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Abstract
The branching (resp. merging) space functor of a flow is a

left Quillen functor. The associated derived functor allows to
define the branching (resp. merging) homology of a flow. It is
then proved that this homology theory is a dihomotopy invari-
ant and that higher dimensional branchings (resp. mergings)
satisfy a long exact sequence.

1. Introduction

The category of flows [4] is an algebraic topological model of higher dimen-
sional automata [14] [6]. Two kinds of mathematical problems are particularly of
importance for such objects: 1) reducing the size of the category of flows by the in-
troduction of a class of dihomotopy equivalences identifying flows having the same
computer-scientific properties ; 2) investigating the mathematical properties of these
dihomotopy equivalences for instance by constructing related model category struc-
tures and algebraic invariants. For other examples of similar investigations with
different algebraic topological models of concurrency, cf. for example [9] [2] [8].

This paper is concerned with the second kind of mathematical problems. In-
deed, the purpose of this work is the construction of two dihomotopy invariants,
the branching homology H−

∗ (X) and the merging homology H+
∗ (X) of a flow X, de-

tecting the non-deterministic branching areas (resp. merging areas) of non-constant
execution paths in the higher dimensional automaton modelled by the flow X. Di-
homotopy invariance means in the framework of flows invariant with respect to weak
S-homotopy (Corollary 6.5) and with respect to T-homotopy (Proposition 7.4).

The core of the paper is focused on the case of branchings. The case of mergings
is similar and is postponed to Appendix A.

The branching space of a flow is introduced in Section 3 after some reminders
about flows themselves in Section 2. Loosely speaking, the branching space of a flow
is the space of germs of non-constant execution paths beginning in the same way.
This functor is the main ingredient in the construction of the branching homology.
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However it is badly behaved with respect to weak S-homotopy equivalences, as
proved in Section 4. Therefore it cannot be directly used for the construction of a
dihomotopy invariant. This problem is overcome in Section 5 by introducing the
homotopy branching space of a flow: compare Theorem 4.1 and Corollary 5.7. The
link between the homotopy branching space and the branching space is that they
coincide up to homotopy for cofibrant flows, and the latter are the only interesting
and real examples (Proposition 9.1).

Using this new functor, the branching homology is finally constructed in Section 6
and it is proved in the same section and in Section 7 that it is a dihomotopy invariant
(Corollary 6.5 and Proposition 7.4).

Section 8 uses the previous construction to establish the following long exact
sequence for higher dimensional branchings:

Theorem. For any morphism of flows f : X −→ Y , one has the long exact sequence

· · · → H−
n (X) → H−

n (Y ) → H−
n (Cf) → . . .

· · · → H−
3 (X) → H−

3 (Y ) → H−
3 (Cf) →

H−
2 (X) → H−

2 (Y ) → H−
2 (Cf) →

H0(hoP−X) → H0(hoP− Y ) → H0(hoP− Cf) → 0.

where Cf is the cone of f and where H0(hoP− Z) is the free abelian group generated
by the path-connected components of the homotopy branching space of the flow Z.

By now, this homological result does not have any known computer scientific
interpretation. But it sheds some light on the potential of an algebraic topological
approach of concurrency.

At last, Section 9 then gives several examples of calculation which illustrate the
mathematical notions presented here.

Appendix B is a technical section which proves that two S-homotopy equiva-
lent flows (which are not necessary cofibrant) have homotopy equivalent branching
spaces. The result is not useful at all for the core of the paper but is interesting
enough to be presented in an appendix of a paper devoted to branching homology.

Some familiarity with model categories is required for a good understanding of
this work. However some reminders are included in this paper. Possible references
for model categories are [11], [10] and [3]. The original reference is [15].

2. The category of flows

In this paper, Top is the category of compactly generated topological spaces, i.e.
of weak Hausdorff k-spaces (cf. [1], [13] and the appendix of [12]).

Definition 2.1. Let i : A −→ B and p : X −→ Y be maps in a category C. Then i
has the left lifting property (LLP) with respect to p (or p has the right lifting property
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(RLP) with respect to i) if for any commutative square

A

i

²²

α // X

p

²²
B

g
>>~

~
~

~ β // Y

there exists g making both triangles commutative.

The category Top is equipped with the unique model structure having the weak
homotopy equivalences as weak equivalences and having the Serre fibrations 1 as
fibrations.

Definition 2.2. [4] A flow X consists of a compactly generated topological space
PX, a discrete space X0, two continuous maps s and t called respectively the source
map and the target map from PX to X0 and a continuous and associative map
∗ : {(x, y) ∈ PX×PX; t(x) = s(y)} −→ PX such that s(x∗ y) = s(x) and t(x ∗ y) =
t(y). A morphism of flows f : X −→ Y consists of a set map f0 : X0 −→ Y 0

together with a continuous map Pf : PX −→ PY such that f(s(x)) = s(f(x)),
f(t(x)) = t(f(x)) and f(x ∗ y) = f(x) ∗ f(y). The corresponding category is denoted
by Flow.

The topological space X0 is called the 0-skeleton of X. The elements of the 0-
skeleton X0 are called states or constant execution paths. The elements of PX are
called non-constant execution paths. An initial state (resp. a final state) is a state
which is not the target (resp. the source) of any non-constant execution path. The
initial flow is denoted by ∅. The terminal flow is denoted by 1. The initial flow ∅
is of course the unique flow such that ∅0 = P∅ = ∅ (the empty set). The terminal
flow is defined by 10 = {0}, P1 = {u} and the composition law u ∗ u = u.

Notation 2.3. [4] For α, β ∈ X0, let Pα,βX be the subspace of PX equipped with
the Kelleyfication of the relative topology consisting of the non-constant execution
paths γ of X with beginning s(γ) = α and with ending t(γ) = β.

Several examples of flows are presented in Section 9. But two examples are im-
portant for the sequel:

Definition 2.4. [4] Let Z be a topological space. Then the globe of Z is the flow
Glob(Z) defined as follows: Glob(Z)0 = {0, 1}, PGlob(Z) = Z, s = 0, t = 1 and
the composition law is trivial. The mapping Glob : Top −→ Flow gives rise to a
functor in an obvious way.

