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Comparing cubical and globular directed paths

by

Philippe Gaucher (Paris)

Abstract. A flow is a directed space structure on a homotopy type. It is already
known that the underlying homotopy type of the realization of a precubical set as a flow
is homotopy equivalent to the realization of the precubical set as a topological space. This
realization depends on the noncanonical choice of a q-cofibrant replacement. We construct
a new realization functor from precubical sets to flows which is homotopy equivalent to
the previous one and which does not depend on the choice of any cofibrant replacement
functor. The main tool is the notion of natural d-path introduced by Raussen. The flow we
obtain for a given precubical set is not anymore q-cofibrant but is still m-cofibrant. As an
application, we prove that the space of execution paths of the realization of a precubical
set as a flow is homotopy equivalent to the space of nonconstant d-paths between vertices
in the geometric realization of the precubical set.

1. Introduction

Presentation. Precubical sets are a prominent geometric model for
concurrency theory [6]. The n-cube represents the concurrent execution of
n actions. The space of d-paths in the geometric realization of a precubical
set is studied in many papers, such as a series of papers [24, 25, 26, 31, 32] by
Raussen and Ziemiański (the list of references is not exhaustive). Precubical
sets can also be realized as flows in the sense of [8]. The realization functor
of a precubical set as a flow is first introduced in [11, Definition 7.2].

The two approaches (let us call them the cubical one of Raussen and
Ziemiański and the globular one of the author) do not coincide up to home-
omorphism. In the cubical approach, the d-paths of the topological n-cube
[0, 1]n are the continuous paths which are nondecreasing with respect to
each axis of coordinates. Raussen and Ziemiański also study several variants
(tame, strict, natural etc.) which give rise to homotopy equivalent spaces of
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d-paths between two fixed vertices in the geometric realization of the precubi-
cal set. None of these definitions give rise to spaces of d-paths from the initial
to the final states of the n-cube [0, 1]n which are homeomorphic to the spaces
of execution paths from the initial to the final states of the n-cube [0, 1]n

viewed as a flow. In the latter case, the space of execution paths from the
initial to the final states of the n-cube is the (n− 1)-dimensional disk Dn−1

(see Theorem 3.12). It means that the latter space depends on a noncanon-
ical choice of an achronal slice in the middle of the topological n-cube and
on a noncanonical choice of a homeomorphism between this achronal slice
and Dn−1.

The underlying homotopy type of a flow is the homotopy type obtained
after removing the temporal information contained in a flow. It is defined in
[9, Section 6] and a more conceptual construction is provided in [14, Prop-
osition 8.16] using Moore flows. It is already known in full generality that
the underlying homotopy type of the realization of a precubical set as a flow
is isomorphic to the homotopy type of the realization of a precubical set as
a topological space [10, Theorem 6.2.1]. One of the purposes of this paper is
to prove the directed version of this result.

At first, using the notion of natural d-path introduced by Raussen in [24,
Definition 2.14], we improve the realization functor from precubical sets to
flows |−|q : □opSet → Flow introduced in [11, Definition 7.2] as follows.

Theorem (Theorem 5.8). There exist a colimit-preserving functor

|−|nat : □opSet → Flow

which does not depend on any cofibrant replacement and a natural transfor-
mation µ : |−|q ⇒ |−|nat such that for all precubical sets K, the natural map
µK : |K|q → |K|nat induces a bijection on states and a homotopy equivalence
Pα,β|K|q ≃ Pα,β|K|nat for all α, β ∈ K0.

Theorem 5.8 implies that Pα,β|K|nat is m-cofibrant, Pα,β|K|q being
q-cofibrant. The interest of the natural realization functor is that it does
not depend anymore on the arbitrary choice on any cofibrant replacement
functor for the category of flows. Surprisingly, it does not even depend on
an m-cofibrant replacement or on an h-cofibrant replacement of the category
of flows. The geometric properties of the natural d-paths enable us in Sec-
tion 6 to give another description of the natural realization functor using
Ziemiański’s notion of cube chain. As an application of Theorem 5.8 and of
Section 6, we prove the following theorems:

Theorem (Theorems 7.7 and 7.8). Let K be a precubical set. Let α, β
be two vertices of K. The space of execution paths Pα,β|K|nat is homotopy
equivalent to the set of nonconstant tame natural d-paths from α to β equipped
with the ∆-kelleyfication of the relative topology induced by the compact-open
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topology in the geometric realization of K. When moreover K is spatial (e.g.
proper), the homotopy equivalence is a homeomorphism.

