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The strict globular ω-categories formalize the execution paths of a parallel automaton and

the homotopies between them. One associates to such (and any) ω-category C three

homology theories. The first one is called the globular homology. It contains the oriented

loops of C. The two other ones are called the negative (respectively, positive) corner

homology. They contain in a certain manner the branching areas of execution paths or

negative corners (respectively, the merging areas of execution paths or positive corners) of

C. Two natural linear maps called the negative (respectively, the positive) Hurewicz

morphism from the globular homology to the negative (respectively, positive) corner

homology are constructed. We explain the reason why these constructions allow the

reinterpretation of some geometric problems coming from computer science.

1. Introduction

The use of geometric notions to describe the behaviour of concurrent machines is certainly

not new: in particular, they have been used for progress graphs (Dijkstra 1968), HDA (Pratt

1991; van Glabbeek 1991) and the simplicial models of Herlihy and Shavit (1994) and

Herlihy and Rajsbaum (1994). The purpose of this article is to provide a new setting for the

homotopy of execution paths in concurrent automata in order to improve the homological

approach of Goubault (1995). We can point out that some other approaches to this

question already exist, such as partially ordered topological spaces in Goubault (1995)

and partial posets in Sokolowski (1999). Pratt has already noted that a good structure

to deal with execution paths and homotopies between them is the structure of globular

ω-category (Pratt 1991). The aim of this paper is threefold. First, the use of the concept

of a globular ω-category to describe concurrent machines is justified on some well-known

examples and in a very informal way. Second, we associate to every globular ω-category

three homology theories and two natural maps between them, and explain why their

content is interesting for some geometric problems coming from computer science. Third,

as in algebraic topology, a notion of homotopic ω-categories is proposed and we prove

that the preceding homology theories are invariant with respect to it (only in a particular

case for the corner homologies).
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This paper is organised as follows. In Section 2, we make precise the notion of

paths and homotopies between paths, homotopies between homotopies, etc.. The notion

of globular ω-category is recalled, and the link between the usual formalization of

concurrent automata using cubical sets and the new formalization by globular ω-categories

is explained. We give in a very informal way the geometric and computer science meaning

of the homology theories that will be constructed in this paper. In Section 3, the globular

homology of a globular ω-category is defined. Some examples of globular cycles are given

and the globular complex is related to a derived functor. Section 4 is devoted to the

construction of the negative and positive corner homologies of an ω-category. Then we

introduce in Section 5 a technical tool to fill shells in the cubical singular nerve of an

ω-category, and in Section 6, this notion of the filling of a shell is used to construct two

families of connections on the cubical singular nerve of an ω-category. This allows us to

prove that the corner homologies are the homologies associated to two new simplicial

nerves. In Section 7, we construct the two natural maps from the globular homology to the

negative and positive corner homologies. In Section 8, a notion of homotopy equivalence

of ω-categories is proposed. We will prove the following property: Let f and g be two

non 1-contracting ω-functors from C to D. If f and g are homotopic, then for any natural

number n, Hgl
n (f) = Hgl

n (g) (Theorem 8.6). In a very particular case, it is also possible to

relate the homotopy of paths in ω-categories to the corner homology theories H−n and

H+
n (Theorem 8.7). In Section 9, some conjectures and perspectives both in mathematics

and computer science are exposed. In Section 10, we prove that the cubical singular

nerve of the free ω-category generated by a cubical set K is nothing else but the free

cubical ω-category generated by K . This allows us to propose a direct construction of

the globular homology and of the corner homologies of a cubical set without using any

globular ω-category.

2. Presentation of the geometric ideas of this work

2.1. Informal introduction to execution paths and the homotopies between them

A sequential machine (that is, without concurrency) is a set of states, also called 0-

transitions, and a set of 1-transitions from a given state to another one. A concurrent

machine, like the previous one, consists of a set of states and a set of 1-transitions, but

also has the capability of carrying out several 1-transitions at the same time.

In Figure 1, if we work in cartesian coordinates in such a way that A = [0, 1] × [0, 1]

with α = (0, 0) and δ = (1, 1), the set of continuous maps (c1, c2) from [0, 1] to A such

that c1(0) = c2(0) = 0, c1(1) = c2(1) = 1 and t 6 t′ implies c1(t) 6 c1(t′) and c2(t) 6 c2(t′)
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represents all the simultaneous possible executions of u and v. Coordinates represent the

evolution of u and v, which means the local time taken to execute u or v. If (c1, c2)(]0, 1[)

is entirely included in the interior of A, it is a ‘true parallelism’. If (c1, c2)(]0, 1[) is entirely

included in the edge of the square, u and v are sequentially carried out by the automaton.

More generally, the concurrent execution of n 1-transitions can be represented by an

n-cube. This has already been noted, for example, in Pratt (1991) and Goubault (1995).

Definition 2.1. A cubical set consists of a family of sets (Kn)n>0, of a family of face maps

Kn

∂αi //Kn−1 for α ∈ {−,+} and of a family of degeneracy maps Kn−1
εi //Kn with

1 6 i 6 n that satisfy the following relations:

1 ∂αi ∂
β
j = ∂

β
j−1∂

α
i for all i < j 6 n and α, β ∈ {−,+}

2 εiεj = εj+1εi for all i 6 j 6 n
3 ∂αi εj = εj−1∂

α
i for i < j 6 n and α ∈ {−,+}

4 ∂αi εj = εj∂
α
i−1 for i > j 6 n and α ∈ {−,+}

5 ∂αi εi = Id.

The corresponding category of cubical sets, with an obvious definition of its morphisms,

is isomorphic to the category of presheaves Sets�
op

over a small category �. This latter

can be described in a nice way as follows (Crans 1995). The objects of � are the sets

n = {1, ..., n} where n is a natural number greater than or equal to 1 and an arrow f from

n to m is a function f∗ from m to n ∪ {−,+} such that f∗(k) 6 f∗(k′) ∈ n implies k 6 k′
and f∗(k) = f∗(k′) ∈ n implies k = k′.

Let X be a topological space. Let [0, 1] denote the interval between 0 and 1. Set

Kn = C0([0, 1]n, X) the set of continuous maps from the n-box [0, 1]n to X. Set

∂−i (f)(x1, . . . , xp) = f(x1, . . . , [0]i, . . . , xp)

∂+
i (f)(x1, . . . , xp) = f(x1, . . . , [1]i, . . . , xp)

εi(f)(x1, . . . , xp) = f(x1, . . . , x̂i, . . . , xp).

Then we obtain a cubical set K , which is called the cubical singular nerve of the topological

space X.

In Figure 1, we call A a homotopy between the two 1-paths uv′ and vu′. We call a

2-path a homotopy between two 1-paths and by induction on n > 2, we call an n-path

a homotopy between two (n − 1)-paths. This notion of homotopy is different from the

classical one in the sense that only the 1-paths uv′ and vu′ are homotopic and because the

1-paths are oriented. For example, still in Figure 1, u is not homotopic with u′, v or v′.
In Figure 2, there are an initial state α, a final state β, two 1-transitions u and v, and

two 2-transitions or homotopies A and B between u and v. Choosing an orientation for

A and B, for example s1A = s1B = u and t1A = t1B = v (s for source and t for target),

we see that s0s1A = s0t1A = α and t0s1A = t0t1A = β. These are precisely the globular

equations that appear in the axioms of globular ω-categories.

The concatenation yields an associative composition law on the set of 1-transitions of

an ω-category. It turns out that there is also a natural composition law on the set of
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Fig. 3. Composition of two 2-morphisms

2-transitions. In Figure 3, with the convention of orientation t1A = s1B, we can compose

A and B. We denote this composition using A ∗1 B. We can see that s1(A ∗1 B) = s1A and

t1(A ∗1 B) = t1B. The composition of higher dimensional morphisms must be associative

because it corresponds to the concatenation of the real execution paths contained in A

and B.

Thus the geometric properties of transitions of concurrent machines can be encoded in

a structure of cubical set. And their associated set of execution paths and the homotopies

between them have the natural structure of a globular ω-category. All these ideas have

already appeared in Pratt (1991). Pratt uses the term n-complex, which is in fact nothing

other than a small n-category. We use the notations of Steiner (1991) and Street (1987)

for the following definition, which has already appeared in Brown and Higgins (1981a).

Definition 2.2. An ω-category is a set A endowed with two families of maps (sn = d−n )n>0

and (tn = d+
n )n>0 from A to A and with a family of partially defined 2-ary operations

(∗n)n>0 where for any n > 0, ∗n is a map from {(a, b) ∈ A × A, tn(a) = sn(b)} to A ((a, b)

being carried over a ∗n b) that satisfies the following axioms for all α and β in {−,+}:

1 dβmd
α
nx =

{
dβmx if m < n

dαnx if m > n.
2 snx ∗n x = x ∗n tnx = x.

3 If x ∗n y is well defined, then sn(x ∗n y) = snx, tn(x ∗n y) = tny and for m 6= n,

dαm(x ∗n y) = dαmx ∗n dαmy.

4 As soon as the two members of the following equality exist, then (x∗ny)∗nz = x∗n(y∗nz).



Homotopy invariants of categories and concurrency 485

u

v
w

x
y

z

a

b c
d

e f g
h

i

γ1 = u ∗0 v ∗0 w ∗0 x ∗0 y ∗0 z

γ2 = u ∗0 a ∗0 b ∗0 x ∗0 c ∗0 d

γ3 = u ∗0 v ∗0 w ∗0 x ∗0 c ∗0 d

γ4 = e ∗0 f ∗0 g ∗0 h ∗0 i ∗0 d

Fig. 4. Example of (an idealized) distributed database

5 If m 6= n and if the two members of the equality make sense, then (x ∗n y) ∗m (z ∗n w) =

(x ∗m z) ∗n (y ∗m w).

6 For any x in A, there exists a natural number n such that snx = tnx = x (the smallest

of these numbers is called the dimension of x and is denoted by dim(x)).

We will sometimes use the notation d−n := sn and d+
n = tn. If x is a morphism of an

ω-category C, we call sn(x) the n-source of x and tn(x) the n-target of x. The category

of all ω-categories (with the obvious morphisms) is denoted by ωCat. The corresponding

morphisms are called ω-functors.

If S is a set, the free abelian group generated by S is denoted by ZS . By definition, an

element of ZS is a formal linear combination of elements of S .

Definition 2.3. Let C be an ω-category. Let Cn be the set of n-dimensional morphisms

of C. Two n-morphisms x and y are homotopic if there exists z ∈ ZCn+1 such that

snz − tnz = x− y. This property is denoted by x ∼ y.

If x ∼ y, the pair (x, y) belongs to the reflexive, symmetric and transitive closure of the

binary relation generated by all pairs (sn(u), tn(u)), where u runs over Cn+1.

Figure 4 is a very simple example of a distributed database. The hole in the middle

corresponds to a mutual exclusion. See Fajstrup et al. (1998b) for a complete treatment.

The two 1-paths γ1 and γ2 are homotopic because there exists a 2-morphism between γ1

and γ3 and another one between γ2 and γ3. On the other hand, none of the previous three

1-paths is homotopic to γ4 because of the oriented hole in the middle.

2.2. The free ω-category generated by a cubical set

How may we mathematically associate to every cubical set K its corresponding set of

execution paths and higher dimensional homotopies? The link between the two formal-

izations is as follows. We need to describe precisely the free ω-category associated to each

n-cube of K . In a very informal way, it consists of seeing the faces of an n-cube as words

of length n in the alphabet {−, 0,+}. The term 0n means 0 n times, that is, the interior

of the n-cube. And we say that the face k1 . . . kn is at the source of x if ki 6= 0 implies
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Fig. 5. The ω-category I2
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(A ∗0 w ∗0 x) ∗1 (v′ ∗0 ((u′ ∗0 C) ∗1 (B ∗0 w
′)))

Fig. 6. Composition of three squares

ki = (−1)i, and we say that k1 . . . kn is at the target of x if ki 6= 0 implies ki = (−1)i+1.

We will make precise the construction of In in Section 4.1. Once this is done, it suffices

to paste the ω-categories associated to every n-cube of K in the same way that they are

pasted in K . More concretely, every cubical set K is in a canonical way the direct limit

of the elementary n-cubes included in it. This is due to the fact that any functor from

a small category to the category Sets of sets is a canonical direct limit of representable

functors, the set of those functors being dense in the set of all set-valued functors. More

precisely, we have K =
∫ n∈�

Kn.�(−, n) where the integral sign is the coend construction

(Mac Lane 1971) and Kn.�(−, n) means the sum of ‘cardinal of Kn’ copies of �(−, n).
So F(K) =

∫ n∈�
Kn.I

n is an ω-category containing as 1-morphisms all arrows of K and

all possible compositions of these arrows, as 2-morphisms all homotopies between the

execution paths, etc..