Notation 2.5. [4] If Z and T are two topological spaces, then the flow

Glob(Z) ∗Glob(T )

1that is a continuous map having the RLP with respect to the inclusion Dn × 0 ⊂ Dn × [0, 1] for
any n > 0 where Dn is the n-dimensional sphere
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X

TIME

Figure 1: Symbolic representation of Glob(X) for some topological space X

is the flow obtained by identifying the final state of Glob(Z) with the initial state of
Glob(T ). In other terms, one has the pushout of flows:

{0} 0 7→1 //

0 7→0

²²

Glob(Z)

²²
Glob(T ) // Glob(Z) ∗Glob(T )

3. The branching space of a flow

Loosely speaking, the branching space of a flow is the space of germs of non-
constant execution paths beginning in the same way.

Proposition 3.1. Let X be a flow. There exists a topological space P−X unique
up to homeomorphism and a continuous map h− : PX −→ P−X satisfying the
following universal property:

1. For any x and y in PX such that t(x) = s(y), the equality h−(x) = h−(x ∗ y)
holds.

2. Let φ : PX −→ Y be a continuous map such that for any x and y of PX such
that t(x) = s(y), the equality φ(x) = φ(x∗y) holds. Then there exists a unique
continuous map φ : P−X −→ Y such that φ = φ ◦ h−.

Moreover, one has the homeomorphism

P−X ∼=
⊔

α∈X0

P−α X

where P−α X := h−
(⊔

β∈X0 P−α,βX
)
. The mapping X 7→ P−X yields a functor P−

from Flow to Top.

Proof. Consider the intersection of all equivalence relations whose graph is closed in
PX × PX and containing the pairs (x, x ∗ y) for any x ∈ PX and any y ∈ PX such
that t(x) = s(y): one obtains an equivalence relation R−. The quotient PX/R−
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equipped with the final topology is still a k-space since the colimit is the same in
the category of k-spaces and in the category of general topological spaces, and is
weak Hausdorff as well since the diagonal of PX/R− is closed in PX/R−×PX/R−.
Let φ : PX −→ Y be a continuous map such that for any x and y of PX with
t(x) = s(y), the equality φ(x) = φ(x ∗ y) holds. Then the equivalence relation on
PX defined by “x equivalent to y if and only if φ(x) = φ(y)” has a closed graph
which contains the graph of R−. Hence the remaining part of the statement.

Definition 3.2. Let X be a flow. The topological space P−X is called the branching
space of the flow X. The functor P− is called the branching space functor.

4. Bad behaviour of the branching space functor

The purpose of this section is the proof of the following fact:

Theorem 4.1. There exists a weak S-homotopy equivalence of flows f : X −→ Y
such that the topological spaces P−X and P−Y are not weakly homotopy equivalent.

In other terms, the branching space functor alone is not appropriate for the
construction of dihomotopy invariants.

Lemma 4.2. Let Z be a flow such that Z0 = {α, β, γ} and such that PZ =
Pα,βZtPβ,γZtPα,γZ. Such a flow Z is entirely characterized by the three topological
spaces Pα,βZ, Pβ,γZ and Pα,γZ and the continuous map Pα,βZ×Pβ,γZ −→ Pα,γZ.
Moreover, one has the pushout of topological spaces

Pα,βZ × Pβ,γZ
∗ //

²²

Pα,γZ

²²
Pα,βZ // P−α Z

and the isomorphisms of topological spaces P−β Z ∼= Pβ,γZ and P−Z ∼= P−α Z t P−β Z.

Proof. It suffices to check that the universal property of Proposition 3.1 is satisfied
by P−Z.

For n > 1, let Dn be the closed n-dimensional disk and let Sn−1 be its boundary.
Let D0 = {0}. Let S−1 = ∅ be the empty space.

Let X and Y be the flows defined as follows:

1. X0 = Y 0 = {α, β, γ}
2. Pα,βX = Pβ,γX = {0}
3. Pα,βY = Pβ,γY = R
4. Pα,γX = Pα,γY = S2

5. the composition law Pα,βX × Pβ,γX −→ Pα,γX is given by the constant map
(0, 0) 7→ (0, 0, 1) ∈ S2
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Figure 2: ||φ(x, y)|| =
√

x2+y2

1+
√

x2+y2

6. the composition law Pα,βY × Pβ,γY −→ Pα,γY is given by the composite

R× R φ // D2\S1 � � // D2 tS1 {(1, 0, 0)} ∼= S2

where φ is the homeomorphism (cf. Figure 2) defined by

φ(x, y) =

(
x

1 +
√

x2 + y2
,

y

1 +
√

x2 + y2

)

Then one has the pushouts of compactly generated topological spaces

{0} × {0} //

²²

S2

²²
{0} // P−α X

and

R× R //

²²

S2

²²
R // P−α Y

Lemma 4.3. One has the pushout of compactly generated topological spaces

R× R //

²²

D2 tS1 {(1, 0, 0)} ∼= S2

²²
R // {(1, 0, 0)}
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Proof. Let kTop be the category of k-spaces. It is well known that the inclusion
functor i : Top −→ kTop has a left adjoint w : kTop −→ Top such that w ◦ i =
IdTop. So, first of all, one has to calculate the pushout in the category of k-spaces:

R× R //

²²

D2 tS1 {(1, 0, 0)} ∼= S2

²²
R // X

and then, one has to prove that {(1, 0, 0)} ∼= w(X).
Colimits in kTop are calculated by taking the colimit of the underlying diagram

of sets and by endowing the result with the final topology. The colimit of the
underlying diagram of sets is exactly the disjoint sum R t {(1, 0, 0)}. A subset
Ω of R t {(1, 0, 0)} is open for the final topology if and only its inverse images
in R and S2 are both open. The inverse image of Ω in R is exactly Ω\{(1, 0, 0)}.
The inverse image of Ω in R×R is exactly Ω\{(1, 0, 0)} ×R. Therefore the inverse
image of Ω in S2 is equal to φ(Ω\{(1, 0, 0)} × R) if (1, 0, 0) /∈ Ω, and is equal to
φ(Ω\{(1, 0, 0)} × R) ∪ {(1, 0, 0)} if (1, 0, 0) ∈ Ω. There are thus now two mutually
exclusive cases:

1. (1, 0, 0) /∈ Ω; in this case, Ω is open if and only if it is open in R
2. (1, 0, 0) ∈ Ω; in that case, Ω is open if and only if Ω\{(1, 0, 0)} is open in
R and φ(Ω\{(1, 0, 0)} × R) ∪ {(1, 0, 0)} is an open of S2 containing (1, 0, 0);
the latter fact is possible if and only if Ω\{(1, 0, 0)} = R (otherwise, if there
existed x ∈ R\(Ω\{(1, 0, 0)}), then the straight line φ({x}×R) would tend to
(1, 0, 0) and would not belong to the inverse image of Ω).