Theorem (Corollary 7.9). Let K be a precubical set. Let α, β be two ver-
tices of K. Then the space of execution paths Pα,β|K|q is homotopy equivalent
to the space of nonconstant d-paths from α to β in the geometric realization
of K equipped with the ∆-kelleyfication of the compact-open topology.

Corollary 7.9 is not surprising. However, until a proof was known, it was
not sure that the statement was true for all precubical sets in full generality,
and not only e.g. for nonpositively curved precubical sets in the sense of [17],
a notion which brings together the properties satisfied by the precubical sets
coming from a lot of real concurrent systems (see [17, Proposition 1.29]).

Outline of the paper. Section 2 is a reminder about the three model
structures of flows: Quillen (q), Hurewicz (h) and mixed (m) introduced
in [16]. It contains, as a new and easy remark, the proof that these three
model structures on flows are simplicial.

Section 3 recalls some basic facts about cocubical objects, gives the defi-
nition of an r-realization functor with r ∈ {q,m,h} in Definition 3.6, adapts
in Theorem 3.8 some tools coming from [10], and finally gives the example
of the q-realization functor expounded in [11].

Section 4 recalls the notion of tame natural d-path of a precubical set
and proves some basic facts about their topology, in relation with the
∆-generated spaces which are the setting of this work.

Section 5 expounds the construction of the natural realization functor in
Definition 5.3. It does not depend on any cofibrant replacement functor. It
is a new realization functor which is proved to be equivalent in some sense
to the one of [11] in Theorem 5.8. This section also proves that this new
realization functor is an m-realization functor.

Section 6 gives an equivalent definition in Theorem 6.3 of the natural
realization functor in terms of cube chains in the sense of Ziemiański.

In Section 7, the tame concrete realization of a precubical set as a flow
and the notion of spatial precubical set are introduced in Definition 7.1 and
in Definition 7.3 respectively. Theorem 7.7 proves that the natural realization
and the tame concrete realization coincide in the spatial case. Then the latter
theorem is generalized to the nonspatial case in Theorem 7.8. Finally, the
connection with the q-realization functor is described in Corollary 7.9.

Appendix A is devoted to proving that the class of spatial precubical sets
is a small orthogonality class.

Prerequisites and notations. We refer to [1] for locally presentable
categories, and to [27] for combinatorial model categories. We refer to [20, 21]
for more general model categories, and to [7, 19, 28] for accessible model cat-



4 P. Gaucher

egories. The main tools used in this paper are the {q,m,h}-model structures
of flows [16], the homotopical results of [10] about the realization functors
of precubical sets as flows, and some topological results due to Ziemiański
about natural d-paths and the technique of cube chains coming from [32].

The initial object of a category is denoted by ∅. The terminal object of
a category is denoted by 1. The set of maps from X to Y in a category C is
denoted by C(X,Y ). IdX denotes the identity map of X.

The category Top denotes the category of ∆-generated spaces or of
∆-Hausdorff ∆-generated spaces (cf. [15, Section 2 and Appendix B]). The
inclusion functor from the full subcategory of ∆-generated spaces to the
category of general topological spaces together with the continuous maps
has a right adjoint called the ∆-kelleyfication functor. The latter functor
does not change the underlying set. The category Top is locally presentable
and cartesian closed. The internal hom TOP(X,Y ) is given by taking the
∆-kelleyfication of the compact-open topology on the set Top(X,Y ). The
category Top is equipped with its q-model structure. The m-model struc-
ture [5] and the h-model structure [2] of Top are also used in various places
of the paper. The q-model structure of Top is combinatorial. The m-model
structure and the h-model structure of Top are accessible (1). The three
model structures are monoidal and simplicial.

Compact means quasicompact Hausdorff (French convention).

Warning. All d-paths in a geometric realization of a precubical set con-
sidered in this paper are tame and nonconstant: see Remark 4.6. The adjec-
tive “tame” is added on purpose everywhere. The adjective “nonconstant” is
often omitted (but always understood), except in Corollary 7.9 to avoid any
confusion.