Consider, for example, the 2-cube of Figure 5. The 2-face 00 is oriented from the side

{−0, 0+} to the side {0−,+0}. The corresponding ω-category I2 contains all possible

compositions of faces of the 2-cube. Therefore, as set, we have

I2 = {−−,−+,+−,++,−0, 0−,+0, 0+,−0 ∗0 0+, 0− ∗0 + 0, 00}.
In Figure 6, the three 2-morphisms A, B and C are not drawn, and are supposed to be

oriented to the north west. The composition of the three squares A, B and C is equal to

(A ∗0 w ∗0 x) ∗1 (v′ ∗0 ((u′ ∗0 C) ∗1 (B ∗0 w
′)))

in the free ω-category generated by this cubical set.

The map F induces a functor from the category of cubical sets to the category of

ω-categories. Indeed, this is the left Kan extension of the functor Q from � to ωCat

defined as follows (Mac Lane 1971). It maps n to In. Let εi be the surjective morphism

from n to n− 1 for 1 6 i 6 n defined by (εi)
∗(l) = l if l < i and (εi)

∗(l) = l + 1. Let ∂αi be

the injective morphism from n− 1 to n for 1 6 i 6 n and for α = ± defined by (∂αi )
∗(l) = l
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Fig. 8. The Swiss Flag

if l < i, (∂αi )
∗(l) = α for l = i and (∂αi )

∗(l) = l − 1 for l > i. Then any morphism of � is a

composition of εi and of ∂αi . And Q is the unique functor that maps εi to εi and ∂αi to ∂αi
(Crans 1995). In this way, the notion of ω-category can be understood as a generalization

of the notion of cubical set. Every cubical set can be seen as an ω-category. The converse

is false. We will see in Section 8 why this categoric setting is very well adapted for the

development of an analogue of algebraic topology in the computer science framework.

2.3. ω-categories up to homotopy

Now we want to give, in a very informal way, some examples of ω-categories that have

the same set of execution paths up to homotopy and to explain the potential interest of

this notion. We will propose a definition of homotopic ω-categories in Definitions 8.1 and

8.2.

Up to path homotopy, the ω-category of Figure 4 must be the same as the ω-category

of Figure 7 because there are only two execution paths up to homotopy in each case.

In Figure 8, the left-hand side is the Swiss Flag example. It is again an example of

the cubical set appearing in the theory of distributed databases, as explained in Fajstrup

et al. (1998b). The globular ω-category on the right-hand side should be homotopic to

the left-hand one.

Our claim is that the most interesting computer-scientific properties of two concurrent

machines are the same if the corresponding globular ω-categories are homotopy equivalent.

In Figure 8, the state γ corresponds to a deadlock of the corresponding concurrent

machine. The deadlock also appears on the right. Compare the large number of possible
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execution paths on the left with the small number (four) of execution paths on the

right, which are essentially the same! This means that an algorithm that could take into

account this notion of ω-category up to homotopy would be more efficient than any other

algorithm.

Instead of dealing directly with ω-category up to homotopy, a more fruitful approach

consists of building some functors from ω-categories to, for example, abelian groups,

invariant up to homotopy. These functors contain, at least theoretically, the relevant

geometric information because of their invariance up to homotopy in the above sense.

A common way to construct such invariants consists of constructing functors from the

category of ω-categories to the category Comp(Ab) of chain complexes of groups and to

consider the associated homology groups.

Definition 2.4. A chain complex of groups is a family of abelian groups (Cn)n>0 together

with a family of linear maps ∂n : Cn+1 −→ Cn such that ∂n ◦ ∂n+1 = 0 for any n > 0.

Since the image of ∂n+1 is included in the kernel of ∂n, the quotient group

Hn(C∗, ∂∗) = Ker(∂n)/Im(∂n+1)

is well defined. It is called the n-th homology group of the group complex (Cn)n>0. The

map Hn yields a functor from Comp(Ab) to the category Ab of abelian groups. See for

example Rotman (1979) or Weibel (1994) for an introduction to the theory of these

mathematical objects.

The first homology theory will be the globular homology Hgl
∗ (C) (Definition 3.1). An

example of a globular cycle of dimension 1 is γ1− γ4 in Figure 4. We call this an oriented

1-dimensional loop. An example of a globular cycle of dimension 2 is A− B in Figure 2.

The two other homology theories will be called the negative and positive corner

homologies H±∗ (C) (Definition 4.3). The cycles of the negative one correspond to the

branching areas of execution paths (or negative corner) and those of the positive one

correspond to the merging areas of execution paths (or positive corner). In the case of

γ1 − γ4 in Figure 4, there is one branching area on the left and one merging area on the

right, and similarly for Figure 2.

The idea then is to associate to any oriented loop of any dimension its corresponding

negative or positive corners. This is the underlying geometric meaning of the morphisms

h±∗ from H
gl
∗ (C) to H±∗ (C) (Proposition 7.5 and 7.7). We can immediately see an application

of these maps. Looking back to the Swiss Flag example of Figure 8, it is clear that the

cokernel of h−1 is not empty, because of the deadlock and the forbidden area. A negative

corner that yields a non-trivial element in this cokernel is drawn in Figure 9. In the

same way, the cokernel of h+
1 in the Swiss Flag example is still not empty, because of

the unreachable state and the unreachable area. A positive corner that yields a non-zero

element of this cokernel is represented in Figure 9.

These geometric remarks ensure that the homology groups that we are going to

construct contain relevant information about the geometry of concurrency.
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unreachable area

unsafe area

Fig. 9. Unsafe area and unreachable area in a concurrent machine with semaphores

α

γ

Fig. 10. A loop that does not give rise to a globular cycle

3. Globular homology of ω-category

3.1. Definition

The starting point is an ω-category C.

Definition 3.1. Let (Cgl
∗ (C), ∂gl) be the chain complex defined as follows: Cgl

0 (C) = ZC0 ⊕
ZC0, and for n > 1, Cgl

n (C) = ZCn, ∂gl(x) = (s0x, t0x) if x ∈ ZC1 and for n > 1, x ∈ ZCn+1

implies ∂gl(x) = snx − tnx. This complex is called the globular complex of C, and its

corresponding homology the globular homology.

There is a difference between the 1-dimensional case and the other cases. A loop as

in Figure 10 where γ is a 1-morphism such that s0γ = t0γ = α does not yield a globular

1-cycle. However, a loop as in Figure 11 where A is a n-morphism with n > 2 and such

that sn−1A = tn−1A = γ yields a globular n-cycle.

A

γ

Fig. 11. Example of a globular cycle in a higher dimension
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3.2. Functorial property of the globular homology

Now we give an important technical definition for the sequel.

Definition 3.2. Let f be an ω-functor from C to D. The morphism f is non 1-contracting

if for any 1-dimensional x ∈ C, the morphism f(x) is a 1-dimensional morphism of D.

The category of ω-categories with the non 1-contracting ω-functors is denoted by

ωCat1. The category of cubical sets equipped with the non 1-contracting morphisms is

denoted by Sets�
op

1 .

If f is a non 1-contracting ω-functor from C to D, then for any morphism x ∈ C of

dimension greater than 1, f(x) is of dimension greater than one as well. This is due to the

equality f(s1x) = s1f(x).

Let f be an ω-functor from C to D. Then f induces for all n > 0 a linear morphism

f∗ from ZCn to ZDn by setting f∗(x) = f(x) mod D6n−1: we use this notation to

mean that f∗(x) = f(x) if f(x) is n-dimensional and f∗(x) = 0 otherwise. For n > 2,

f∗(sn−1 − tn−1)(x) = (sn−1 − tn−1)f∗(x), therefore f∗∂gl(x) = ∂glf∗(x). The latter equality is

no longer true if x is 1-dimensional because an ω-functor can contract 1-morphisms and

because ∂gl(x) = (s0(x), t0(x)). So the globular homology does not yield a functor from

ωCat to Ab but only a functor from ωCat1 to Ab.

3.3. Homological property

Now we give a homological property of the globular complex to justify this construction.

The starting point is the small category Glob defined as follows: the objects are all natural

numbers and the arrows are generated by s and t in Glob(m,m − 1) for any m > 0 and

quotiented by the relations ss = st, ts = tt. We can depict Glob as follows:

s
//

t //
3

s
//

t //
2

s
//

t //
1

s
//

t //
0

Definition 3.3. A globular set is a covariant functor from Glob to Sets. The corresponding

category is denoted [Glob, Sets]. A globular group is a covariant functor from Glob to the

category Ab of abelian groups. The corresponding category is denoted by [Glob, Ab].

The notion of a globular set has already appeared in many works and is certainly not

new (Street 1998; Penon 1999; Batanin 1998).

If C is an ω-category, we use Cn to denote the set of n-dimensional morphisms of C
with n > 0.

Definition 3.4. Let Gl be the map from ω-categories to globular groups defined as follows.

If n > 0, set Gl(C)n = ZCn. For any s, t ∈ Glob(n + 1, n), set Gl(s)(x) = sn(x) and

Gl(t)(x) = tn(x).

Unfortunately, Gl(−) is not a functor because an ω-functor might be n-contracting for

n > 2. That is, suppose that f is an ω-functor from C to D such that for a 2-morphism

x of C, f(x) is 1-dimensional. Then Gl(f)(x) = 0 ∈ Gl(D)2 and s1Gl(f)(x) = 0, but

Gl(f)(s1(x)) = f(s1(x)) ∈ Gl(D)1 and f(s1(x)) 6= 0.
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If M is a globular group, let H(M) be the cokernel of the additive map from M1 to

M0 ⊕M0 that maps x to (s(x), t(x)). The map H induces a right exact additive functor

from [Glob, Ab] to Ab. Since [Glob, Ab] has enough projectives, we can deal with the left

derived functors Ln(H) of H (see Weibel (1994) or Rotman (1979) for the definition of

projective object and right exact functor).

Proposition 3.1. For any ω-category C, we have Hgl
∗ (C) ∼= L∗(H)(Gl(C)).

Before proving this theorem, we need to recall some standard facts about category of

diagrams. We are going to solve Exercice (2.3.13) of Weibel (1994) because later we will

need a precise description of a family of projective globular groups that allows us to

resolve any globular group.

Let evk be the functor from [Glob, Ab] to Ab such that evk(M) = M(k), k being a natural

number. This functor is exact and by the special adjoint functor theorem has a left adjoint

denoted by k!. We need to make k! explicit for later use.

Proposition 3.2. If M is an abelian group, set

k!(M)(l) =
⊕

h∈Glob(k,l)
Mh

where Mh is a copy of M. If x ∈ M, let h.x be the corresponding element of k!(M)(l). If

f : l −→ l′ is an arrow of I , we set k!(M)(f)(h.x) = (fh).x. Then k! is a globular group

and this is the left adjoint of evk .

Proof. Let N be a globular group. We introduce the map

F : [Glob, Ab] (k!(M), N) //Ab (M,N(k))

defined by F(u)(x) = u(Idk.x) and the map

G : Ab(M,N(k)) //[Glob, Ab] (k!(M), N)

defined by G(v)(f.x) = N(f)(v(x)). The arrow G(v) is certainly a morphism of globular

groups from k!(M) to N. In fact, if l
f // l′ is an arrow of Glob, and if h.x is an element

of k!(M)(l), then G(v)(fh.x) = N(fh)(v(x)) = N(f)(G(v)(h.x)). Therefore the diagram

k!(M)(l)
G(v) //

k!(M)(f)

��

N(l)

N(f)

��
k!(M)(l′)

G(v) // N(l′)

commutes. Now we have to verify that F and G are inverses of each other. Indeed,

F(G(v))(x) = G(v)(Idk.x) = N(Id)(v(x)),

and therefore F(G(v)) = v. Conversely,

G(F(u))(h.x) = N(h)(F(u)(x)) = N(h)(u(Idk.x)) = u(k!(M)(h)(Idk.x)) = u(h.x),

and therefore G(F(u)) = u.
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Now we set

F =

{⊕
k∈N

k!(L)/L free module

}
and can state the following proposition.

Proposition 3.3. All elements of F are projective globular groups. Any globular group

can be resolved by elements of F.

Proof. Let X be a globular group. For any k ∈ N, let Lk be a free abelian group and

Lk � X(k) an epimorphism of abelian groups. Then the epimorphisms Lk //X(k) for

all k induce a natural transformation
⊕

k∈N k!(Lk) //X, which is certainly itself an

epimorphism. Left adjoint functors and coproducts preserve projective objects (Borceux

1994), and hence we have the conclusion.

We are now in a position to prove the following proposition.

Proposition 3.4. For any ω-category C, the equality Hgl
∗ (C) ∼= L∗(H)(Gl(C)) holds.