As conclusion, X is the topological space having the disjoint sum R t {(1, 0, 0)} as
underlying set, and a subset Ω of X is open if and only if Ω is an open of R or
Ω = X. In particular, the topological space X is not weak Hausdorff.

Now the topological space w(X) must be determined. It is known that there
exists a natural bijection of sets Top(w(X), Y ) ∼= kTop(X, Y ) for any compactly
generated topological space Y . Let f : X −→ Y be a continuous map. If Y =
{f((1, 0, 0))}, then f is a constant map. Otherwise, there exists y 6= f((1, 0, 0))
in Y . The singleton {y} is closed in Y since the topological space Y is compactly
generated. So Y \{y} is an open of Y containing f((1, 0, 0)). Therefore f−1(Y \{y})
is an open of X containing (1, 0, 0). So one deduces the equality f−1(Y \{y}) = X, or
equivalently one deduces that y /∈ f(X) for any y 6= f((1, 0, 0)). This implies again
that f is the constant map f = f((1, 0, 0)). Thus kTop(X, Y ) ∼= Top({(1, 0, 0)}, Y ).
The proof is complete thanks to Yoneda’s Lemma.

Corollary 4.4. P−X = S2 t {0} and P−Y = {(1, 0, 0)} t R.

Proof of Theorem 4.1. It suffices to prove that there exists a weak S-homotopy
equivalence f of flows X −→ Y . Take the identity of {α, β, γ} on the 0-skeleton.
Take the identity of S2 for the restriction f : Pα,γX −→ Pα,γY . Let (u, v) ∈ R× R
such that φ(u, v) = (0, 0, 1). Then it suffices to put f(0) = u for 0 ∈ Pα,βX and
f(0) = v for 0 ∈ Pβ,γX.
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The reader must not be surprised by the result of this section. Indeed, the branch-
ing space is given by a colimit. And it is well-known that colimits are badly behaved
with respect to weak equivalences and that they must be replaced by homotopy col-
imits in algebraic topology.

5. The homotopy branching space

Let us denote by Q the cofibrant replacement functor of any model structure.

Definition 5.1. [11] [10] [3] An object X of a model category C is cofibrant (resp.
fibrant) if and only if the canonical morphism ∅ −→ X from the initial object of
C to X (resp. the canonical morphism X −→ 1 from X to the final object 1) is a
cofibration (resp. a fibration).

In particular, in any model category, the canonical morphism ∅ −→ X where ∅
is the initial object) functorially factors as a composite ∅ −→ Q(X) −→ X of a
cofibration ∅ −→ Q(X) followed by a trivial fibration Q(X) −→ X.

Proposition and Definition 5.2. [11] [10] [3] A Quillen adjunction is a pair of
adjoint functors F : C À D : G between the model categories C and D such that one
of the following equivalent properties holds:

1. if f is a cofibration (resp. a trivial cofibration), then so is F (f)

2. if g is a fibration (resp. a trivial fibration), then so is G(g).

One says that F is a left Quillen functor. One says that G is a right Quillen functor.
Moreover, any left Quillen functor preserves weak equivalences between cofibrant
objects and any right Quillen functor preserves weak equivalences between fibrant
objects.

The fundamental tool of this section is the:

Theorem 5.3. [4] There exists one and only one model structure on Flow such
that

1. the weak equivalences are the so-called weak S-homotopy equivalences, that is
the morphisms of flows f : X −→ Y such that f0 : X0 −→ Y 0 is a bijection
and such that Pf : PX −→ PY is a weak homotopy equivalence of topological
spaces

2. the fibrations are the morphisms of flows f : X −→ Y such that Pf : PX −→
PY is a (Serre) fibration of topological spaces.

Any flow is fibrant for this model structure.

Definition 5.4. [4] The notion of homotopy between cofibrant-fibrant flows is called
S-homotopy.

Theorem 5.5. The branching space functor P− : Flow −→ Top is a left Quillen
functor.
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Proof. One has to prove that there exists a functor C− : Top −→ Flow such that
the pair of functors P− : Flow À Top : C− is a Quillen adjunction.

Let us define the functor C− : Top −→ Flow as follows: C−(Z)0 = {0},
PC−(Z) = Z with the composition law pr1 : (z1, z2) 7→ z1. Indeed, one has
pr1(pr1(z1, z2), z3) = pr1(z1,pr1(z2, z3)) = z1.

A continuous map f : P−X −→ Z gives rise to a continuous map f ◦h− : PX −→
Z such that

f(h−(x ∗ y)) = f(h−(x)) = pr1(f(h−(x)), f(h−(y)))

which provides the set map

Top(P−X, Z) −→ Flow(X, C−(Z)).

Conversely, if g ∈ Flow(X, C−(Z)), then Pg : PX −→ PC−(Z) = Z satisfies

Pg(x ∗ y) = pr1(Pg(x),Pg(y)) = Pg(x).

Therefore Pg factors uniquely as a composite PX −→ P−X −→ Z by Proposi-
tion 3.1. So one has the natural isomorphism of sets

Top(P−X, Z) ∼= Flow(X, C−(Z)).

A morphism of flows f : X −→ Y is a fibration if and only if Pf : PX −→ PY
is a fibration by Theorem 5.3. Therefore C− is a right Quillen functor and P− is a
left Quillen functor by Proposition 5.2.

Definition 5.6. The homotopy branching space hoP−X of a flow X is by definition
the topological space P−Q(X). If α ∈ X0, let hoP−α X = P−α Q(X).

Corollary 5.7. Let f : X −→ Y be a weak S-homotopy equivalence of flows.
Then hoP− f : hoP−X −→ hoP− Y is a homotopy equivalence between cofibrant
topological spaces.

Proof. The morphism of flows Q(f) is a weak S-homotopy equivalence between cofi-
brant flows. Since P− is a left Quillen adjoint, the morphism hoP− f : hoP−X −→
hoP− Y is then a weak homotopy equivalence between cofibrant topological spaces,
and therefore a homotopy equivalence by Whitehead’s theorem.

Corollary 5.8. Let X be a diagram of flows. Then there exists an isomorphism
of flows lim−→P−(X) ∼= P−(lim−→X) where lim−→ is the colimit functor and there exists
a homotopy equivalence between the cofibrant topological spaces holim−−−→hoP−(X) and
hoP−(holim−−−→X) where holim−−−→ is the homotopy colimit functor.