2. Three simplicial model structures of flows

Definition 2.1 ([8, Definition 4.11]). A flow is a small semicategory
enriched over the closed monoidal category (Top,×). The corresponding
category is denoted by Flow.

A flow X consists of a topological space PX of execution paths, a discrete
space X0 of states, two continuous maps s and t from PX to X0 called the
source and target map respectively, and a continuous and associative map
∗ : {(x, y) ∈ PX × PX | t(x) = s(y)} → PX such that s(x ∗ y) = s(x) and
t(x ∗ y) = t(y). Let Pα,βX = {x ∈ PX | s(x) = α and t(x) = β}: it is the
space of execution paths from α to β, α is called the initial state and β is

(1) It is unlikely that they are combinatorial but no proof is known. The proof of [23,
Remark 4.7] that the h-model structure is not cofibrantly generated works only for the
category of general topological spaces.
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called the final state. Note that the composition is denoted by x ∗ y, not by
y ◦ x. The category Flow is locally presentable by [13, Theorem 6.11].

Every set can be viewed as a flow with an empty space of execution paths.
Every poset can be viewed as a flow with one execution path from α to β if
and only if α < β. The obvious functor Set ⊂ Flow from the category of
sets to that of flows is limit-preserving and colimit-preserving. The following
example of flows will be important later:

Example 2.2. For a topological space Z, let Glob(Z) be the flow defined
by
Glob(Z)0 = {0, 1}, PGlob(Z) = P0,1Glob(Z) = Z, s = 0, t = 1.

This flow has no composition law.

Notation 2.3. Let n ≥ 1. Denote by Dn = {b ∈ Rn | |b| ≤ 1} the n-
dimensional disk, and by Sn−1 = {b ∈ Rn | |b| = 1} the (n− 1)-dimensional
sphere. By convention, let D0 = {0} and S−1 = ∅.

We need to recall:

Theorem 2.4. Let r ∈ {q,m, h}. Then there exists a unique model struc-
ture on Flow such that:

• A map of flows f : X → Y is a weak equivalence if and only if f0 :
X0 → Y 0 is a bijection and for all (α, β) ∈ X0 × X0, the continuous
map Pα,βX → Pf(α),f(β)Y is a weak equivalence of the r-model structure
of Top.

• A map of flows f : X → Y is a fibration if and only if for all (α, β) ∈
X0 × X0, the continuous map Pα,βX → Pf(α),f(β)Y is a fibration of the
r-model structure of Top.

This model structure is accessible and all objects are fibrant. Moreover, this
model structure is simplicial. It is called the r-model structure of Flow.

Proof. This is [16, Theorem 7.4] except the “moreover” part. The fact
that Flow is enriched, tensored and cotensored over simplicial sets is proved
in [10, Section 3.3]. The q-model structure of flows is simplicial by [10, Theo-
rem 3.3.15]. It remains to prove the compatibility with the m-model structure
and the h-model structure. It suffices to prove (see the very end of the proof
of [10, Proposition 3.3.14]) that the lift k′ of the commutative square

(Dn × {0} × |∆[1]|) ∪ (Dn × [0, 1]× {−1, 1}) //

��

Pα,βX

��

Dn × [0, 1]× |∆[1]| //

k′

33

Pα,βY
exists if the map Pα,βX → Pα,βY is an m-fibration of spaces or an h-fibration
of spaces. Since every m-fibration of spaces and every h-fibration of spaces
is a q-fibration of spaces, the proof is complete.
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By [16, Theorem 7.7], the m-model structure is the mixing of the q-
model structure and the h-model structure in the sense of [5, Theorem 2.1].
The q-model structure is not only accessible, but also combinatorial. A set of
generating cofibrations is the set of maps {Glob(Sn−1) ⊂ Glob(Dn) | n ≥ 0}
∪ {C : ∅ → {0}, R : {0, 1} → {0}} by e.g. [16, Theorem 7.6]. Every q-co-
fibration of flows is an m-cofibration and every m-cofibration of flows is an
h-cofibration by [5, Proposition 3.6].