Proof. IfM is a globular group, we introduce the complex of abelian groups (Cgl
∗ (M), ∂gl)

defined as follows: Cgl
0 (M) = M0 ⊕M0 and for n > 1, Cgl

n (M) = Mn, with the differential

map ∂gl(x) = (s(x), t(x)) if x ∈M1, and ∂gl(x) = s(x)− t(x) if x ∈Mn with n > 2. We have

H0(Cgl
∗ (M), ∂) = H(M). Let k be a natural number and let L be a free abelian group.

If p > 0, let us prove that Hp(C
gl
∗ (k!(L))) = 0. Let X = xp be a cycle of Cp(k!(L)). By

construction, for all p > k, one has k!(L)(p) = 0. Therefore, if p > k, then X = 0, and

hence Hp(C
gl
∗ (k!(L))) = 0 whenever p > k. Now let us look at the case p 6 k. We have

0 = ∂gl(X) = sp−1(xp)−tp−1(xp). Then there exists xsp and xtp such that xp = sk−p.xsp+tk−p.xtp.
The equality sp−1(xp) = tp−1(xp) implies sk−p+1.xsp+sk−p+1.xtp = tk−p+1.xsp+tk−p+1.xtp. There-

fore xp = 0.

Now we can deduce from Proposition 3.3 that for any projective globular group P ,

Hp(C
gl
∗ (P ), ∂) = 0

for all p > 0. It is thus easy to check that for any natural number p, the equality

Hp(C
gl
∗ (M), ∂) = Lp(H)(M) holds. Indeed, the case p = 0 is trivial and the commutative

diagram

Hp+1(Cgl
∗ (P ), ∂) //

��

Hp+1(Cgl
∗ (M), ∂) //

��

Hp(C
gl
∗ (K), ∂)

��

// Hp(C
gl
∗ (P ), ∂)

��
Lp+1(H)(P ) // Lp+1(H)(M) // Lp(H)(K) // Lp(H)(P )

with P projective allows to make the induction on p.

4. Positive and negative corner homology of an ω-category

4.1. The pasting scheme Λn and the ω-category In

We need to describe precisely the ω-category associated to the n-cube.
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Fig. 12. A pasting scheme

Definition 4.1. A pasting scheme is a triple (A,E, B) where A is a N-graded set, and Eij
and Bij are two binary relations over Ai × Aj with j 6 i satisfying:

(1) The set Eii is the diagonal of Ai.

(2) For k > 0, and for any x ∈ Ak , there exists y ∈ Ak−1 with xEkk−1y.

(3) For k < n, wEnkx if and only if there exists u and v such that wEnn−1uE
n−1
k x and

wEnn−1vB
n−1
k x.

(4) If wEnn−1zE
n−1
k x, then either wEnkx or there exists v such that wBnn−1vE

n−1
k x.

and such that (A,B, E) satisfies the same properties. If x ∈ Ai, we set dim(x) = i.

If x is an element of the pasting scheme (A,E, B), we use R(x) to denote the smallest

pasting scheme of (A,E, B) containing x.

Intuitively, a pasting scheme is a pasting of faces of several dimensions together (Johnson

1989). Kapranov and Voedvosky have their own formalization using some particular chain

complexes of abelian groups (Kapranov and Voedvodsky 1991). We can see Figure 3 as

a pasting scheme (S, E, B). It suffices to set S = {α, β, s1A, t1A, t1B,A, B} endowed with

the binary relations B2
1 = {(A, s1A), (B, s1B)}, E2

1 = {(A, t1A), (B, t1B)}, B2
0 = E2

0 = {},
B1

0 = {(s1A, α), (t1A, α), (t1B, α)}, E1
0 = {(s1A, β), (t1A, β), (t1B, β)}. Figure 12 shows another

more complicated example of a pasting scheme.

Here we only want to recall the construction of the free ω-category In generated by the

faces of the n-cube. For more details see Crans (1995), for an analogous construction for

simplices see Street (1987), and for some explicit calculations on In see Aitchison (1986).

Set n = {1, ..., n} and let Λn be the set of maps from n to {−, 0,+}. We say that an

element x of Λn is of dimension p if x−1(0) is a set of p elements. We can identify the

elements of Λn with the words of length n in the alphabet {−, 0,+}. The set Λn is supposed

to be graded by the dimension of its elements. The set Λ0 is the set of maps from the

empty set to {−, 0,+}, and therefore it is a singleton.

Let y ∈ Λi. Let ry be the map from (Λn)i to (Λn)dim(y) defined as follows (with x ∈ (Λn)i):

for k ∈ n, x(k) 6= 0 implies ry(x)(k) = x(k) and if x(k) is the l-th zero of the sequence

x(1), ..., x(n), then ry(x)(k) = y(`). If for any ` between 1 and i, y(`) 6= 0 implies y(`) = (−)`,

we set by(x) := ry(x). If for any ` between 1 and i, y(`) 6= 0 implies y(`) = (−)`+1, we set

ey(x) := ry(x). We thus introduce the following binary relations: the set Bij of pairs (x, z)

in (Λn)i × (Λn)j such that there exists y such that z = by(x) and the set Eij of pairs (x, z)
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Fig. 13. The ω-category I3

in (Λn)i × (Λn)j such that there exists y such that z = ey(x). Then Λn is a pasting scheme,

and we have the following theorem.

Theorem 4.1. If X ⊂ Λn, let R(X) be the sub-pasting scheme of (Λn, Bij , E
i
j) generated by

X. There is one and only one ω-category In such that:

1 The underlying set of In is included in the set of sub-pasting schemes of (Λn, Bij , E
i
j)

and it contains all pasting schemes like R({x}) where x runs over Λn.

2 All elements of In are a composition of R({x}) where x runs over Λn.

3 For x p-dimensional with p > 1, one has

sp−1(R({x})) = R
({by(x), dim(y) = p− 1})

tp−1(R({x})) = R
({ey(x), dim(y) = p− 1}) .

4 If R(X) and R(Y ) are two elements of In such that tp(R(X)) = sp(R(Y )) for some p,

then R(X ∪ Y ) ∈ In and R(X ∪ Y ) = R(X) ∗p R(Y ).

The oriented 2-cube is drawn in Figure 5. With the rules exposed in the above theorem,

we can calculate s2R(00). We actually have s2R(00) = R({−0, 0+}). But t0R(−0) =

R(−+) = s0R(0+). Then s2R(00) = R({−0} ∪ {0+}) = R(−0) ∗0 R(0+).

The ω-category generated by a 3-cube is drawn in Figure 13. Let us give the example

of the calculation of s2R(000). We have

s2R(000) = R({−00, 0 + 0, 00−}) = R({−00, 0 + +} ∪ {−0−, 0 + 0} ∪ {00−, 0 + +})
since 0++,−0−, 0++ ∈ R({−00, 0+0, 00−}). It is easy to verify that t1R({−00, 0++}) =

s1R({−0−, 0 + 0}) and t1R({−0−, 0 + 0}) = s1R({00−, 0 + +}). Therefore

s2R(000) = R({−00, 0 + +}) ∗1 R({−0−, 0 + 0}) ∗1 R({00−, 0 + +}).
It is then easy to verify that R({−00, 0 + +}) = R(−00) ∗0 R(0 + +), R({−0−, 0 + 0}) =

R(−0−) ∗0 R(0 + 0) and R({00−, 0 + +}) = R(00−) ∗0 R(0 + +).

The oriented 4-cube is represented in Figure 14.

4.2. The cubical singular nerve

The map that sends every ω-category C toN�(C)∗ = ωCat(I∗,C) induces a functor from

ωCat to the category of cubical sets. If x is an element of ωCat(In,C), then εi(x) is the

ω-functor from In+1 to C defined by εi(x)(k1...kn+1) = x(k1...k̂i...kn+1) for all i between
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Fig. 14. The ω-category I4
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1 and n + 1 and ∂αi (x) is the ω-functor from In−1 to C defined by ∂αi (x)(k1...kn−1) =

x(k1...ki−1αki...kn−1) for all i between 1 and n.

The arrow ∂αi for a given i such that 1 6 i 6 n induces a natural transformation

from ωCat(In,−) to ωCat(In−1,−), and therefore, by Yoneda, corresponds to an ω-

functor δαi from In−1 to In. This functor is defined on the faces of In−1 by δαi (k1...kn−1) =

R(k1...[α]i...kn−1). The notation [...]i means that the term inside the brackets are in the i-th

place.

Definition 4.2. The cubical set ωCat(I∗,C) is called the cubical singular nerve of the

ω-category C.

This functor is a right adjoint. Its left adjoint is the functor F .

4.3. Construction of the corner homologies

The starting point is the cubical singular nerve ωCat(I∗,C) of C, which contains all n-

cubes included in C. The main idea in building the positive and negative corner homology

of an ω-category C is to separate the two differential maps ∂− =
∑

i(−1)i+1∂−i and ∂+ =∑
i(−1)i+1∂+

i and to separately consider the chain complexes of groups (ZωCat(I∗,C), ∂±)

(a bit like in Goubault (1995), where the author separates the horizontal and vertical

differential maps of a bicomplex). However, the following proposition holds.

Proposition 4.2. Both chain complexes of groups (ZωCat(I∗,C), ∂−) and (ZωCat(I∗,C),

∂+) are acyclic.

Proof. It turns out that ε1 is a chain retraction of (ZωCat(I∗,C), ∂−). If x ∈ ZωCat(I0,C),

then ∂αε1x = ∂α1ε1x = x. And for x ∈ ZωCat(In,C), with n > 1, we actually have:

∂α ◦ ε1(x) + ε1 ◦ ∂α(x) =

i=n+1∑
i=1

(−1)i+1∂αi ε1(x) +

i=n∑
i=1

(−1)i+1ε1∂
α
i (x)

= x+

i=n+1∑
i=2

(−1)i+1ε1∂
α
i−1(x) +

i=n∑
i=1

(−1)i+1ε1∂
α
i (x)

= x+

i=n∑
i=1

(−1)iε1∂
α
i (x) +

i=n∑
i=1

(−1)i+1ε1∂
α
i (x)

= x

The previous proposition entails the following definition.

Definition 4.3. Let C be an ω-category and α ∈ {−,+}. We denote by ωCat(In,C)α the

subset of elements x of ωCat(In,C) satisfying the following conditions:

— The element x is a non-degenerate element of the cubical nerve.

— Any element of the form ∂αi1 ...∂
α
ip
(x) is non-degenerate in the cubical nerve.

Then ∂α(ZωCat(I∗+1,C)α) ⊂ ZωCat(I∗,C)α by construction. We thus set

Hα∗ (C,Z) = H∗(ZωCat(I∗,C)α, ∂α),
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and we call these homology theories the negative (or positive according to α) corner

homology of C. The cycles are called the negative (or positive) corners of C. The maps

H±∗ induce functors from ωCat1 to Ab.

The second part of the definition is essential. Indeed, if a is a 1-dimensional morphism

of C, then the following element of ωCat(I2,C) is non-degenerate although its image by

∂−1 and ∂−2 are degenerate elements of Cat(I1,C):

s0(a)
a //

a
�&FFFFFFFF

FFFFFFFF
t0(a)

s0(a)

s0(a)

OO

s0(a) // s0(a)

a

OO

The following proposition characterizes the elements of ωCat(I∗,C)α.

Proposition 4.3. Assume that x is an element of ωCat(I∗,C). Then x is in ωCat(I∗,C)α

if and only if all x(α...0...α) (the notation α...0...α meaning that 0 appears only once) are

1-dimensional morphisms of C.

Proof. If x is in ωCat(In,C)α, then all ∂αi1 ...∂
α
ip
(x) are non-degenerate in the cubical nerve.

But y ∈ ωCat(I1,C) is non-degenerate if and only if y(R(0)) is 1-dimensional. This gives

the necessity of the condition. Conversely, assume that x /∈ ωCat(In,C)α. Then there exists

i between 1 and n such that ∂αi1 ...∂
α
ip
x = εi(z) with p < n and some i1, ..., ip and with

z ∈ ωCat(In−p−1,C). Then

{x(α...[−]i...α), x(α...[0]i...α), x(α...[+]i...α)}
is a singleton for some i, and therefore x(α...[0]i...α) is 0-dimensional. Hence we have the

sufficiency of the condition.

As with the globular homology, the corner homologies do not yield functors from ωCat

to Ab.

4.4. Examples of corners

Proposition 4.4. Let C be an ω-category. The group H−0 (C) is the free abelian group

generated by the final states of C. The group H+
0 (C) is the free abelian group generated

by the initial states of C.

Proof. The proof is obvious.