The reader does not need to know what a general homotopy colimit is because
Corollary 5.8 will be used only for homotopy pushout. And a definition of the latter
is recalled in Section 8. Corollary 5.8 is the homotopic analog of the well-known
fact of category theory saying that a left adjoint commutes with any colimit.
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6. Construction of the branching homology and weak S-ho-
motopy

In this section, we construct the branching homology of a flow and we prove that
it is invariant with respect to weak S-homotopy equivalences (cf. Theorem 5.3).

Definition 6.1. Let X be a flow. Then the (n + 1)-th branching homology group
H−

n+1(X) is defined as the n-th homology group of the augmented simplicial set
N−
∗ (X) defined as follows:

1. N−
n (X) = Singn(hoP−X) for n > 0

2. N−
−1(X) = X0

3. the augmentation map ε : Sing0(hoP−X) −→ X0 is induced by the mapping
γ 7→ s(γ) from hoP−X = Sing0(hoP−X) to X0

where Sing(Z) denotes the singular simplicial nerve of a given topological space Z
[7]. In other terms,

1. for n > 1, H−
n+1(X) := Hn(hoP−X)

2. H−
1 (X) := ker(ε)/ im

(
∂ : N−

1 (X) → N−
0 (X)

)

3. H−
0 (X) := Z(X0)/ im(ε).

where ∂ is the simplicial differential map, where ker(f) is the kernel of f and where
im(f) is the image of f .

Proposition 6.2. For any flow X, H−
0 (X) is the free abelian group generated by

the final states of X.

Proof. Obvious.

Let us denote by H̃∗(Z) the reduced homology of a topological space Z, that
is the homology group of the augmented simplicial nerve Sing(Z) −→ {0} (cf. for
instance [16] definition p. 102). Then one has:

Proposition 6.3. For any flow X, there exists a natural isomorphism of abelian
groups

H−
n+1(X) ∼=

⊕

α∈X0

H̃n(hoP−α X)

for any n > 0.

Proof. For n > 1, one has

⊕

α∈X0

H̃n(hoP−α X) ∼=
⊕

α∈X0

Hn(hoP−α X) ∼= Hn

( ⊕

α∈X0

hoP−α X

)

hence the result for n > 1 by Definition 6.1 and the X0-grading of hoP−X. For
n = 0, this is a straightforward consequence of Definition 6.1 and of the definition
of the homology of an augmented simplicial set.
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Figure 3: Simplest example of T-homotopy equivalence

Proposition 6.4. Let f : X −→ Y be a weak S-homotopy equivalence of flows.
Then N−(f) : N−(X) −→ N−(Y ) is a homotopy equivalence of augmented simpli-
cial nerves.

Proof. This is a consequence of Corollary 5.7 and of the fact that the singular nerve
functor is a right Quillen functor.

Corollary 6.5. Let f : X −→ Y be a weak S-homotopy equivalence of flows. Then
H−

n (f) : H−
n (X) −→ H−

n (Y ) is an isomorphism for any n > 0.

7. Branching homology and T-homotopy

In this section, we prove that the branching homology is invariant with respect
to T-homotopy equivalences (cf. Definition 7.3).

The most elementary example of T-homotopy equivalence which is not inverted
by the model structure of Theorem 5.3 is the unique morphism φ dividing a directed
segment in a composition of two directed segments (Figure 3 and Notation 7.1)

Notation 7.1. The morphism of flows φ :
−→
I −→ −→

I ∗ −→I is the unique morphism
φ :

−→
I −→ −→

I ∗−→I such that φ([0, 1]) = [0, 1]∗ [0, 1] where the flow
−→
I = Glob({[0, 1]})

is the directed segment. It corresponds to Figure 3.

Definition 7.2. Let X be a flow. Let A and B be two subsets of X0. One says that
A is surrounded by B (in X) if for any α ∈ A, either α ∈ B or there exists execution
paths γ1 and γ2 of PX such that s(γ1) ∈ B, t(γ1) = s(γ2) = α and t(γ2) ∈ B. We
denote this situation by A ≪ B.

Definition 7.3. [5] A morphism of flows f : X −→ Y is a T-homotopy equivalence
if and only if the following conditions are satisfied :

1. The morphism of flows f : X −→ Y ¹(f(X0) is an isomorphism of flows. In
particular, the set map f0 : X0 −→ Y 0 is one-to-one.

2. For α ∈ Y 0\f(X0), the topological spaces P−α Y and P+
α Y (cf. Proposition A.1

and Definition A.2) are singletons.
3. Y 0 ≪ f(X0).

Proposition 7.4. Let f : X −→ Y be a T-homotopy equivalence. Then for any
n > 0, the linear map H−

n (f) : H−
n (X) −→ H−

n (Y ) is an isomorphism.
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Proof. For any α ∈ X0, the continuous map hoP−α X −→ hoP−α Y is a weak homo-
topy equivalence. So for n > 1, one has

H−
n+1(X) ∼= Hn(hoP−X) ∼=

⊕

α∈X0

Hn(hoP−α X) ∼=
⊕

α∈Y 0

Hn(hoP−α Y ) ∼= H−
n+1(Y )

since for α ∈ Y 0\f(X0), the Z-module Hn(hoP−α Y ) vanishes.
The augmented simplicial set N−

∗ (X) is clearly X0-graded. So the branching
homology is X0-graded as well. Thus one has

H−
1 (X) =

⊕

α∈X0

GαH−
1 (X)

with

GαH−
1 (X) ∼=

ker
(
Sing0(hoP−α X) → Z{α}) / im

(
ZSing1(hoP−α X) → ZSing0(hoP−α X)

)
.

So one has the short exact sequences

0 → GαH−
1 (X) → H0(hoP−α X) → ZhoP−α X/ ker(s) → 0

for α running over X0. If α ∈ Y 0\f(X0), then H0(hoP−α Y ) = Z. In this case,
s : hoP−α Y −→ {α} so ZhoP−α Y/ ker(s) ∼= Z. Therefore GαH−

1 (Y ) = 0.
At last, if α ∈ Y 0\f(X0), then α belongs to im(s) because Y 0 ≪ f(X0). Hence

the result.

Corollary 7.5. The branching homology is a dihomotopy invariant.

Proof. There are two kinds of dihomotopy equivalences in the framework of flows:
the weak S-homotopy equivalences and the T-homotopy equivalences [5]. This corol-
lary is then a consequence of Corollary 6.5 and Proposition 7.4.

The reader maybe is wondering why the singular homology of the homotopy
branching space is not taken as definition of the branching homology.

Proposition 7.6. The functor X 7→ H0(hoP−X) is invariant with respect to weak
S-homotopy, but not with respect to T-homotopy equivalences.

