such that ℓ(x) = ℓ(t), ℓ(y) = ℓ(z) and
ℓ(x) ∗ ℓ(y) = ℓ(z) ∗ ℓ(t). So the coskeletal approach has totally disappeared in the statement
of Theorem 6.6.

6.7. Corollary. Let P and Q be two process names of ProcΣ. Then the flow associated with
the process P ||Q is weakly S-homotopy equivalent to the flow

lim
−→

�[m]→�JP K

lim
−→

�[n]→�JQK

(|(�[m]⊗σ �[n])62|bad)
cof .

Proof. In the model category of flows, the class of cofibrations which are monomorphisms
is closed under pushout and transfinite composition. Therefore the cofibrant replacement
of a monomorphism is a cofibration, and even an inclusion of subcomplexes ([Hir03] Def-
inition 10.6.7) because the cofibrant replacement functor is obtained by the small object
argument, starting from the identity of the initial object, i.e. the empty flow. So the diagram
calculating

lim
−→

�[m]→�JP K

lim
−→

�[n]→�JQK

(|(�[m]⊗σ �[n])62|bad)
cof

is Reedy cofibrant. Thus the double colimit above has the correct weak S-homotopy type. �
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[P ] := |JP K| for P ∈ ProcΣ

[{0}]
07→nil //

07→P
��

[µ.nil]

��
[P ] // [µ.P ]

w

[P +Q] := [P ]⊕ [Q]
with the binary coproduct taken in Ho({i}↓Flow↓?Σ)

[(νa)P ] //

��

w
[P ]

��
[?(Σ\({a, a}))] // [?Σ]

[rec(x)P (x)] := wlim
−−→
n

[Pn(nil)]

Table 2. Pure homotopical semantics of a restriction of CCS, w meaning
Heller’s privileged weak (co)limits of Ho(Flow)

7. Towards a pure homotopical semantics of CCS

Let us restrict our attention to CCS without parallel composition with synchronization. So
the new syntax of the language for this section only is:

P ::= P ∈ ProcΣ | a.P | (νa)P | P + P | rec(x)P (x).

Denote by Ho(Flow) the homotopy category of flows, i.e. the categorical localization of
the flows by the weak S-homotopy equivalences. We want to explain in this section how it is
possible to construct a semantics of this restriction of CCS in terms of elements of Ho(Flow).

The following theorem is about realization of homotopy commutative diagrams in the
particular case of a diagram over a Reedy category. It gives a sufficient condition for a
homotopy commutative diagram to be coherently homotopy commutative.

7.1. Theorem. (Cisinski) ([Cis02] for the finite case and [RB06] Theorem 8.8.5 for the gen-
eralization) Let M be a model category. Let B be a small Reedy category which is free, i.e.
freely generated by a graph. Moreover, let us suppose that B is either direct or inverse, i.e.
there exists a degree function from the set of objects of B to some ordinal such that every
non-identity map of B always raises or always lowers the degree. Then the canonical functor

dgmB : Ho(MB) −→ Ho(M)B

from the homotopy category of diagrams of objects of M over B to the category of diagrams
of objects of Ho(M) over B is full and essentially surjective.

The homotopy category of flows Ho(Flow) is weakly complete and weakly cocomplete as
any homotopy category of any model category [Hov99]. Weak limit and weak colimit satisfy
the same property as limit and colimit except the uniqueness. Weak small (co)products co-
incide with small (co)products. Weak (co)limits can be constructed using small (co)products
and weak (co)equalizers in the same way as (co)limits are constructed by small (co)products
and (co)equalizers ([ML98] Theorem 1 p109). And a weak coequalizer

A
f,g

⇉ B
h
−→ D
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is given by a weak pushout

B
h // D

A ⊔B

(f,IdB)

OO

(g,IdB) // B.

h

OO

And finally, weak pushouts (resp. weak pullbacks) are given by homotopy pushouts (resp.
homotopy pullbacks) (e.g., [Ros05] Remark 4.1 and [Hel88] Chapter III). As explain in [RB06],
Theorem 7.1 can be also used for the construction of certain kind of weak limits and of weak
colimits:

7.2. Corollary. ([RB06] Theorem 8.8.6) Let M be a model category. Let B be a small Reedy
category which is free, i.e. freely generated by a graph. Moreover, let us suppose that B is
either direct or inverse. Let X ∈ Ho(M)B. Let X ′ ∈MB with dgmB(X ′) = X.

(1) If B is direct, then a weak colimit wlim
−−→

X of X is given by

wlim
−−→

X := dgmB(holim
−−−→

X ′) ≃ dgmB(lim
−→

X ′cof )

where the cofibrant replacement X ′cof is taken in the Reedy model structure of MB.
This weak colimit, called the privileged weak colimit in Heller’s terminology, is unique
up to a non-canonical isomorphism.

(2) If B is inverse, then a weak limit wlim
←−−

X of X is given by

wlim
←−−

X := dgmB(holim
←−−−

X ′) ≃ dgmB(lim
←−

X ′fib)

where the fibrant replacement X ′fib is taken in the Reedy model structure ofMB. This
weak limit, called the privileged weak limit in Heller’s terminology, is unique up to a
non-canonical isomorphism.

We have now the necessary tools to state the theorem:

7.3. Theorem. For each process name P of our restriction of CCS, consider the object [P ]
of Ho(Flow) defined by induction on the syntax of P as in Table 2. Then one has JP K ∈ [P ],
i.e. the weak S-homotopy type of JP K is [P ].

Proof. One observes that the small categories involved for the construction of pushouts and
colimits of towers are Reedy direct free and that the small category involved for the construc-
tion of pullbacks is Reedy inverse free. One then proves JP K ∈ [P ] by induction on the syntax
of P with Corollary 7.2, Proposition 6.1, Proposition 6.2 and Corollary 6.4. �

We do not know how to construct a pure homotopical semantics of the parallel composition
with synchronization.
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