Figure 15 provides a very simple example of a 1-dimensional negative corner. It consists

of two ω-functors x and y from I1 to C such that x(R(−)) = y(R(−)) and such that x(R(0))

and y(R(0)) are 1-dimensional. Figure 16 shows an example of a 2-dimensional negative

corner. If we suppose A and B to be oriented such that s1A = u ∗0 x, t1A = v ∗0 y,

s1B = u ∗0 z and t1B = v ∗0 t, then A− B is a negative corner.
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y

x

Fig. 15. A 1-dimensional negative corner

u

v

x

y

A = [u, v, x, y]

z

t
B = [u, v, z, t]

Fig. 16. A 2-dimensional negative corner

5. Filling of shells in the cubical singular nerve

In this section we develop a technical tool that will enable us to construct some operations

on the cubical singular nerve of a globular ω-category (Section 6 and Section 10) and to

construct the two Hurewicz morphisms (Section 7). The notion of shell and of the filling

of (thin or not thin) shells has already appeared in Brown and Higgins (1981b) in the

framework of ω-groupoids and in Al-Agl (1989) in the framework of cubical ω-categories

(see Definition 10.1).

5.1. Reminder about the concept of freeness of In

A key property of In is its freeness, which means the following. Let p be some natural

number. Let us call a realization (Λp, fi) of (Λp, E, B) in an ω-category C a family of maps

fi from (Λp)i to τiC, where τiC is the ω-category obtained by keeping only those cells of

C of dimension lower than or equal to i. The realization (Λp, fi) is called n-extendable

if there exists only one functor f from τnI
p to C such that for any k 6 n, the following

commutative diagram holds:

τkI
p // τnIp

f

��
(Λp)k

R()

OO

fk // C
By convention, any realization (Λp, fi) is 0-appropriate and is already 0-extendable since

f0 is already a functor from (Ip)0 to C. Suppose we set up a notion of n-appropriate
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realization. Then we have

(Λp)n+1

fn+1

""FFFFFFFFF

R()

��
τn+1I

p //___

tn

��
sn

��

C
tn

��
sn

��
τnI

p

f
// C

A realization (Λp, fi) is (n+ 1)-appropriate if snfn+1 = fsnR and tnfn+1 = ftnR, and in

this case, (Λp, fi) is (n+ 1)-extendable (cf. Johnson (1989, page 224)). Thus to construct an

ω-functor from In for some natural number n to an ω-category C, it suffices to construct

a realization that is appropriate in all dimensions.

5.2. Filling of shells using the freeness of In

Definition 5.1. An element x ∈ ωCat(In,C) is thin if x(R(0n)) is of dimension strictly lower

than n. An element that is not thin is called thick.

Definition 5.2. An n-shell in the cubical singular nerve is a family of 2(n+ 1) elements x±i
of ωCat(In,C) such that ∂αi x

β
j = ∂

β
j−1x

α
i for 1 6 i < j 6 n+ 1 and α, β ∈ {−,+}.

Definition 5.3. The n-shell (x±i ) is fillable if:

1 The sets {x(−)i

i , 1 6 i 6 n+ 1} and {x(−)i+1

i , 1 6 i 6 n+ 1} each have exactly one thick

element and the others are thin.

2 If x(−)i0

i0
and x

(−)i1+1

i1
are these two thick elements, then there exists u ∈ C such that

sn(u) = x
(−)i0

i0
(0n) and tn(u) = x

(−)i1+1

i1
(0n).

The main proposition of this section is the following, which is an analogue of Al-

Agl (1989 Proposition 2.7.3).

Proposition 5.1. Let (x±i ) be a fillable n-shell with u as above. Then there exists one and

only one element x of ωCat(In+1,C) such that x(0n+1) = u, and for 1 6 i 6 n + 1, and

α ∈ {−,+} such that ∂αi x = xαi .

Proof. The underlying idea of the proof is as follows. If one wants to define an ω-

functor from In+1 to an ω-category C, it suffices to construct 2(n+ 1) ω-functors from the

2(n+ 1) n-faces of In+1 to C that coincide on the intersection of their definition domains,

and to fill correctly the interior of In+1.

We have necessarily x(k1 . . . [±]i . . . kn) = x±i (k1...kn) and x(0n+1) = u. Therefore there is

at most one such realization (Λn+1, xi). It suffices to show that x is (n + 1)-extendable.

It is certainly 0-appropriate, and therefore 0-extendable. Suppose we have proved that

this realization is p-appropriate and therefore p-extendable for every p < n + 1. First

suppose that p < n. We want to prove that (Λn+1, xi) is (p + 1)-appropriate, that is, that

spx(k1 . . . kn+1) = xspR(k1 . . . kn+1) and tpx(k1 . . . kn+1) = xtpR(k1 . . . kn+1) for k1 . . . kn+1 of

dimension p+ 1.
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Let us verify the first equality. We have

spx(k1 . . . kn+1) = sp(∂
ki
i x)(k1 . . . k̂i . . . kn+1) since p+ 1 < n+ 1

= spx
ki
i (k1 . . . k̂i . . . kn+1)

= xkii spR(k1 . . . k̂i . . . kn+1) since the xαi are ω-functors.

But spR(k1 . . . k̂i . . . kn+1) = Ψ(R(X1), ..., R(Xs)) where Ψ consists only of compositions of

Xh of dimension lower than p. Then

spx(k1 . . . kn+1) = Ψ(xkii R(X1), ..., xkii R(Xs))

= Ψ((∂kii x)R(X1), ..., (∂kii x)R(Xs))

= xΨ(δkii R(X1), ..., δkii R(Xs)) since x is p-extendable

= xspR(k1 . . . kn+1) since δkii is an ω-functor.

It remains to prove that x is (n + 1)-extendable. We have to prove that snx(0n+1) =

xsnR(0n+1) and tnx(0n+1) = xtnR(0n+1). Let us verify the first equality. We have snR(0n+1) =

Ψ′(δ(−)i0

i0
(0n), Y1, . . . , Ys) where Ψ′ is a function containing only composition maps and

where Y1, . . . , Ys are elements of In+1 of the form R({x}) where x is a face of the (n+ 1)-

cube. Then

xsnR(0n+1) = xΨ′(δ(−)i0

i0
(0n), Y1, . . . , Ys)

= Ψ′(x(δ(−)i0

i0
(0n)), x(Y1), . . . , x(Ys)) since x is n-extendable

= x(δ(−)i0

i0
(0n)) since dim(x(Y1)), . . . , dim(x(Ys)) < n

= x
(−)i0

i0
(0n)

= sn(u) by definition of u

= snx(0n+1) by definition of x

6. Two new simplicial nerves

As an immediate application of Section 5, we construct two families of connections on

the cubical singular nerve of any ω-category. They will be useful later.

6.1. Cubical set with connections

Definition 6.1. (Al-Agl 1989) A cubical set with connections consists of a cubical set

((Kn)n>0, ∂
α
i , εi)

together with two additional families of degeneracy maps

Γα
i : Kn

// Kn+1

with α ∈ {−,+}, n > 1 and 1 6 i 6 n and satisfying the following axioms:

1 ∂αi Γ
β
j = Γβ

j−1∂
α
i for all i < j and all α, β ∈ {−,+}

2 ∂αi Γ
β
j = Γβ

j ∂
α
i−1 for all i > j + 1 and all α, β ∈ {−,+}
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3 ∂±j Γ±j = ∂±j+1Γ±j = Id

4 ∂±j Γ∓j = ∂±j+1Γ∓j = εj∂
±
j

5 Γ±i Γ±j = Γ±j+1Γ±i if i 6 j

6 Γ±i Γ∓j = Γ∓j+1Γ±i if i < j

7 Γ±i Γ∓j = Γ∓j Γ±i−1 if i > j + 1

8 Γ±i εj = εj+1Γ±i if i < j

9 Γ±i εj = εiεi if i = j

10 Γ±i εj = εjΓ
±
i−1 if i > j.

There is an obviously defined small category Γ, such that the category of cubical sets

with connections is exactly the category of presheaves over Γ. Hence the category of

cubical set with connections is denoted by SetsΓ
op

.

The category of cubical sets with connections equipped with the non 1-contracting

morphisms is denoted by SetsΓ
op

1 .

Looking back to the cubical singular nerve of a topological space, we can endow it

with connections as follows:

Γ−i (f)(x1, . . . , xp) = f(x1, . . . , max(xi, xi+1), . . . , xp)

Γ+
i (f)(x1, . . . , xp) = f(x1, . . . , min(xi, xi+1), . . . , xp).

By keeping in a cubical set with connections only the morphisms Γ−i , or by exchanging

the role of the face maps ∂+
i and ∂−i and by keeping only the morphisms Γ+

i , we obtain

exactly a cubical set with connections in the sense of Brown and Higgins.

6.2. Construction of connections on the cubical singular nerve

Theorem 6.1. Let C be an ω-category and let n be a natural number greater than or

equal to 1. For any x in ωCat(In,C) and for any i between 1 and n, we introduce two

realizations Γ−i (x) and Γ+
i (x) from Λn+1 to C by setting

Γ−i (x)(k1...kn+1) = x(k1...max(ki, ki+1)...kn+1)

Γ+
i (x)(k1...kn+1) = x(k1...min(ki, ki+1)...kn+1)

where the set {−, 0,+} is ordered by − < 0 < +. Then Γ−i (x) and Γ+
i (x) yield ω-functors

from In+1 to C, meaning two elements of ωCat(In+1,C). Moreover, in this way, the cubical

nerve of C is equipped with a structure of a cubical complex with connections.

Proof. The construction of Γ±i is exactly the same as the one of connections on

the cubical singular nerve of a topological space. Thus there is nothing to verify in

the axioms of a cubical complex with connections except the relations mixing the two

families of degeneracies Γ+
i and Γ−i : all other axioms are already verified in Brown

and Higgins (1981b). Therefore it remains to verify that Γ±i Γ∓j = Γ∓j+1Γ±i if i < j, and

Γ±i Γ∓j = Γ∓j Γ±i−1 if i > j + 1, which can be done quickly. The only remaining point to be

verified is that all realizations Γ±i (x) yield ω-functors.

If x is an element of ωCat(I1,C), we can depict Γ−1 (x) as in Figure 17 and Γ+
1 (x)
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x(+)
x(+) //

x(0) �&
FFFFFFFF

FFFFFFFF
x(+)

x(−)

x(0)

OO

x(0) // x(+)

x(+)

OO

Fig. 17. Γ−1 (x)

x(−)
x(0) //

x(0) �&
FFFFFFFF

FFFFFFFF
x(+)

x(−)

x(−)

OO

x(−) // x(−)

x(0)

OO

Fig. 18. Γ+
1 (x)

as in Figure 18. One can see immediately that Γ−1 (x) and Γ+
1 (x) yield two elements of

ωCat(I2,C).

Suppose we have proved that all realizations Γ±i (x) for 1 6 i 6 n yield ω-functors if

x ∈ ωCat(In,C). Now we want to prove that all realizations Γ±i (y) for 1 6 i 6 n+ 1 yield

ω-functors if y ∈ ωCat(In+1,C).

Because of the axioms of a cubical set with connections and because of the induction

hypothesis, the (∂αjΓ
±
i (y)) are ω-functors from In to C. The family (∂αjΓ

±
i (y)) is also an

n-shell. We can fill it in a canonical way because the top dimensional elements are the

same.

We use Sets∆
op

to denote the category of simplicial sets (May 1967). If A is a simplicial

set, the axioms of simplicial sets imply that C(A) = (ZA∗, ∂ =
∑

(−1)i∂i), where ZAn
means the free abelian group generated by the set An, is a chain complex. It is called the

unnormalized chain complex of A. The normalized chain complex of A is the quotient

chain complex N(A) = C(A)/D(A) where D(A) is the sub-complex of C(A) generated by

the degenerate elements. It turns out that the canonical morphism of a chain complex

from C(A) to N(A) is a quasi-isomorphism (Weibel 1994).

As a consequence of the previous construction, we obtain two new simplicial nerves.

Proposition 6.2. Let C be an ω-category and α ∈ {−,+}. We set

Nα
n(C) = ωCat(In+1,C)α,

and for all n > 0 and all 0 6 i 6 n,

∂i :Nα
n(C) //Nα

n−1(C)

is the arrow ∂αi+1, and

εi :Nα
n(C) //Nα

n+1(C)

is the arrow Γα
i+1. In this way we obtain a simplicial set

(Nα∗(C), ∂i, εi)
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called the negative (or positive according to α) corner simplicial nerve of C. The non-

normalized chain complex associated to it gives exactly the corner homology of C (of

degree greater than or equal to 1). The mapsNα induce a functor from ωCat1 to Sets∆
op

.

Proof. The axioms of simplicial sets are immediate consequences of the axioms of

cubical set with connections.

Notice that the indices are shifted by one. Intuitively, these simplicial nerves consist of

cutting an oriented n-hypercube by a hyperplane close to a corner (the negative one or

the positive one): the intersection we get is the oriented (n − 1)-simplex in the sense of

Street (1987).