Proof. The first part of the statement is a consequence of Corollary 5.7. For the
second part of the statement, let us consider the morphism of flows φ :

−→
I −→ −→

I ∗−→I
dividing the directed segment in two directed segments. Then H0(hoP−

−→
I ) = Z (the

path-connected components of P
−→
I = {u}) and H0(hoP−(

−→
I ∗ −→I )) = Z ⊕ Z (the

path-connected components of P−(
−→
I ∗ −→I ) = {v = v ∗ w, w}).
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8. Long exact sequence for higher dimensional branchings

Lemma 8.1. One has:

1. if

U //

²²

V

²²
W // X

is a pushout diagram of topological spaces, then

Glob(U) //

²²

Glob(V )

²²
Glob(W ) // Glob(X)

is a pushout diagram of flows

2. if g : U −→ V is a cofibration of topological spaces, then Glob(g) : Glob(U) −→
Glob(V ) is a cofibration of flows

3. if U is a cofibrant topological space, then Glob(U) is a cofibrant flow

4. there exists a cofibrant replacement functor Q of Top such that Q(Glob(U)) =
Glob(Q(U)) for any topological space U .

Proof. The diagram of sets

{0, 1} = Glob(U)0 //

²²

{0, 1} = Glob(V )0

²²
{0, 1} = Glob(W )0 // {0, 1} = Glob(X)0

is a square of constant set maps. Therefore the corresponding pushout of globes
does not create any new non-constant execution paths. Hence the first assertion.

If g : U −→ V is a cofibration of topological spaces, then g is a retract of a
transfinite composition of pushouts of morphisms of I = {Sn−1 ⊂ Dn, n > 0}, and
therefore Glob(g) is a retract of a transfinite composition of pushouts of morphisms
of {Glob(Sn−1) ⊂ Glob(Dn), n > 0}. Since the model structure of Theorem 5.3
is cofibrantly generated with set of generating cofibrations Igl

+ = {Glob(Sn−1) ⊂
Glob(Dn), n > 0} ∪ {R, C} where R : {0, 1} −→ {0} and C : ∅ −→ {0}, the
morphism of flows Glob(g) : Glob(U) −→ Glob(V ) is a cofibration of flows. Hence
the second assertion.

The third assertion is a consequence of the second one and of the fact that
C : ∅ −→ {0} is a cofibration.

The cofibrant replacement functor Q of Flow is obtained by applying the small
object argument for Igl

+ with the cardinal 2ℵ0 ([4] Proposition 11.5). Let X be a
flow. Let X : 2ℵ0 −→ Flow be the 2ℵ0 -sequence with X0 = ∅ and for any ordinal
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λ < 2ℵ0 by the pushout diagram
⊔

k∈K Ck //

²²

Xλ

²²⊔
k∈K Dk // Xλ+1

²²⊔
k∈K Dk // X

where K is the set of morphisms (i.e. of commutative squares) from a morphism of
Igl
+ to the morphism Xλ −→ X. Then Q(X) = X2ℵ0 . Pick a topological space U

and consider X = Glob(U). Let X0 = ∅. Then X1 = {0} t {1} = Glob(∅). Let
U0 = ∅. Let U : 2ℵ0 −→ Top be the 2ℵ0 -sequence giving the cofibrant replacement
functor of the topological space U obtained by applying the small object argument
for I = {Sn−1 ⊂ Dn, n > 0} with the cardinal 2ℵ0 (the cardinal ℵ0 is sufficient to
obtain a cofibrant replacement functor in Top). Then an easy transfinite induction
proves that Glob(Uλ) = Xλ+1. So Glob(U2ℵ0 ) = Q(X). The proof of the last
assertion is complete because the functor U 7→ U2ℵ0 is a cofibrant replacement
functor of Top since 2ℵ0 > ℵ0.

Lemma 8.2. (Calculating a homotopy pushout) In a model category M, the ho-
motopy pushout of the diagram

A
i //

²²

B

C

is homotopy equivalent to the pushout of the diagram

Q(A) //

²²

Q(B)

Q(C)

where Q is a cofibrant replacement functor of M.

Proof. Consider the three-object category B
1 //

²²

2

0

Let MB be the category of diagrams of objects of M based on the category B, or in
other terms the category of functors from B to M. There exists a model structure
on MB such that the colimit functor lim−→ : MB −→M is a left Quillen functor and
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such that the cofibrant objects are the functors F : B −→ C such that F (0), F (1)
and F (2) are cofibrant in C and such that F (1 −→ 2) is a cofibration of M: cf. the
proof of the Cube Lemma [11] [10]. Hence the result.

Definition 8.3. Let f : X −→ Y be a morphism of flows. The cone Cf of f is the
homotopy pushout in the category of flows

X
f //

²²

Y

²²
1 // Cf

where 1 is the terminal flow.

Notation 8.4. Let Z be a topological space. Let us denote by L(Z) the pushout

{0, 1}
R

²²

// Glob(Z)

²²
{0} // L(Z)

The 0-skeleton of L(Z) is {0} and the path space of L(Z) is Z t (Z×Z)t (Z×Z×
Z) t . . . .

Lemma 8.5. Let g : U −→ V be a cofibration between cofibrant topological spaces.
Then the cone of Glob(g) : Glob(U) −→ Glob(V ) is S-homotopy equivalent to
L(V/U).

Proof. The diagram of flows

Q(Glob(U))

²²

// Q(Glob(V ))

Q(1)

induces the diagram of topological spaces

PQ(Glob(U))

²²

// PQ(Glob(V ))

PQ(1)

By Lemma 8.1, one can suppose that Q(Glob(U)) = Glob(Q(U)) and Q(Glob(V )) =
Glob(Q(V )). Hence one can consider the pushout diagram of cofibrant topological
spaces

Q(U)

²²

Q(g) // Q(V )

²²
PQ(1) // Z
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By Lemma 8.2, the topological space Z is cofibrant and is homotopy equivalent to
the cone of g, that is V/U . Since Q(1)0 = {0}, one deduces the pushout diagram of
flows

Q(Glob(U))

²²

// Q(Glob(V ))

²²
Q(1) // L(Z)

Again by Lemma 8.2, and because Glob(g) is a cofibration of flows, the flow L(Z)
is cofibrant and S-homotopy equivalent to the cone of Glob(g). It then suffices to
observe that the flows L(Z) and L(V/U) are S-homotopy equivalent to complete
the proof.