There exists a flow which is not cofibrant in any of the three model struc-
tures by [16, Proposition 7.9]. This behavior differs from the behavior of the
h-model structure of topological spaces for which all spaces are h-cofibrant
(and h-fibrant). The reason is that the h-model structure of flows does not
coincide with the Hurewicz model structure given by [2, Corollary 5.23].
This one exists as well because Flow satisfies the monomorphism hypoth-
esis, being locally presentable, and because Flow is topologically bicomplete
(the proof is similar to the proof that it is simplicial as given in [10, Sec-
tion 3.3]) since a ∆-generated space is homeomorphic to the disjoint sum
of its path-connected components by [12, Proposition 2.8]. This Hurewicz
model structure is not used in this paper.

3. Realization functors from precubical sets to flows

Notation 3.1. Let [0] = {()} and [n] = {0, 1}n for n ≥ 1. By convention,
one has {0, 1}0 = [0] = {()}. The set [n] is equipped with the product order-
ing {0 < 1}n. Let 0n = (0, . . . , 0) ∈ {0, 1}n and 1n = (1, . . . , 1) ∈ {0, 1}n.

Let δαi : [n − 1] → [n] be the coface map defined for 1 ≤ i ≤ n and
α ∈ {0, 1} by δαi (ϵ1, . . . , ϵn−1) = (ϵ1, . . . , ϵi−1, α, ϵi, . . . , ϵn−1). The small cat-
egory □ is by definition the subcategory of the category of sets with the set
of objects {[n] | n ≥ 0} and is generated by the morphisms δαi . They satisfy
the cocubical relations δβj δ

α
i = δαi δ

β
j−1 for i < j and for all (α, β) ∈ {0, 1}2.

If p > q ≥ 0, then the set of morphisms □([p], [q]) is empty. If p = q, then
the set □([p], [p]) is the singleton {Id[p]}. For 0 ≤ p ≤ q, all maps of □ from
[p] to [q] are one-to-one. A good reference for presheaves is [22].

Definition 3.2 ([3]). The category of presheaves over □, denoted by
□opSet, is called the category of precubical sets. A precubical set K consists
of a family of sets (Kn)n≥0 and of set maps ∂αi : Kn → Kn−1 with 1 ≤ i ≤ n

and α ∈ {0, 1} satisfying the cubical relations ∂αi ∂
β
j = ∂βj−1∂

α
i for any α, β ∈

{0, 1} and for i < j. An element of Kn is called an n-cube. Let dim(c) = n
if c ∈ Kn. An element of K0 is also called a vertex of K.

Let K be a precubical set. There exists a functor □(K) : (□↓K) →
□opSet which takes the map of precubical sets □[n] → K to □[n]. It is a
general property of presheaves that K = lim−→□(K), and the latter colimit is
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denoted by lim−→□[n]→K
□[n]. Let

K≤n = lim−→
□[p]→K
p≤n

□[p].

Let □[n] := □(−, [n]). The boundary of □[n] is the precubical set □[n]≤n−1

also denoted by ∂□[n]. In particular, one has ∂□[0] = ∅.

Definition 3.3. A cocubical object of a category C is a functor □ → C.

Notation 3.4. Let C be a cocomplete category. Let X : □ → C be a
cocubical object of C. Let

X̂(K) = lim−→
□[n]→K

X([n]).

Proposition 3.5 ([10, Proposition 2.3.2]). Let C be a cocomplete cate-
gory. The mapping X 7→ X̂ induces an equivalence of categories between the
category of cocubical objects of C and the colimit-preserving functors from
□opSet to C.

Definition 3.6 below is new. Moreover, only q-realization functors were
implicitly studied in [11] because the h-model structure and them-model struc-
ture of flows were not yet known: they were introduced 13 years later in [16].

Definition 3.6. Let r ∈ {q,m, h}. A functor F : □opSet → Flow is an
r-realization functor if it has the following properties:

• F is colimit-preserving.
• For all n ≥ 0, the map of flows F (∂□[n]) → F (□[n]) is an r-cofibration.
• There is an objectwise weak equivalence of cocubical flows F (□[∗]) →
{0 < 1}∗ in the r-model structure of Flow.

Proposition 3.7. Let r ∈ {q,m, h}. Let F : □opSet → Flow be
an r-realization functor. Then for all precubical sets K, the flow F (K) is
r-cofibrant and there is a natural bijection K0

∼= F (K)0.