7. The oriented Hurewicz morphisms

In this section, we construct natural morphisms from the globular homology of an ω-

category C to its two corner homology theories. We call these maps the negative and

positive oriented Hurewicz morphisms. Intuitively, they map any oriented loop with

corners to its corresponding negative or positive corners (except for the 0-dimensional,

see below).

7.1. The 0-dimensional case

The projection from ZC0 ×ZC0 to ZC0 on the first (respectively, the second) component

yields a natural group morphism from H
gl
0 (C) to H−0 (C) (respectively, H+

0 (C)). Indeed, if

X = (s0(x− y), t0(x− y)),

then the first component (respectively, the second) of X induces 0 on the corner homology.

Thus we obtain a natural morphism h±0 from H
gl
0 (C) to H±0 (C).

7.2. The 1-dimensional case

If x is a 1-dimensional morphism of C, let �1(x) be the element of ωCat(I1,C) defined by

�1(x)(R(−)) = s0(x),�1(x)(R(0)) = x,�1(x)(R(+)) = t0(x).

We extend �1 by linearity. If z is a 2-dimensional morphism of C, let �−2 (z) be the element

of ωCat(I2,C) defined by the diagram

t0(z)
t0(z) //

z
�&

FFFFFFFF

FFFFFFFF
t0(z)

s0(z)

s1(z)

OO

t1(z) // t0(z)

t0(z)

OO
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and let �+
2 (z) be the element of ωCat(I2,C) defined by

s0(z)
s1(z) //

z
�&

FFFFFFFF

FFFFFFFF
t0(z)

s0(z)

s0(z)

OO

s0(z) // s0(z)

t1(z)

OO

We extend �−2 () and �+
2 () by linearity. Thus we get the following proposition.

Proposition 7.1. The natural linear map h±1 from ZC1 to ZωCat(I1,C)±, which maps x1

to �1(x1) induces a natural map (still denoted by h±1 ) from H
gl
1 (C) to H±1 (C). We call it

the 1-dimensional oriented Hurewicz morphism.

Proof. The proof is quite simple. If x1 is a 1-dimensional globular cycle, then

∂±�1(x1) = �1(x1)(±) = 0

because of the definition of �1(x1). And a 1-dimensional globular boundary s1(x2)− t1(x2)

is mapped to ∂±(�−2 (x2)).

7.3. The higher dimensional case

Proposition 7.2. For any natural number n greater than or equal to 2, there exists a unique

natural map �−n from Cn (the n-dimensional cells of C) to ωCat(In,C) such that:

1 The equality �−n (x)(0n) = x holds.

2 If n > 3 and 1 6 i 6 n− 2, then ∂±i �−n = Γ−n−2∂
±
i �

−
n−1sn−1.

3 If n > 2 and n− 1 6 i 6 n, then ∂−i �−n = �−n−1d
(−)i

n−1 and ∂+
i �

−
n = εn−1∂

+
n−1�

−
n−1sn−1.

Moreover, for 1 6 i 6 n, we have ∂±i �−n snu = ∂±i �−n tnu for any (n+ 1)-morphism u.

Proof. Let k1 . . . kn−1 ∈ Λn−1. Then the natural map evk1 ...kn−1
∂±i �−n from Cn to Cn−1

that sends x ∈ Cn to (∂±i �−n x)(k1 . . . kn−1) corresponds by Yoneda to an ω-functor fk1 ...kn−1

from 2n−1 to 2n, where 2n−1 (respectively, 2n) is the free ω-category generated by a

(n− 1)-morphism A (respectively, an n-morphism B). Set

fk1 ...kn−1
(A) = d

αk1 ...kn−1
nk1 ...kn−1

(B),

where we still use the convention d− = s and d+ = t. Then fk1 ...kn−1
= d

αk1 ...kn−1
nk1 ...kn−1

because of

the freeness of 2n−1. Moreover, the inequality nk1 ...kn−1
6 n− 1 holds. Therefore

(∂±i �
−
n snu)(k1 . . . kn−1) = d

αk1 ...kn−1
nk1 ...kn−1

snu

= d
αk1 ...kn−1
nk1 ...kn−1

tnu

= (∂±i �
−
n tnu)(k1 . . . kn−1)

Therefore for 1 6 i 6 n, we have ∂±i �−n snu = ∂±i �−n tnu for any (n+ 1)-morphism u.

Suppose the proposition is true for p < n with n > 2, and take an n-dimensional

morphism x. Set h±i = Γ−n−2∂
±
i �

−
n−1sn−1(x) for 1 6 i 6 n − 2, and set h−i = �−n−1d

(−)i

n−1x

and h+
i = εn−1∂

+
n−1�

−
n−1sn−1(x) for i > n− 1. We are going to verify that (h±i ) is a fillable
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(n − 1)-shell. It is sufficient to prove that for any i and any j between 1 and n, and any

α, β ∈ {−,+}, the equality ∂αi h
β
j = ∂

β
j−1h

α
i holds as soon as 1 6 i < j 6 n.

First treat the case i < j 6 n− 2. We have

∂αi h
β
j = ∂αi Γ

−
n−2∂

β
j�
−
n−1sn−1(x), since j < n− 1

= Γ−n−3∂
α
i ∂

β
j�
−
n−1sn−1(x), since i < n− 2

= Γ−n−3∂
β
j−1∂

α
i�
−
n−1sn−1(x)

= ∂
β
j−1h

α
i , since i < n− 1.

Now treat the case i < j = n− 1. We have

∂±i h
−
j = ∂±i �

−
n−1d

(−)n−1

n−1 x

= ∂−j−1Γ−n−2∂
±
i �

−
n−1d

(−)n−1

n−1 x

= ∂−j−1h
±
i .

We also have

∂±i h
+
n−1 = ∂±i εn−1∂

+
n−1�

−
n−1sn−1(x)

= εn−2∂
±
i ∂

+
n−1�

−
n−1sn−1(x)

= εn−2∂
+
n−2∂

±
i �

−
n−1sn−1(x)

= ∂+
n−2Γ−n−2∂

±
i �

−
n−1sn−1(x)

= ∂+
n−2h

±
i .

Now treat the case i < j = n and i < n− 1. We have

∂±i h
−
n = ∂±i �

−
n−1d

(−)n−1

n−1 (x)

= ∂−n−1Γ−n−2∂
±
i �

−
n−1d

(−)n−1

n−1 (x)

= ∂−n−1h
±
i

and

∂±i h
+
n = ∂±i εn−1∂

+
n−1�

−
n−1sn−1(x)

= εn−2∂
±
i ∂

+
n−1�

−
n−1sn−1(x)

= εn−2∂
+
n−2∂

±
i �

−
n−1sn−1(x)

= ∂+
n−1Γ−n−2∂

±
i �

−
n−1sn−1(x)

= ∂+
n−1h

±
i .

Finally, treat the case i = n− 1 and j = n. We have

∂−n−1h
−
n = ∂−n−1�

−
n−1d

(−)n

n−1 (x)

= ∂−n−1�
−
n−1d

(−)n−1

n−1 (x)

= ∂−n−1h
−
n−1

∂−n−1h
+
n = ∂−n−1εn−1∂

+
n−1�

−
n−1sn−1(x)

= ∂+
n−1�

−
n−1sn−1(x)
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= ∂+
n−1�

−
n−1d

(−)n−1

n−1 (x)

= ∂+
n−1h

−
n−1

∂+
n−1h

−
n = ∂+

n−1�
−
n−1d

(−)n

n−1 (x)

= ∂−n−1εn−1∂
+
n−1�

−
n−1sn−1(x)

= ∂−n−1h
+
n−1

∂+
n−1h

+
n = ∂+

n−1εn−1∂
+
n−1�

−
n−1sn−1(x)

= ∂+
n−1h

+
n−1

Corollary 7.3. Let C be an ω-category and let n > 1. Set C6n = C1 ∪ . . .∪Cn There exists

one and only one natural map �−n from C6n to ωCat(In,C)− such that the following

axioms hold:

1 If n > 3 and 1 6 i 6 n− 2, then ∂±i �−n = Γ−n−2∂
±
i �

−
n−1sn−1.

2 If n > 2 and n− 1 6 i 6 n, then ∂−i �−n = �−n−1d
(−)i

n−1 and ∂+
i �

−
n = εn−1∂

+
n−1�

−
n−1sn−1.

Moreover, for 1 6 i 6 n, we have ∂±i �−n sn = ∂±i �−n tn.

Let D−∗ (C) be the acyclic group complex generated by the degenerate elements of

the negative simplicial nerve of C with the conventions D−n (C) ⊂ ZωCat(In,C) and

D−1 (C) = D−0 (C) = 0. Hence we get the following proposition.

Proposition 7.4. The natural linear map h−n from ZCn to ZωCat(In,C)− that sends xn
to �−n xn for n > 1 and associates (x0, y0) ∈ ZC0 × ZC0 to x0 ∈ ZC0 induces a natural

complex morphism

h− : C
gl
∗ (C) // ZωCat(I∗,C)−/D−∗ (C) .

Proof. Let n > 2 and let xn ∈ ZCn. We have to compare
∑j=n

j=1(−1)j+1∂−j �−n xn and

�−n−1(sn−1(xn)− tn−1(xn)) modulo elements of D−∗ (C). We get

j=n∑
j=1

(−1)j+1∂−j �−n xn

=

j=n−2∑
j=1

(−1)j+1Γ−n−2∂
−
j �

−
n−1sn−1xn + (−1)n�−n−1(d(−)n−1

n−1 (xn)− d(−)n

n−1 (xn))

= �−n−1(sn−1(xn)− tn−1(xn)) mod D−∗ (C).

Now let us treat the case n = 1. Let x1 ∈ ZC1. We immediately see that h−0 (s0(x1), t0(x1))

and ∂−(�−1 (x1)) are equal.

Corollary 7.5. The natural linear map h−n from ZCn to ZωCat(In,C)− that sends xn to

�−n xn for n > 1 and associates (x0, y0) ∈ ZC0 ×ZC0 to x0 ∈ ZC0 induces a natural linear

map from the globular homology to the negative corner homology of C.

Proof. The proof follows from the fact that for n > 2, the n-th homology group of the

quotient chain complex ZωCat(I∗,C)−/D−∗ (C) is the (n − 1)-th homology group of the

normalized chain complex associated to the corner simplicial nerve of C.
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Now let us expose the construction of h+
n (without proof).

Proposition 7.6. Let C be an ω-category and let n > 1. Set C6n = C1∪ . . .∪Cn There exists

one and only one natural map �+
n from C6n to ωCat(In,C)+ such that the following

axioms hold:

1 If n > 3 and 1 6 i 6 n− 2, then ∂±i �+
n = Γ+

n−2∂
±
i �

+
n−1sn−1.

2 If n > 2 and n− 1 6 i 6 n, then ∂+
i �

+
n = �+

n−1d
(−)i+1

n−1 and ∂−i �+
n = εn−1∂

+
n−1�

+
n−1sn−1.

Moreover, for 1 6 i 6 n, we have ∂±i �+
n sn = ∂±i �+

n tn.

Proposition 7.7. The natural linear map h+
n from ZCn to ZωCat(In,C)+ that sends xn to

�+
n xn for n > 1 and sends (x0, y0) ∈ ZC0⊕ZC0 to y0 induces a natural complex morphism

h+ : C
gl
∗ (C) // ZωCat(I∗,C)+/D+∗ (C)

where D+∗ (C) is the sub-complex of ZωCat(I∗,C)+ generated by the degenerate elements

of the positive corner simplicial nerve. Therefore h+
n induces a natural linear map from

Hgl
n (C) to H+

n (C).

8. Toward an ‘oriented algebraic topology’

8.1. Homotopic ω-categories

Now we want to speculate about the notion of homotopic ω-categories. We proceed

as in algebraic topology by defining a notion of homotopy between non 1-contracting

ω-functors, and hence we deduce a notion of homotopy equivalence of ω-category. We

are obliged to work with non 1-contracting ω-functors because of the globular and corner

homologies.

Intuitively, we could say that two non 1-contracting ω-functors f and g from C to D
are homotopic if f(C) and g(C) have the same ‘oriented topology’. So a first attempt of

definition could be: the ω-functors f and g are homotopic if for any x ∈ C, f(x) ∼ g(x).

Unfortunatly, f(x) and g(x) do not necessarily have the same dimension. So this definition

does not make sense, except if x is 0-dimensional: in this case, f(x) ∼ g(x) means

f(x) = g(x). It is plausible to think that if f and g were homotopic, then C
gl
∗ (f) and

C
gl
∗ (g) would be two chain homotopic morphisms from C

gl
∗ (C) to Cgl

∗ (D). So we propose

the following definition.

Definition 8.1. Let f and g be two non 1-contracting ω-functors from an ω-category C to

an ω-category D. The morphisms f and g are homotopic if the following conditions hold:

1 For any 0-dimensional x of C, one has f(x) = g(x).

2 There exists a linear map h1 from ZC1 to ZD2 such that (s1 − t1)h1(x) = f(x) − g(x)

for any 1-morphism x of C.