Lemma 8.6. The homotopy branching space of the terminal flow is contractible.

Proof. Consider the homotopy pushout of flows

Glob(U)
Glob(g)//

²²

Glob(V )

²²
1 // L(V/U)

where g : U −→ V is a cofibration between cofibrant topological spaces. The functor
hoP− preserves homotopy pushouts by Corollary 5.8. Therefore one obtains the
homotopy pushout of topological spaces

hoP−Glob(U) //

²²

hoP−Glob(V )

²²
hoP− 1 // hoP− L(V/U)

Since U is cofibrant, Glob(U) is cofibrant as well, therefore Q(Glob(U)) is S-
homotopy equivalent to Glob(U). So the space hoP−Glob(U) = P−Q(Glob(U))
is homotopy equivalent to P−Q(Glob(U)) = U . Since V/U is a cofibrant space as
well, the topological space

PL(V/U) ∼= V/U t (V/U × V/U) t (V/U × V/U × V/U)× . . .

is cofibrant as well. So hoP− L(V/U) is homotopy equivalent to V/U . One obtains
the homotopy pushout of topological spaces

U
g //

²²

V

²²
hoP− 1 // V/U

for any cofibration g : U −→ V between cofibrant spaces. Take for g the identity
of {0}. One deduces that hoP− 1 is homotopy equivalent to V/U , that is to say a
point.
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Lemma 8.7. Let f : X −→ Y be a morphism of flows. Let Cf be the cone of f .
Then the homotopy branching space hoP−(Cf) of Cf is homotopy equivalent to the
cone C(hoP− f) of hoP− f : hoP−X −→ hoP− Y .

Proof. Consider the homotopy pushout of flows

X
f //

²²

Y

²²
1 // Cf

Using Corollary 5.8, one obtains the homotopy pushout of topological spaces

hoP−X
hoP− f //

²²

hoP− Y

²²
hoP− 1 // hoP− Cf

The proof is complete with Lemma 8.6.

Theorem 8.8. (Long exact sequence for higher dimensional branchings) For any
morphism of flows f : X −→ Y , one has the long exact sequence

· · · → H−
n (X) → H−

n (Y ) → H−
n (Cf) → . . .

· · · → H−
3 (X) → H−

3 (Y ) → H−
3 (Cf) →

H−
2 (X) → H−

2 (Y ) → H−
2 (Cf) →

H0(hoP−X) → H0(hoP− Y ) → H0(hoP− Cf) → 0.

Proof. If g : U → V is a continuous map, then it is well-known that there exists a
long exact sequence

· · · → H∗(U) → H∗(V ) → H∗(Cg) → H∗−1(U) →
· · · → H0(U) → H0(V ) → H0(Cg) → 0

(cf. [16]). The theorem is then a corollary of Lemma 8.7.

9. Examples of calculation

Proposition 9.1. If X is a cofibrant flow, then the homotopy branching space
hoP−X and P−X are homotopy equivalent.

Proof. The functorial weak S-homotopy equivalence Q(X) −→ X between cofibrant
flows becomes a homotopy equivalence P−Q(X) −→ P−X of cofibrant topological
spaces since the functor P− is a left Quillen functor.

Since all examples given in this section are cofibrant flows, one can then replace
their homotopy branching space by their branching space.
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Figure 4: 1-dimensional branching
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Figure 6: The Swiss Flag Example
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1. The directed segment
By definition, the directed segment is the flow

−→
I = Glob({[0, 1]}).

One has P−0 (
−→
I ) = {[0, 1]} and P−1 (

−→
I ) = ∅. And H−

n (
−→
I ) = 0 for n > 1 and

H−
0 (
−→
I ) = Z{0, 1}/s(P−0 (

−→
I )) is generated by the unique final state of

−→
I .

2. 1-dimensional branching
Consider the flow X defined by X0 = {0, 1, 2, 3} and P0,1X = {[0, 1]}, P1,2X =

{[1, 2]}, P0,3X = {[0, 3]}, P0,2X = {[0, 2]} and PαβX = ∅ otherwise (cf. Figure 4).
Then P−0 X = {[0, 1], [0, 3]}, P−1 X = {[1, 2]} and P−2 X = P−3 X = ∅. One has

H−
n (X) = 0 for n > 2, H−

1 (X) = Z (generated by [0, 3]−[0, 1]), and H−
0 (X) = Z⊕Z

(generated by the final states 2 and 3).

3. 2-dimensional branching
Let us consider now the case of Figure 5. One has H−

1 = 0 and H−
n = 0 for

n > 2. And H−
1 = Z, the generating branching being the one corresponding to the

alternate sum (A)− (F ) + (I). At last, H−
0 = Z⊕ Z⊕ Z, the generators being the

final states of the three squares (C), (G) and (L). If α is the common initial state
of (A), (F ) and (I), then P−α = S1.

4. The Swiss Flag example
Consider the discrete set

SW 0 = {0, 1, 2, 3, 4, 5} × {0, 1, 2, 3, 4, 5}.
Let

S = {((i, j), (i + 1, j)) for (i, j) ∈ {0, . . . , 4} × {0, . . . , 5}}
∪ {((i, j), (i, j + 1)) for (i, j) ∈ {0, . . . , 5} × {0, . . . , 4}}
\ ({((2, 2), (2, 3)), ((2, 2), (3, 2)), ((2, 3), (3, 3)), ((3, 2), (3, 3))})

The flow SW 1 is obtained from SW 0 by attaching a copy of Glob(D0) to each pair
(x, y) ∈ S with x ∈ SW 0 identified with 0 and y ∈ SW 0 identified with 1. The
flow SW 2 is obtained from SW 1 by attaching to each square ((i, j), (i + 1, j + 1))
except (i, j) ∈ {(2, 1), (1, 2), (2, 2), (3, 2), (2, 3)} a globular cell Glob(D1) such that
each execution path ((i, j), (i+1, j), (i+1, j +1)) and ((i, j), (i, j +1), (i+1, j +1))
is identified with one of the execution path of Glob(S0) (there is not a unique choice
to do that). Let SW = SW 2 (cf. Figure 6 where the bold dots represent the points
of the 0-skeleton). The flow SW represents the PV diagram of Figure 6.

The topological space P−α is contractible for α ∈ SW 0\{(1, 2), (2, 1), (5, 5)}. And
P−(5,5) = ∅, P−(1,2) = {u, v} and P−(2,1) = {x, y} with s(u) = s(v) = (1, 2), t(u) =
(2, 2), t(v) = (1, 3), s(x) = s(y) = (2, 1), t(x) = (3, 1) and t(y) = (2, 2).