Proof. Let K be a precubical set. Then the canonical map ∅ → K is a
transfinite composition of pushouts of the maps ∂□[n] → □[n] for n ≥ 0.
Consequently, the canonical map ∅ → F (K) is a transfinite composition
of pushouts of the maps F (∂□[n]) → F (□[n]) for n ≥ 0. This implies that
F (K) is r-cofibrant. From the objectwise weak equivalence of cocubical flows
F (□[∗]) → {0 < 1}∗, we deduce the objectwise bijection of cocubical sets
F (□[∗])0 ∼= {0, 1}∗ ∼= □[∗]0. We obtain the natural bijection F (K)0 ∼= K0.

Theorem 3.8. Let r ∈ {q,m, h}. Consider two r-realization functors

F1, F2 : □
opSet → Flow.

Then there exists a natural transformation µ : F1 ⇒ F2 such that there is a
commutative diagram of cocubical flows
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F1(□[∗])

��

µ□[∗]
// F2(□[∗])

��

{0 < 1}∗ {0 < 1}∗

and for all precubical sets K, the map µK : F1(K) → F2(K) natural with
respect to K is a weak equivalence of the r-model structure of Flow. More-
over, for all (α, β) ∈ K0 ×K0, the natural map Pα,βF1(K)

≃−→ Pα,βF2(K) is
a homotopy equivalence of spaces.

Proof. The maps of cocubical flows Fi(□[∗]) → {0 < 1}∗ for i = 1, 2
are objectwise fibrations since Pα,β{0 < 1}∗ is empty or equal to a sin-
gleton and because all topological spaces are fibrant. Consequently, they
are objectwise trivial fibrations by definition of an r-realization functor. By
[10, Theorem 2.3.3], there exists a natural transformation µ : F1 ⇒ F2

such that there is the commutative diagram of cocubical flows depicted
in the statement of the theorem, and for all precubical sets K, the nat-
ural map µK : F1(K) ⇒ F2(K) is a simplicial homotopy equivalence,
and therefore a weak equivalence of the r-model structure by [20, Propo-
sition 9.5.16], between two r-cofibrant flows. If r = h, then the natural map
Pα,βF1(K) → Pα,βF2(K) is a homotopy equivalence of spaces by definition
of the weak equivalences of the h-model structure of flows. If r = q, then
the flows F1(K) and F2(K) are q-cofibrant by Proposition 3.7. Therefore,
the spaces Pα,βF1(K) and Pα,βF2(K) are q-cofibrant by [15, Theorem 5.7].
Using the Whitehead theorem [20, Theorem 7.5.10], we deduce that the nat-
ural map Pα,βF1(K) → Pα,βF2(K) is a homotopy equivalence of spaces.
It remains to consider the case r = m. The flows F1(K) and F2(K) are
m-cofibrant by Proposition 3.7. We deduce that the spaces Pα,βF1(K) and
Pα,βF2(K) are m-cofibrant by [16, Theorem 8.7]. By [5, Corollary 3.4], we
conclude that the weak homotopy equivalence Pα,βF1(K) → Pα,βF2(K) is a
homotopy equivalence of spaces as well.

Theorem 3.9. There exists a q-realization functor |− |q : □opSet →
Flow.

Proof. Let (−)cof be a q-cofibrant replacement functor of Flow. Let

|K|q := lim−→
□[n]→K

({0 < 1}n)cof .

It is a q-realization functor by [11, Proposition 7.4].

Remark 3.10. The functor

|−|bad : K 7→ lim−→
□[n]→K

{0 < 1}n
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is not a q-realization functor since the map of flows |∂□[2]|bad → |□[2]|bad
is not a q-cofibration of flows.

Moreover, there is the isomorphism |∂□[n]|bad ∼= |□[n]|bad for all n ≥ 3
by [11, Theorem 7.1], which is not the expected behavior for a realization
functor.

Proposition 3.11. Every q-realization functor is an m-realization
functor. Every m-realization functor is an h-realization functor.