3 For any n > 2, there exists a linear map hn from ZCn to ZDn+1 such that for any

n-morphism x of C, we have

hn−1(sn−1 − tn−1)(x) + (sn − tn)hn(x) = f(x)− g(x) mod ZDn−1.
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We denote this property by f ∼(h∗) g, or more simply f ∼ g whenever it is not necessary

to specify the homotopy map.

Proposition 8.1. The binary relation ‘is homotopic to’ is an equivalence relation on the

collection of non 1-contracting ω-functors from a given ω-category C to a given ω-

category D.

Proof. We have f ∼ f since f ∼(0) f. If f ∼(h∗) g, then g ∼(−h∗) f. Now suppose that

f ∼(h1∗) g and g ∼(h2∗) k. Then f ∼(h1∗+h2∗) k.

Proposition 8.2. The homotopy equivalence of non 1-contracting ω-functors is compatible

with the composition of non 1-contracting ω-functors in the following sense. Take a

diagram in ωCat1

C f // D
g //
h

// E k // F .

If g ∼ h, then g ◦ f ∼ h ◦ f, k ◦ g ∼ k ◦ h and k ◦ g ◦ f ∼ k ◦ h ◦ f.

Proof. Suppose that g ∼H∗ h. Define Hf (n > 1) by:

1 If x ∈ Cn and if dim(f(x)) < n, then Hf
n (x) := 0.

2 If x ∈ Cn and if dim(f(x)) = n, then Hf
n (x) := Hn(f(x)).

If x is 1-dimensional, then

g ◦ f(x)− h ◦ f(x) = (s1 − t1)H1(f(x)) since f is non 1-contracting

= (s1 − t1)Hf
1 (x).

If x is of dimension n greater than 2, then either:

dim(f(x)) < n, and in this case

g ◦ f(x)− h ◦ f(x) mod ZEn−1

= 0

= Hn−1(sn−1 − tn−1)(f(x)) + (sn − tn)Hf
n (x)

= Hn−1 ◦ f ◦ (sn−1 − tn−1)(x) + (sn − tn)Hf
n (x) since f is an ω-functor

= H
f
n−1(sn−1 − tn−1)(x) + (sn − tn)Hf

n (x)

since Hn−1 ◦ f ◦ (sn−1 − tn−1)(x) = 0.

Or:

dim(f(x)) = n, and in that case

g ◦ f(x)− h ◦ f(x) mod ZEn−1

= Hn−1(sn−1 − tn−1)(f(x)) + (sn − tn)Hf
n (x)

= Hn−1 ◦ f ◦ (sn−1 − tn−1)(x) + (sn − tn)Hf
n (x) since f is an ω-functor

Since f(x) is n-dimensional, we have f(sn−1(x)) = sn−1 ◦ f(x) and f(tn−1(x)) = tn−1 ◦ f(x)

are (n− 1)-dimensional. Therefore

g ◦ f(x)− h ◦ f(x) mod ZEn−1 = H
f
n−1(sn−1 − tn−1)(x) + (sn − tn)Hf

n (x).

Therefore g ◦ f ∼Hf h ◦ f.
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Now define kH by kHn(x) := k(Hn(x)) for x ∈ Cn. Then for x 1-dimensional, we have

k ◦ g(x)− k ◦ h(x)

= k ◦ (s1 − t1)H1(x)

= (s1 − t1)kH1(x) since k is an ω-functor.

And for x of dimension greater than 2, we have

k ◦ g(x)− k ◦ h(x) mod ZFn−1

= k (Hn−1(sn−1 − tn−1)(x) + (sn − tn)Hn(x))

= kHn−1(sn−1 − tn−1)(x) + (sn − tn) kHn(x) since k is an ω-functor.

Therefore k ◦ g ∼kH∗ k ◦ h.

Proposition 8.3. Let f and g be two non 1-contracting ω-functors such that for any x of

dimension lower than n, we have f(x) and g(x) are two homotopic dim(x)-dimensional

morphisms. Then f and g are homotopic as n-functor from τnC to τnD (when we consider

only the morphisms of dimension lower than n). In other words, the ‘oriented topology’

is the same in dimension lower than n.

Proof. For any x of dimension 1 6 d 6 n, there exists hd(x) ∈ ZDd+1 such that

(sd − td)(hd(x)) = f(x) − g(x). By convention, we take hd(x) = 0 whenever f(x) = g(x).

However sd−1(f(x) − g(x)) = sd−1(sd − td)(hd(x)) = 0 and in the same way, we have

td−1(f(x)− g(x)) = td−1(sd − td)(hd(x)) = 0. Therefore hd−1(sd−1x) = hd−1(td−1x) = 0 and

hd−1(sd−1 − td−1)(x) + (sd − td)hd(x) = f(x)− g(x).

Definition 8.2. Let C and D be two ω-categories. They are homotopic if and only if there

exists a non 1-contracting ω-functor f from C to D and a non 1-contracting ω-functor g

from D to C such that f ◦ g ∼ IdD and g ◦ f ∼ IdC. We say that f and g are homotopy

equivalences between the two ω-categories C and D.

Proposition 8.4. The homotopy equivalence is indeed an equivalence relation on the

collection of ω-categories.

Proof. This relation is obviously reflexible and symmetric. It remains to prove the

transitivity. Let us consider the following diagram in ωCat1:

C
f // Dg

oo
h // E
k

oo

Suppose that g ◦ f ∼ IdC, f ◦ g ∼ IdD, h ◦ k ∼ IdE and k ◦ h ∼ IdD. Then g ◦ k ◦ h ◦ f ∼
g ◦ f ∼ IdC and h ◦ f ◦ g ◦ k ∼ h ◦ k ∼ IdE.
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Now we can give some examples of homotopic ω-categories.

Proposition 8.5. For any natural number p > 1 and q > 1, 2p (the free ω-category

generated by one p-morphism) and 2q are homotopic.

Proof. If p = q, it is trivial. Suppose that p > q. Let f be the only ω-functor from

< A >= 2p to < B >= 2q such that f(A) = B and let g be the unique functor from < B >

to < A > such that g(B) = sq(A). Then f ◦ g = Id2q so f ◦ g and Id2q are homotopic as

ω-functors. Now consider g ◦ f and Id2q . Set

hr = 0 if 1 6 r < q

hr(srA) = 0 and hr(trA) = sr+1A if q 6 r < p

hr(A) = 0 if r > p.

First suppose that q = 1. Then we have (s1 − t1)h1(s1A) = 0 = (g ◦ f)(s1A) − s1A and

(s1 − t1)h1(t1A) = s1A− t1A = (g ◦ f)(t1A)− t1A, and for any 1 < r < p, we have

hr−1(sr−1 − tr−1)(srA) + (sr − tr)hr(srA) = −srA
= g ◦ f(srA)− srA mod (2p)r−1

and

hr−1(sr−1 − tr−1)(trA) + (sr − tr)hr(trA) = −srA+ srA− trA
= s1A− trA mod (2p)r−1 since r > 1

= g ◦ f(trA)− trA.
In order to complete the case q = 1, now suppose that r = p. Then

hr−1(sr−1 − tr−1)(A) + (sr − tr)hr(A) = −A
= s1A− A mod (2p)p−1 since p > 2

= g ◦ f(A)− A.
Now suppose that q > 1. The different cases may be treated in the same way. First set

r = 1. Then (s1 − t1)h1(s1A) = 0 = (g ◦ f)(s1A) − s1A and (s1 − t1)h1(t1A) = s1A − t1A =

(g ◦ f)(t1A)− t1A, and for any 1 < r < q, we have

hr−1(sr−1 − tr−1)(srA) + (sr − tr)hr(srA) = 0

= g ◦ f(srA)− srA
and

hr−1(sr−1 − tr−1)(trA) + (sr − tr)hr(trA) = 0

= g ◦ f(trA)− trA.
For r = q, we have

hq−1(sq−1 − tq−1)(sqA) + (sq − tq)hq(sqA) = 0

= g ◦ f(sqA)− sqA
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and

hq−1(sq−1 − tq−1)(tqA) + (sq − tq)hq(tqA) = sqA− tqA
= g ◦ f(tqA)− tqA.

For q < r < p, we have

hr−1(sr−1 − tr−1)(srA) + (sr − tr)hr(srA) = −srA
= sqA− srA mod (2p)r−1 since q 6 r − 1

= g ◦ f(srA)− srA
and

hr−1(sr−1 − tr−1)(trA) + (sr − tr)hr(trA) = −srA+ srA− trA
= sqA− trA mod (2p)r−1 since q 6 r − 1

= g ◦ f(trA)− trA mod (2p)r−1.

The remaining case is r = p:

hp−1(sp−1 − tp−1)(A) + (sp − tp)hp(A) = −A
= sqA− A mod (2p)p−1 since q 6 p− 1

= g ◦ f(A)− A.

Definition 8.3. Let C be an ω-category. Let I and F be some sets of 0-morphisms of C.

The bilocalization of C with respect to I and F the sub-category of C consists of the

n-morphisms f such that s0f ∈ I and t0f ∈ F with the induced structure of an ω-category.

This ω-category is denoted by C(I, F).

In the following, the set I will always be the set of initial states and the set F the set

of final states of the considered ω-category.

Now we prove that the bilocalization of the ω-category C of Figure 4 with respect

to I (the intersection of u and e) and F (the intersection of z and d) is homotopic to

the ω-category of Figure 7, denoted by G1[A,B]. Let f be the unique ω-functor from

C(s0(u), t0(z)) to G1[A,B] that maps any 1-path homotopic to γ1 to A and any 1-path

homotopic to γ4 to B. Let g be the unique ω-functor from G1[A,B] to C(s0(u), t0(z)) that

maps A to γ1 and B to γ4. Then f ◦ g = IdG1[A,B]. It remains to prove that g ◦ f and

IdC(s0(u),t0(z)) are homotopic ω-functors. For any 1-morphism x of C(s0(u), t0(z)), g ◦ f(x)

and x are homotopic 1-morphisms. Let h1(x) be the element of ZC(s0(u), t0(z))2 such that

(s1 − t1)h1(x) = g ◦ f(x)− x. Take h2 = 0. We have to verify that for any 2-morphism C ,

we have

h1(s1 − t1)C + (s2 − t2)h2C = g ◦ f(C)− C mod C(s0(u), t0(z))1.

Suppose for example that s1C is homotopic to γ1. Then h1s1C is the unique element of

ZC(s0(u), t0(z))2 such that (s1 − t1)h1s1C = γ1 − s1C . And h1t1C is the unique element of

ZC(s0(u), t0(z))2 such that (s1−t1)h1t1C = γ1−t1C . Then h1(s1−t1)C is the unique element

of ZC(s0(u), t0(z))2 such that (s1−t1)h1(s1−t1)C = t1C−s1C . Therefore h1(s1−t1)C = −C .

Hence we have the result.
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α

β

Fig. 19. A 2-semaphore

Now we will give some other examples without proof. In Figure 8, the bilocalization of

the depicted ω-categories with respect to their sets of initial and final states are homotopic.

Figure 19 represents a cubical set with a 3-dimensional cubical hole. Then the bilocal-

ization of this 3-category with respect to its sets of initial and final states is homotopic

to G2[A,B], the 2-category of Figure 2 generated by two non homotopic 2-morphisms A

and B having the same 1-source and the same 1-target.

8.2. Invariance of the globular and corner homologies

Theorem 8.6. Let f and g be two non 1-contracting ω-functors from C to D. Suppose

that f and g are homotopic. Then for all natural numbers n, we have f and g induce

linear maps from Hgl
n (C) to Hgl

n (D) and, moreover, Hgl
n (f) = Hgl

n (g).

Proof. Take two homotopic ω-functors f and g. Let x1 be a globular 1-cycle. Then

(f − g)(x1) = (s1 − t1)h1(x). Therefore (f − g)(x1) = ∂(h1(x)). Now take a globular n-cycle

xn with n > 2. Then sn−1xn = tn−1xn. Therefore f(xn)− g(xn) = (sn − tn)hnxn mod Dn−1.

The analogous statement for the corner homologies is still a conjecture and only proved

in the following particular case (see Proposition 8.3).

Theorem 8.7. Let f and g be two non 1-contracting ω-functor from C to D. Suppose that

for any x of dimension strictly lower than n, f(x) = g(x), and that for x n-dimensional,

f(x) and g(x) are two homotopic n-morphisms of D. Then for any p 6 n, fp (respectively,

gp) yield linear maps from Hα
p (C) to Hα

p (D) for α ∈ {−,+}, and, moreover, Hα
p (f) = Hα

p (g).