Then H−
0 = Z (generated by the final state (5, 5)), H−

1 = Z ⊕ Z (generated by
u− v and x− y). And H−

n = 0 for any n > 2.
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10. Conclusion

The branching homology is a dihomotopy invariant containing in dimension 0 the
final states and in dimension n > 1 the non-deterministic n-dimensional branching
areas of non-constant execution paths. The merging homology is a dihomotopy
invariant containing in dimension 0 the initial states and in dimension n > 1 the non-
deterministic n-dimensional merging areas of non-constant execution paths. The
non-deterministic branchings and mergings of dimension n > 2 satisfies a long exact
sequence which can be helpful for future applications or theoretical developments.

A. The case of mergings

Some definitions and results about mergings are collected here, almost without
any comment or proof.

Proposition A.1. Let X be a flow. There exists a topological space P+X unique
up to homeomorphism and a continuous map h+ : PX −→ P+X satisfying the
following universal property:

1. For any x and y in PX such that t(x) = s(y), the equality h+(y) = h+(x ∗ y)
holds.

2. Let φ : PX −→ Y be a continuous map such that for any x and y of PX such
that t(x) = s(y), the equality φ(y) = φ(x∗y) holds. Then there exists a unique
continuous map φ : P+X −→ Y such that φ = φ ◦ h+.

Moreover, one has the homeomorphism

P+X ∼=
⊔

α∈X0

P+
α X

where P+
α X := h+

(⊔
β∈X0 P+

α,βX
)
. The mapping X 7→ P+X yields a functor P+

from Flow to Top.

Loosely speaking, the merging space of a flow is the space of germs of non-
constant execution paths ending in the same way.

Definition A.2. Let X be a flow. The topological space P+X is called the merging
space of the flow X. The functor P+ is called the merging space functor.

Notice by that considering the opposite Xop of a flow X (by interverting s and t),
then one obtains the following obvious relation between P− and P+ : P+X = P−Xop

and P−X = P+Xop.

Theorem A.3. There exists a weak S-homotopy equivalence of flows f : X −→ Y
such that the topological spaces P+X and P+Y are not weakly homotopy equivalent.

Theorem A.4. The merging space functor P+ : Flow −→ Top is a left Quillen
functor.

Definition A.5. The homotopy merging space hoP+ X of a flow X is by definition
the topological space P+Q(X). If α ∈ X0, let hoP+

α X = P+
α X.
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Corollary A.6. Let f : X −→ Y be a weak S-homotopy equivalence of flows.
Then hoP+ f : hoP+ X −→ hoP+ Y is a homotopy equivalence between cofibrant
topological spaces.

Definition A.7. Let X be a flow. Then the (n + 1)-th merging homology group
H+

n+1(X) is defined as the n-th homology group of the augmented simplicial set
N+
∗ (X) defined as follows:

1. N+
n (X) = Singn(hoP+ X) for n > 0

2. N+
−1(X) = X0

3. the augmentation map ε : Sing0(hoP+ X) −→ X0 is induced by the mapping
γ 7→ s(γ) from hoP+ X = Sing0(hoP+ X) to X0

where Sing(Z) denotes the singular simplicial nerve of a given topological space Z.
In other terms,

1. for n > 1, H+
n+1(X) := Hn(hoP+ X)

2. H+
1 (X) := ker(ε)/ im

(
∂ : N+

1 (X) → N+
0 (X)

)

3. H+
0 (X) := Z(X0)/ im(ε).

where ∂ is the simplicial differential map, where ker(f) is the kernel of f and where
im(f) is the kernel of f .

Proposition A.8. For any flow X, H+
0 (X) is the free abelian group generated by

the initial states of X.

Proposition A.9. For any flow X, there exists a natural isomorphism of abelian
groups

H+
n+1(X) ∼=

⊕

α∈X0

H̃n(hoP+
α X)

for any n > 0.

Proposition A.10. Let f : X −→ Y be a weak S-homotopy equivalence of flows.
Then N+(f) : N+(X) −→ N+(Y ) is a homotopy equivalence of augmented simpli-
cial nerves.

Corollary A.11. Let f : X −→ Y be a weak S-homotopy equivalence of flows.
Then H+

n (f) : H+
n (X) −→ H+

n (Y ) is an isomorphism for any n > 0.

Proposition A.12. Let f : X −→ Y be a T-homotopy equivalence. Then for any
n > 0, the linear map H+

n (f) : H+
n (X) −→ H+

n (Y ) is an isomorphism.

Corollary A.13. The merging homology is a dihomotopy invariant.

Lemma A.14. The homotopy merging space of the terminal flow is contractible.

Lemma A.15. Let f : X −→ Y be a morphism of flows. Let Cf be the cone of f .
Then the homotopy merging space hoP+(Cf) of Cf is homotopy equivalent to the
cone C(hoP+ f) of hoP+ f : hoP+ X −→ hoP+ Y .
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Theorem A.16. (Long exact sequence for higher dimensional mergings) For any
morphism of flows f : X −→ Y , one has the long exact sequence

· · · → H+
n (X) → H+

n (Y ) → H+
n (Cf) → . . .

· · · → H+
3 (X) → H+

3 (Y ) → H+
3 (Cf) →

H+
2 (X) → H+

2 (Y ) → H+
2 (Cf) →

H0(hoP+ X) → H0(hoP+ Y ) → H0(hoP+ Cf) → 0.

We conclude this section by an additional remark about the Quillen adjunctions
induced by the functors P− and P+.

Theorem A.17. The Quillen adjunctions P− : Flow À Top : C− and P+ :
Flow À Top : C+ together induce a Quillen adjunction P− t P+ : Flow À Top :
C− × C+.

Proof. Indeed, one has

Top(P−X t P+X, Z) ∼= Top(P−X, Z)×Top(P+X, Z)
∼= Flow(X,C−Z)× Flow(X,C+Z)
∼= Flow(X,C−Z × C+Z)

If Z −→ T is a fibration of topological spaces, then both C−Z −→ C−T and
C+Z −→ C+T are fibrations of flows by Theorem 5.3. Since a product of fibrations
is a fibration, then C− ×C+ is a right Quillen adjoint. And therefore P− t P+ is a
left Quillen adjoint.

None of the Quillen adjunctions P− : Flow À Top : C−, P+ : Flow À Top : C+

and P− t P+ : Flow À Top : C− × C+ gives rise to a Quillen equivalence. For
obvious reasons, the geometry of the branching space, the merging space or both
together cannot characterize a flow. Indeed, the information about how branchings
and mergings are related to one another is missing.