Proof. Every q-realization functor is an m-realization functor because
every q-cofibration of flows is an m-cofibration of flows by [16, Proposi-
tion 7.8] and because the weak equivalences are the same in the two model
structures. Let F : □opSet → Flow be an m-realization functor. Then
for all n ≥ 0, the map of flows F (∂□[n]) → F (□[n]) is an m-cofibration,
and therefore an h-cofibration by [5, Proposition 3.6]. The map of flows
F (□[n]) → {0 < 1}n is a weak equivalence of the m-model structure for all
n ≥ 0. Since F (□[n]) is m-cofibrant by Proposition 3.7, by [5, Corollary 3.7]
there exists a q-cofibrant flow Cn and a weak equivalence of the h-model
structure of flows Cn → F (□[n]) for all n ≥ 0. By [15, Theorem 5.7], for all
α, β ∈ C0

n = {0, 1}n, the topological space Pα,βCn is q-cofibrant. This means
that for all α, β ∈ {0, 1}n, the space Pα,βF (□[n]) is homotopy equivalent to
a q-cofibrant space, which in turn means that Pα,βF (□[n]) is m-cofibrant.
Thus the map Pα,βF (□[n]) → Pα,β{0 < 1}n is for all α, β ∈ {0, 1}n a weak
homotopy equivalence between m-cofibrant spaces, and therefore a hom-
otopy equivalence by [5, Corollary 3.4]. In other terms, the map of flows
F (□[n]) → {0 < 1}n is a weak equivalence of the h-model structure of flows
for all n ≥ 0. We have proved that F is an h-realization functor.

The drawback of the construction of Theorem 3.9 is that it depends on
the noncanonical choice of a q-cofibrant replacement. It is one of the purposes
of the paper to fix this issue. The following theorem is not used later. It helps
the reader to understand the geometric contents of a q-realization functor.

Theorem 3.12 ([10, Theorems 4.2.4 and 4.2.6]). For all n ≥ 1, there is
a homotopy pushout diagram of flows for the q-model structure

Glob(Sn−2)

07→0n
17→1n //

��

|∂□[n]|q

��

Glob(Dn−1) // |□[n]|q
h

There exists a q-realization functor such that the pushout diagram above is
moreover strict.
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4. Natural d-paths. We want to use the notion of natural d-path in-
troduced by Raussen [24, Definition 2.14] to build the natural realization
functor from precubical sets to flows.

This new realization functor is natural in the sense that it uses natu-
ral d-paths, and also natural in the sense that it is more canonical than
the q-realization functor of Theorem 3.9. Indeed, the latter depends on the
noncanonical choice of a q-cofibrant replacement functor for the category of
flows. The new one is independent of such a noncanonical choice.

Notation 4.1. Let δαi : [0, 1]n−1 → [0, 1]n be the continuous map defined
for 1≤ i≤n and α∈{0, 1} by δαi (ϵ1, . . . , ϵn−1)=(ϵ1, . . . , ϵi−1, α, ϵi, . . . , ϵn−1).
By convention, let [0, 1]0 = {()}. We obtain a cocubical topological space
[0, 1]∗, and the associated colimit-preserving functor from precubical sets to
topological spaces is denoted by

|K|geom = lim−→
□[n]→K

[0, 1]n.

The topological space |K|geom is a CW-complex, and Hausdorff. Every
point of |K|geom admits a unique presentation [c;x] = |c|geom(x) where c is
a cube of K and such that x ∈ ]0, 1[dim(c). A point of |K|geom may be-
long to several cubes and therefore admits several presentations [c;x] with
x ∈ [0, 1]dim(c).

Definition 4.2. Let U be a topological space. A (Moore) path in U
consists of a continuous map [0, ℓ] → U with ℓ > 0. The real number ℓ > 0
is called the length of the path.

Definition 4.3. Let γ1 : [0, ℓ1] → U and γ2 : [0, ℓ2] → U be two paths
in a topological space U such that γ1(ℓ1) = γ2(0). The Moore composition
γ1 ∗ γ2 : [0, ℓ1 + ℓ2] → U is the Moore path defined by

(γ1 ∗ γ2)(t) =

{
γ1(t) for t ∈ [0, ℓ1],

γ2(t− ℓ1) for t ∈ [ℓ1, ℓ1 + ℓ2].

The Moore composition of Moore paths is strictly associative.

Definition 4.4. Let n ≥ 1. A (nonconstant) tame d-path of |□[n]|geom
= [0, 1]n is a nonconstant continuous map γ : [0, ℓ] → [0, 1]n with ℓ > 0
and γ(0), γ(ℓ) ∈ {0, 1}n that is nondecreasing with respect to each axis of
coordinates.