Proof. We will give the proof for α = −. The homology of the non-normalized complex

associated to a simplicial group is equal to its homotopy (Weibel 1994, Theorem 8.3.8).

Therefore it suffices to find a homotopy between f(x) and g(x) in N−(C) for any

x ∈ ωCat(In,C). We can suppose without loss of generality that there exists an (n + 1)-

dimensional morphism u of C such that sn(u) = f(x)(0n) and tn(u) = g(x)(0n). Then

consider the following realizations h±i of In for 1 6 i 6 n+ 1: for i between 1 and n− 1,

h±i = Γ−n−1∂
±
i x = Γ−n−1∂

±
i y, h−n = dεn(u), h

−
n+1 = dε+1

n (u) with ε equal to 0 or 1 depending

on the parity of n, and finally h+
n = h+

n+1 = εn∂
+
n x = εn∂

+
n y. We obtain the fillable n-shell
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α
��

�� ��
�� A

CC�� ��
�� B

// β

Fig. 20. Composition of two 2-morphisms

α

u

��

v

CC
�� ��
�� A β

x

��

y

CC
� �� �KS

B γ

Fig. 21. Two 0-composable 2-morphisms

that has already appeared in Proposition 7.2. The corresponding element of ωCat(In+1,C)

yields a homotopy in N−(C) between f(x) and g(x).

Conjecture 8.8. Let f and g be two non 1-contracting ω-functors from C to D. Suppose

that f and g are homotopic. Then for all natural numbers n, we have f and g induce

linear maps from H±n (C) to H±n (D), and, moreover, H±n (f) = H±n (g).

9. Some open questions and perspectives

9.1. Some interesting problems in mathematics

First, we return to the globular homology of an ω-category. We propose here a small

modification of its definition. Consider the ω-category C of Figure 20 where A and B are

two 2-morphisms that are supposed to be composable. Then Hgl
2 (C) 6= 0 since Cgl

3 (C) = 0

and since (s1 − t1)(A ∗1 B − A − B) = 0. However, this globular 2-cycle corresponds to

nothing real in C. As consequence of this small calculation, we obtain that Hgl
2 (I3) 6= 0

(cf. Figure 13). It suffices to consider, for example, the globular 2-cycle C ∗1 D − C − D
with C = R(−00) ∗0 R(0 + +) and D = R(−0−) ∗0 R(0 + 0).

Consider the ω-category of Figure 21 where α, β and γ are 0-morphisms, u, v, x and y

are 1-morphisms and A and B two 2-morphisms. There are at least two elements of ZC2

between u∗0x and v∗0y : A∗0y−u∗0B, A∗0x−v∗0B. Therefore A∗0y−u∗0B−A∗0x+v∗0B

is a globular 2-cycle, which means nothing geometrically.

So we propose to modify the definition of the globular homology as follows. Let ω̂Cat1
be the category whose objects are globular ω-categories such that any (n+1)-morphism X

is invertible with respect to ∗n as soon as n > 1 (that is, there exists an (n+ 1)-morphism

X−1 such that snX
−1 = tnX, tnX

−1 = snX, X ∗n X−1 = snX, X−1 ∗n X = tnX) and whose

morphisms are non 1-contracting ω-functors. Let us use C 7→ Ĉ to denote the left adjoint
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//

��???????

��??????? //

��?????????������� //

��???????

??�������

��???????

�−2 (B)
[c ???????

???????

A∗1B
+3

??�������

��???????
t0A

;C�������

������� //

//
�−2 (A)

;C�������

�������

??�������

t0A

KS

??������� //

�−2 (A∗1B)

KS

t0A

[c ???????

???????

??�������

Fig. 22. h−2 (A ∗1 B − A− B) is a boundary

functor to the forgetful functor from ω̂Cat1 to ωCat1. We set Cgl
0 (C) = ZC0 ⊕ ZC0,

C
gl
1 (C)1 = ZC1, and Cgl

n (C) for n > 2 is the free abelian group generated by Ĉn quotiented

by the relations A + B = A ∗n−1 B mod ZCn−1 if A and B are two n-morphisms such

that tn−1A = sn−1B. With the same differential map, we obtain a new globular homology

theory. Let us denote it by Hnew−gl
∗ .

With this new homology theory, the above problems disappear. It is obvious for the

first, so we will just show the reasoning for the second one. In Cnew−gl
2 (C) one has

A ∗0 x− v ∗0 B = A ∗0 x+ (v ∗0 B)−1

= A ∗0 x+ v ∗0 B
−1

= (A ∗0 x) ∗1 (v ∗0 B
−1)

= (A ∗1 v) ∗0 (x ∗1 B
−1)

= A ∗0 B
−1

= (u ∗1 A) ∗0 (B−1 ∗1 y)

= (u ∗0 B
−1) ∗1 (A ∗0 y)

= u ∗0 B
−1 + A ∗0 y

= (u ∗0 B)−1 + A ∗0 y

= A ∗0 y − u ∗0 B.

It suffices to consider the labelled 3-cube of Figure 22 to see that h−2 (A ∗1 B − A − B)

is a boundary in the negative corner homology. In the same way, we can prove that

h+
2 (A ∗1 B − A− B) is also a boundary, this time in the posivite corner homology. There

is a canonical linear map H
gl
∗ (C) //Hnew−gl

∗ (C) . Therefore there exists at least for

n = 0, 1, 2 a natural linear map ĥ±n such that the following diagram commutes:

Hgl
n (C) //

h±n

��

H
new−gl
∗ (C)

ĥ±n

��
H±n (C) // H±n (Ĉ)
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u⊗ I1

u⊗ R(−)

u⊗ R(+)

v ⊗ I1

v ⊗ R(−)

v ⊗ R(+)

Fig. 23. Filling of corners

We are led to the following conjectures.

Conjecture 9.1.

1 The group Hnew−gl
p (In) vanishes for every natural number n and any p > 0.

2 For every n > 2, if A and B are two n-morphisms such that tn−1A = sn−1B, then

�±n (A ∗n−1 B − A− B) is a boundary in the corresponding corner homology of Ĉ.

3 The canonical map H±n (C) −→ H±n (Ĉ) is an isomorphism for every n > 0.

4 As consequence of the above two conjectures, h±n factorizes through the new globular

homology theory.

This new definition of the globular homology gives rise to a new definition of homotopic

non 1-contracting ω-functors and gives rise to the conjecture that the corner homology

theories are still invariant with respect to this new equivalence relation.

Elements like A ∗1 B − A − B could be called thin globular cycles. On the corner

homologies, the analogous elements are the linear combinations of x ∈ ωCat(In,C) for

some given natural number n such that x(0n) is of dimension strictly lower than n. We

have therefore the following conjecture.

Conjecture 9.2. (About the thin elements of the corner complexes of a free globular ω-

category C) Let xi be elements of ωCat(In,C)± and let λi be natural numbers, where i

runs over some set I . Suppose for any i that xi(0n) is of dimension strictly lower than n.

Then
∑

i λixi is a boundary if and only if it is a cycle.

With these new facts about the thin elements, Conjecture 8.8 becomes as follows.

Conjecture 9.3. Let f and g be two homotopic non 1-contracting ω-functors from C to

D where C and D are two free ω-categories. Let x be an element of ωCat(In,C)±. Then

f(x)−g(x) = B+T where B is a boundary of ZωCat(In,D)± and T a linear combination

of thin elements of ZωCat(In,D)±.

There exists a unique biclosed monoidal structure ⊗ on ωCat such that Im⊗ In = Im+n.

See, for example, Crans (1995) for an explicit construction using globular pasting scheme

theory. The effect of the functor − ⊗ I1 is to fill corners as shown in Figure 23. We are

led to the following conjectures.

Conjecture 9.4. If C is an ω-category, the ω-functor from C to I1 ⊗ C that maps u to

R(∓)⊗u yields an isomorphism from H±∗ (C) to H±∗ (I1⊗C) and the zero map from H∓∗ (C)

to H∓∗ (I1 ⊗C) for ∗ > 0.
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We can easily check that u 7→ R(∓) ⊗ u induces 0 from H∓1 (C) to H∓1 (I1 ⊗ C). We

conclude this section with three other problems. The conjectures are easy to verify in

lower dimension.

Conjecture 9.5.

1 The corner homology groups of In vanish in dimension strictly greater than 0. In other

words, if p > 0, then H±p (In) = 0.

2 Let 2n be the free ω-category generated by an n-morphism. Then p > 0 implies

H±p (2n) = 0.

3 Let Gn be the oriented n-globe with n > 0, that is, the free ω-category generated by

two non homotopic n-morphisms having the same (n−1)-source and the same (n−1)-

target. Then H±p (Gn) = 0 if p 6= n and p > 0. Moreover, the equality H±n (Gn) = Z
holds.

All the conjectures of this section will be the subject of future papers.

9.2. Perspectives in computer science

The study of the cokernel of the negative Hurewicz morphism would allow us to

detect the deadlock in concurrent machines. In an analogous way the cokernel of

the positive Hurewicz morphism would allow us to detect the unreachable states in a

concurrent machine. This is useful for detecting the dead code in concurrent machines

and for analyzing the safety properties of a machine (Godefroid and Wolper 1991):

proving that a property is false is equivalent to proving that some states are

unreachable.

We exhibited in Figure 8 a 1-category homotopic to an ω-category. The 1-category

we obtain suggests some relations with the graph of oriented connected components

introduced in Fajstrup et al. (1998a).

We think also that some problems of confidentiality in computer science involve the

construction of a relative corner homology. The problem stands as follows: take a

concurrent machine with a flow of inputs and a flow of outputs, every input and output

having a confidentiality level; such a machine is confidential if the flow of inputs of

confidentiality level lower than l determines the flow of outputs of confidentiality level l

(otherwise an observer could deduce from observations of outputs of confidentiality levels

l some information about inputs of confidentiality level greater than l). The geometric

problem that arises from this situation stands as follows: if some n-transitions are the

inputs and some others are the outputs, the problem is to know whether inputs determine

outputs over the set of all possible execution paths of the machine. In the 1-dimensional

case, using bicomplexes, we have already found a relation between this problem and

the vertical and horizontal H1, and we suspect that in higher dimension this problem is

related in some way to the relative oriented Hurewicz morphisms (Gaucher 1997a; 1997b;

1997c).
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10. Direct construction of the globular and corner homologies of a cubical set

In this final section we explain how to obtain the globular and corner homologies of a

cubical set by using the free cubical ω-category generated by it, instead of considering the

free globular one. This approach could be useful from an algorithmic viewpoint.

10.1. Cubical ω-category

The notion of a cubical ω-category appears in the (already cited) works of Brown, Higgins

and Al-Agl.

Definition 10.1. A cubical ω-category consists of a cubical set with connections

((Kn)n>0, ∂
α
i , εi,Γ

α
i )

together with a family of associative operations +j defined on {(x, y) ∈ Kn × Kn, ∂
+
i x =

∂−i y} for 1 6 j 6 n such that:

1 (x+j y) +j z = x+j (y +j z).

2 ∂−j (x+j y) = ∂−j (x).

3 ∂+
j (x+j y) = ∂+

j (y).

4 ∂αi (x+j y) =

{
∂αi (x) +j−1 ∂

α
i (y) if i < j

∂αi (x) +j ∂
α
i (y) if i > j.

5 (x+i y)+j (z+i t) = (x+j z)+i (y+j t). We will denote the two members of this equality

by [
x z

y t

]
- j6
i

6 εi(x+j y) =

{
εi(x) +j+1 εi(y) if i 6 j

εi(x) +j εi(y) if i > j.

7 Γ±i (x+j y) =

{
Γ±i (x) +j+1 Γ±i (y) if i < j

Γ±i (x) +j Γ±i (y) if i > j.

8 If i = j, Γ−i (x+j y) =

[
εj+1(y) Γ−j (y)

Γ−j (x) εj(y)

]
- j+16
j

9 If i = j, Γ+
i (x+j y) =

[
εj(x) Γ+

j (y)

Γ+
j (x) εj+1(x)

]
- j+16
j

10 Γ+
j x+j+1 Γ−j x = εjx and Γ+

j x+j Γ−j x = εj+1x.

11 εi∂
−
i x+i x = x+i εi∂

+
i x = x.

The corresponding category with the obvious morphisms is denoted by ∞Cat.
Look back again to the cubical singular nerve of a topological space X. We can equip

it with operations +j as follows:

(f +j g)(x1, . . . , xp) =

{
f(x1, . . . , 2xi, . . . , xp) if xi 6 1/2

g(x1, . . . , 2xi − 1, . . . , xp) if xi > 1/2.