B. Branching space, merging space and S-homotopy

The purpose of this section is to prove the:

Proposition B.1. Let X and Y be two S-homotopy equivalent flows (cf. Defini-
tion 5.4) which are not necessarily cofibrant. Then the topological spaces P−X and
P−Y are homotopy equivalent.

Proposition B.1 is already proved if X and Y are both cofibrant: indeed since
P− : Flow −→ Top is a left Quillen functor by Proposition 5.5, it preserves weak
equivalences between cofibrant objects.

Recall that two morphisms of flows f, g : X −→ Y are S-homotopy equivalent if
and only if there exists a continuous map H : [0, 1] −→ FLOW(X,Y ) such that
H(0) = f and H(1) = g where the space FLOW(X, Y ) is the set Flow(X, Y )
equipped with the Kelleyfication of the compact-open topology. In the same way,
the space TOP(U, V ) denotes the set Top(U, V ) equipped with the Kelleyfication
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of the compact-open topology. In particular, one has the natural bijection of sets
Top(U × V,W ) ∼= Top(U,TOP(V,W )) for any topological space U , V and W .

We are going to need the category of non-contracting topological 1-categories.

Definition B.2. [4] A non-contracting topological 1-category X is a pair of com-
pactly generated topological spaces (X0,PX) together with continuous maps s, t and
∗ satisfying the same properties as in the definition of flow except that X0 is not
necessarily discrete. The corresponding category is denoted by 1Cattop1 .

Proposition B.3. [4] Let X and Y be two objects of 1Cattop1 . There exists a
unique structure of topological 1-category X ⊗ Y on the topological space X × Y
such that

1. (X ⊗ Y )0 = X0 × Y 0 .

2. P (X ⊗ Y ) = (PX × PX) t (
X0 × PY

) t (
PX × Y 0

)
.

3. s (x, y) = (s(x), s(y)), t (x, y) = (t(x), t(y)), (x, y) ∗ (z, t) = (x ∗ z, y ∗ t).

Theorem B.4. [4] The tensor product of 1Cattop1 is a closed symmetric monoidal
structure, that is there exists a bifunctor

[1Cattop1 ] : 1Cattop1 × 1Cattop1 −→ 1Cattop1

contravariant with respect to the first argument and covariant with respect to the
second argument such that one has the natural isomorphism of sets

1Cattop1 (X ⊗ Y, Z) ∼= 1Cattop1

(
X, [1Cattop1 ] (Y,Z)

)

for any topological 1-categories X, Y and Z. Moreover, one has the natural home-
omorphism

(
[1Cattop1 ] (Y, Z)

)0 ∼= FLOW(Y, Z).

With the tools above at hand, we can now prove the

Theorem B.5. The functor P− : Flow −→ Top induces a natural continuous map
(P−)∗ : FLOW(X, Y ) −→ TOP(P−X,P−Y ) for any flow X and Y .

Proof. The functor P− : Flow −→ Top yields a set map

FLOW(X,Y ) −→ TOP(P−X,P−Y ).

One has to prove that this set map is continuous.
By Yoneda’s lemma, one has an isomorphism between the set

Nat
(
Top (−,FLOW(X, Y )) ,Top

(−,TOP(P−X,P−Y )
))

and the set

Top
(
FLOW(X,Y ),TOP(P−X,P−Y )

)

where Nat(F, G) denotes the set of natural transformations from a functor F to
another functor G.
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Let U be a topological space. Then U can be viewed as a non-contracting topo-
logical 1-category if U is identified with its 0-skeleton. Then

Top (U,FLOW(X, Y )) ∼= Top
(

U,
(
[1Cattop1 ] (X, Y )

)0
)

∼= 1Cattop1

(
U, [1Cattop1 ](X, Y )

)

∼= 1Cattop1 (U ⊗X, Y ) .

Let P− : 1Cattop1 −→ Top be the functor defined as follows: if X is an object of
1Cattop1 , then the topological space P−X is the quotient of the topological space
PX by the topological closure of the smallest equivalence relation identifying x and
x ∗ y for any x, y ∈ PX such that t(x) = s(y). Clearly, one has the commutative
diagram of functors

Flow
P− //

²²

Top

=

²²
1Cattop1

P− // Top

where the functor Flow −→ 1Cattop1 is the canonical embedding.
The non-contracting topological 1-category U⊗X looks as follows: the 0-skeleton

is equal to U ×X0 and the path space is equal to U ×PX with the composition law
characterized by s(u, x) = (u, sx), t(u, x) = (u, tx) and (u, x) ∗ (u, y) = (u, x ∗ y).
Therefore there exists a natural homeomorphism P−(U ⊗X) ∼= U × P−X. So the
functor P− : 1Cattop1 −→ Top induces a set map

1Cattop1 (U ⊗X,Y ) −→ Top
(
U × P−X,P−Y

)

Since Top (U × P−X,P−Y ) ∼= Top (U,TOP (P−X,P−Y )), one obtains by compo-
sition a natural set map

Top (U,FLOW(X, Y )) −→ Top
(
U,TOP

(
P−X,P−Y

))

which by Yoneda’s lemma provides a continuous map

FLOW(X,Y ) −→ TOP
(
P−X,P−Y

)

whose underlying set map is exactly the set map Flow(X, Y ) −→ Top (P−X,P−Y )
induced by the functor P− : Flow −→ Top.

Corollary B.6. Let f and g be two S-homotopy equivalent morphisms of flows from
X to Y . Then the continuous maps P−f and P−g from P−X to P−Y are homotopic.

Proof. Let H be an element of Top([0, 1],FLOW(X,Y )) such that H(0) = f and
H(1) = g. Then (P−)∗(H) ∈ Top([0, 1],TOP(P−X,P−Y )) yields an homotopy
from P−f to P−g.
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Corollary B.7. Let X and Y be two S-homotopy equivalent flows. Then the topo-
logical spaces P−X and P−Y are homotopy equivalent.

Of course, the same theorem holds for the merging space functor:

Corollary B.8. Let X and Y be two S-homotopy equivalent flows. Then the topo-
logical spaces P+X and P+Y are homotopy equivalent.

References

[1] Brown, R., “Topology,” Ellis Horwood Ltd., Chichester, 1988, second edi-
tion, xviii + 460 pp.

[2] Bubenik, P., Context for models of concurrency, in: GETCO 2004 proceed-
ings, 2004, to appear in BRICS.
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