All of the axioms of cubical ω-categories are satisfied except for the associativity axiom.
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It turns out that ωCat and ∞Cat are equivalent. The 2-dimensional case is solved in

Spencer (1977) (which was followed by Spencer and Wong (1983)) and the 3-dimensional

case is solved in Al-Agl (1989). Recently, Richard Steiner has developed the methods of

Al-Agl to prove the result in all dimensions, as conjectured in Al-Agl. The corresponding

result for groupoids was already known from earlier results of Brown and Higgins

(Brown and Higgins 1981a; 1981b). The category equivalence is realized by the functor

γ : ∞Cat −→ ωCat defined as follows (G ∈ ∞Cat):
(γG)n = {x ∈ Gn, ∂αj x ∈ εj−1

1 Gn−j for 1 6 j 6 n, α = 0, 1}.
Using general category theory arguments, one can prove that the forgetful functor U

from ∞Cat to Sets�
op

has a left adjoint functor ρ, which defines therefore the free cubical

ω-category generated by a cubical set. We will see in Section 10 that it can be constructed

explicitly by considering the cubical singular complex of the free globular ω-category

generated by K .

10.2. The globular and corner homologies of a cubical set

First, we will look at the cubical singular nerve.

Proposition 10.1. Let C be a globular ω-category. For any strictly positive natural number

n and any j between 1 and n, there exists one and only one natural map +j from the

set of pairs (x, y) of N�(C)n ×N�(C)n such that ∂+
j (x) = ∂−j (x) to the set N�(C)n that

satisfies the following properties:

∂−j (x+j y) = ∂−j (x) (1)

∂+
j (x+j y) = ∂+

j (x) (2)

∂αi (x+j y) =

{
∂αi (x) +j−1 ∂

α
i (y) if i < j

∂αi (x) +j ∂
α
i (y) if i > j.

(3)

Moreover, these operations induce the structure of a cubical ω-category on N�(C).

Proof. We will only give a sketch of the proof.

Step 1. First, we observe that the functor from ωCat to the category Sets of sets

C 7→ ωCat(Ip,C)×j ωCat(Ip,C) = {(x, y) ∈ ωCat(Ip,C)× ωCat(Ip,C), ∂+
i x = ∂−i y}

is representable. We use Ip +j I
p to denote the representing ω-category. It is equal to the

direct limit of the diagram

Ip Ip

Ip−1

δ+
i

aaCCCCCCCC

δ−i
=={{{{{{{{

We use φ− and φ+ to denote the two canonical embeddings of Ip in Ip +j I
p, respectively,

in the first and the second term.



Homotopy invariants of categories and concurrency 519

Step 2. Using Yoneda, constructing a natural map

+j : ωCat(In,C)×j ωCat(In,C) // ωCat(In,C)

is equivalent to constructing an ω-functor ηn,j from In to In +j I
n satisfying the dual

properties. If i < j, the natural transformation of functors (∂αi , ∂
α
i ) yields an ω-functor

(δαi , δ
α
i ) from In−1 +j−1 I

n−1 to In +j I
n. It is easy to see that this ω-functor comes from

the morphism of the pasting scheme that associates to (β, k1...kn−1) ∈ In−1 +j−1 I
n−1

(β, k1...[α]i...kn−1) ∈ In +j I
n with β ∈ {−,+}. If i > j, then the natural transformation of

functors (∂αi , ∂
α
i ) yields an ω-functor (δαi , δ

α
i ) from In−1 +j I

n−1 to In +j I
n. It is easy to

see that this ω-functor comes from the morphism of the pasting scheme that associates

to (β, k1...kn−1) ∈ In−1 +j I
n−1 (β, k1...[α]i...kn−1) ∈ In +j I

n with β ∈ {−,+}. The properties

that are required for the operations +j entail the following relations for the ηn,j:

ηn,j ◦ δ±j = φ± ◦ δ±j (4)

ηn,j ◦ δαi = (δαi , δ
α
i ) ◦ ηn−1,j−1 if i < j (5)

ηn,j ◦ δαi = (δαi , δ
α
i ) ◦ ηn−1,j if i > j. (6)

Step 3. The point is that it is difficult to find a formula for the composition of all cells of

Ip +j I
p (except in lower dimension). It is simpler to find this formula in a free ω-category

generated by a composable pasting scheme because composition means union in such a

context (Johnson 1989). It turns out that Ip +j I
p is exactly the free globular ω-category

generated by the composable pasting scheme defined as follows. Set

(Ip +j I
p)q = ({−} × (Ip)q) ∪ ({+} × (Ip)q)/ ≡

where ≡ is the equivalence relation induced by the binary relation

(−, k1...[+]j ...kp−1) ≡ (+, k1...[−]j ...kp−1)

for every k1, ..., kp−1 in {−, 0,+} together with the binary relations E and B defined by

(with x ∈ (Ip)i and y ∈ (Ip)j)

Eij = {((a, x), (a, y)) ∈ (Ip +j I
p)× (Ip +j I

p)/xEijy and a ∈ {−,+}}
Bij = {((a, x), (a, y)) ∈ (Ip +j I

p)× (Ip +j I
p)/xBijy and a ∈ {−,+}}.

Now we are in a position to prove the following property P (n) by induction on n: ‘for

any j between 1 and n, there exists one and only one ω-functor ηn,j from In to In +j I
n

satisfying Conditions 4, 5 and 6; moreover, ηn,j(R(0n)) = R({(−, 0n), (+, 0n)}’. This latter

equality illustrates the interest of globular pasting schemes.

Step 4. If n = 1, we have to construct an ω-functor from I1 to I1 +1 I
1. The hypotheses

lead us to set η1,1(R(−)) = R((−,−)) and η1,1(R(+)) = R((+,+)). Thus there exists one

and only one suitable ω-functor η1,1, and this is the unique one that satisfies

η1,1 (R(0)) = R ((−, 0)) ∗0 R ((+, 0)) = R ((−, 0), (+, 0)) .

So P (1) is true. Suppose we have proved P (k) for k < n where n is a natural number greater
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than 2. We have to construct an ω-functor ηn,j for any j between 1 and n from In to In+j I
n.

The induction hypothesis and Conditions 4, 5 and 6 entail the value of ηn,j on all faces of

In of dimension at most n− 1. It remains to prove that ηn,j(R(0n)) = R({(−, 0n), (+, 0n)}) is

the one and only solution. It suffices to verify that sn−1R({(−, 0n), (+, 0n)}) = ηn,j(sn−1R(0n))

and that tn−1R({(−, 0n), (+, 0n)}) = ηn,j(tn−1R(0n)). Let us verify the first equality. One has

sn−1R(0n) = R
(
δ

(−)1

1 (0n−1), . . . , δ(−)n

n (0n−1)
)

by the construction of In. By the induction hypothesis, ηn,j is (n − 1)-extendable. Since

composition means union, and because of Conditions 4, 5, and 6, one has[
h=j−1⋃
h=1

(δ(−)h

h , δ
(−)h

h ) ◦ ηn−1,j−1(0n−1)

]
∪
(
φ− ◦ δ(−)j

j (0n−1)
)

∪
 h=n⋃
h=j+1

(δ(−)h

h , δ
(−)h

h ) ◦ ηn−1,j(0n−1)


=

[
h=j−1⋃
h=1

R
(

(−, δ(−)h

h (0n−1)), (+, δ(−)h

h (0n−1))
)]
∪ R

(
((−)j , δ(−)j

j (0n−1))
)

∪
 h=n⋃
h=j+1

R
(

(−, δ(−)h

h (0n−1)), (+, δ(−)h

h (0n−1))
)

⊂ ηn,j(sn−1R(0n)).

It suffices to verify that

sn−1R ((−, 0n), (+, 0n)) = R
({

((−)j , δ(−)j

j (0n−1)), (±, δ(−)h

h (0n−1))/h 6= j
})

in the pasting scheme In +j I
n to complete the proof.

Let us define a natural map �n from τnC (the set of morphisms of C of dimension

lower than or equal to n) to ωCat(In,C) by induction on n as follows. One sets �0 = �−0
and �1 = �−1 .

Proposition 10.2. For any natural number n greater than or equal to 2, there exists a

unique natural map �n from C to ωCat(In,C) such that:

1 The equality �n(x)(0n) = x holds.

2 One has ∂α1�n = �n−1d
(−)α

n−1 for α = ±.

3 For 1 < i 6 n, one has ∂αi�n = ε1∂
α
i−1�n−1sn−1.

Moreover, for 1 6 i 6 n, we have ∂±i �nsnu = ∂±i �ntnu for any (n+ 1)-morphism u and for

all u ∈ τnC, �n(u) ∈ γN�(C)n.
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Proof. The induction equations define a fillable (n−1)-shell as defined in Proposition 5.1.

Proposition 10.3. For all n > 0, the evaluation map ev0n : x 7→ x(0n) from ωCat(In,C) to

C induces a bijection from γN�(C)n to τnC.

Proof. It is obvious for n = 0 and n = 1. Let us suppose that n > 2 and let us proceed

by induction on n. Since ev0n�n(u) = u by the previous proposition, the evaluation

map ev from γN�(C)n to τnC is surjective. Now let us prove that x ∈ γN�(C)n and

y ∈ γN�(C)n, and x(0n) = y(0n) = u imply x = y. Since x and y are in γN�(C)n, one

sees immediately that the four elements ∂±1 x and ∂±1 y are in γN�(C)n−1. Since all other

∂αi x and ∂αi y are thin, ∂−1 x(0n−1) = ∂−1 y(0n−1) = sn−1u and ∂+
1 x(0n−1) = ∂+

1 y(0n−1) = tn−1u.

By the induction hypothesis, ∂−1 x = ∂−1 y = �n−1(sn−1u) and ∂+
1 x = ∂+

1 y = �n−1(tn−1u).

By hypothesis, one can set ∂αj x = ε
j−1
1 xαj and ∂αj y = ε

j−1
1 yαj for 2 6 j 6 n. And one gets

xαj = (∂α1)j−1∂αj x = (∂α1)jx = (∂α1)jy = yαj . Therefore ∂αj x = ∂αj y for all α ∈ {−,+} and all

j ∈ [1, . . . , n]. By Proposition 5.1, one gets x = y.

The above proof also shows that the map that associates to any cube x of the cubical

singular nerve of C the cube �dim(x)(x(0dim(x))) is exactly the usual folding operator as

exposed in Al-Agl (1989).

Now let us remark that the free globular ω-category generated by a cubical set K

can be also obtained by considering the image by the functor γ of ρ(K). Beware of the

fact that in Al-Agl’s Ph. D. thesis, globular ω-categories contain identity operators (his

ω-categories are N-graded). So the correct statement is (γρ(K))n = τnF(K) where τnF(K)

is the n-category obtained by keeping only the p-morphisms with p 6 n. It suffices to

prove the previous equality for K = In since γ is a left adjoint functor (Al-Agl 1989),

therefore it commutes with all direct limits.

Corollary 10.4. Let K be a cubical set. Then N�(F(K)) is the free cubical ω-category

ρ(K) generated by K .

Proof. By Al-Agl (1989, Proposition 2.7.3), any n-cube x of ρ(K) (respectively, of

N�(F(K))) is determined by its (n−1)-shell of (n−1)-faces (∂±j x)16j6n+1 and by its image

in γρ(K) (respectively, γN�(F(K))).

Now take a cubical set K . As a consequence of the above remarks, it is possible to

construct Hgl
∗ (K) and H±∗ (K) and the two morphisms h±∗ by using the free cubical ω-

category generated by K instead of using the globular one. Let us still use γρ(K) to denote

the globular ω-category obtained by removing all identity elements. It is exactly the free

globular ω-category generated by K . We set Hgl
∗ (K) := H

gl
∗ (γρ(K)), and since N�(F(K))

is the free cubical ω-category generated by K , we set H±∗ (K) = H∗(Zρ(K)±∗ , ∂±) where

ρ(K)±n = {x ∈ ρ(K)n, ∀i1, . . . , in−1, ∂
±
i1
. . . ∂±in−1

x ∈ ρ(K)1}.
The two morphisms h±∗ from H

gl
∗ (K) to H±∗ (K) are constructed as in Proposition 7.2: the

only tool to be used is again Al-Agl (1989, Proposition 2.7.3).
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Appendix A. The categories and functors used in this paper

Sets�
op

F

��

Sets�
op

1

F

��

? _oo

ωCat

N�

��

ωCat1

N�

��

? _oo
Gl(−)

//______

H
gl
∗

&&

C
gl
∗

##HHHHHHHHHHHHHHHHHHH

Hα∗

%%

[Glob, Ab]
L∗(H)

// Ab

SetsΓ
op

SetsΓ
op

1
? _oo

Nα

��

Comp(Ab)

H∗

<<yyyyyyyyyyyyyyyyyyy

Sets∆
op

N
// Comp(Ab)

H∗
// Ab

The above diagram is commutative in the sense that two different ways between the

same pair of points give the same transformation. All these transformations are functors

except Gl(−). This diagram summarizes all transformations or functors constructed in

this paper.
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