Definition 4.5. Let K be a precubical set. A nonconstant tame d-path
of K is a path [0, ℓ] → |K|geom which is the Moore composition γ1∗· · ·∗γn of
nonconstant tame d-paths in cubes of |K|geom. We call γ(0) ∈ K0 the initial
state of γ and γ(ℓ) ∈ K0 the final state of γ.
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Remark 4.6. All d-paths are tame and nonconstant in this paper. In
particular, they start and end at a vertex of K. The adjective “tame” is
added everywhere. The adjective “nonconstant” is often omitted.

Notation 4.7. With the notations of Definition 4.5, a tame d-path γ :

[0, ℓ] → |K|geom can be written γ = 0[c1; γ1]
t1∗ · · ·

tn−1∗ [cn; γn]
tn or γ =

[c1; γ1] ∗ · · · ∗ [cn; γn] with 0 = t0 < t1 < · · · < tn = ℓ such that for all
1 ≤ i ≤ n and t ∈ [ti−1, ti], γ(t) = [ci; γi(t)] with dim(ci) ≥ 1, and γ(ti) ∈ K0

for 0 ≤ i ≤ n. The sequence (c1, . . . , cn) is called a carrier of γ. The notation
Carrier(γ) means that a carrier of γ is chosen: it is not unique.

The adjective “tame” corresponds to the condition γ(ti)∈K0 for 0≤ i≤n.
An important feature shared by all d-paths (tame or not) of a precubical
set K is that they have a well-defined L1-arc length (see [24, Section 2.2.1]
and [26, Section 2.2]). Intuitively, the natural d-paths are the d-paths whose
speed corresponds to the L1-arc length. We give an explicit definition of a
tame natural d-path which is sufficient for this paper by starting from the
tame d-paths in the topological n-cube [0, 1]n. It is equivalent to Raussen’s
definition of a nonconstant tame natural d-path.

Definition 4.8. Let n ≥ 1. A tame natural d-path of the topological
n-cube [0, 1]n is a d-path γ = (γ1, . . . , γn) : [0, n] → [0, 1]n such that for all
t ∈ [0, n], one has t = γ1(t) + · · ·+ γn(t). The set of tame natural d-paths in
[0, 1]n is denoted by Nn. It is equipped with the compact-open topology.

Definition 4.9. A tame d-path γ of a precubical set K is natural if it
can be written γ = [c1; γ1] ∗ · · · ∗ [cn; γn] where each γi is a tame natural
d-path in the cube ci for all i ∈ {1, . . . , n}.

Proposition 4.10. Let n ≥ 1. The topological space Nn is ∆-generated
and ∆-Hausdorff. It is metrizable, contractible, compact and sequentially
compact.

Proof. The compact-open topology is metrizable with the distance of the
uniform convergence by [18, Proposition A.13]. Therefore it is first countable.
Consider a ball B(γ, ϵ) for this metric. Let γ′ ∈ B(γ, ϵ). Then each convex
combination (1− u)γ + uγ′ is a tame natural d-path since (1− u)t+ ut = t
and for all t ∈ [0, n] and all i ∈ {1, . . . , n}, one has

|((1− u)γi + uγ′i)(t)− γi(t)| = u|γ′i(t)− γi(t)| < uϵ ≤ ϵ.

This means that the space Nn is locally path-connected. By [4, Proposi-
tion 3.11], it is ∆-generated, and also ∆-Hausdorff, being metrizable. It is
contractible since there is a homotopy H : [0, 1] × Nn → Nn between the
identity of Nn and the constant map taking each tame natural d-path to the
tame natural d-path δ : t 7→ (t/n, t/n, . . . , t/n) given by the convex combi-
nation H(u, γ) = uδ+(1−u)γ. It is compact by [32, Proposition 9.5] applied



12 P. Gaucher

to the sequence n = (n). We want to give a different argument which does
not use Lipschitz maps on metric spaces. Let (γk)k≥0 = (γk1 , . . . , γ

k
n)k≥0 be

a sequence of Nn. By a Cantor diagonalization argument, one can suppose
that the sequence (γk(r))k≥0 of [0, 1]n converges to (γ∞1 (r), . . . , γ∞n (r)) for
all r ∈ Q ∩ [0, n]. Let γ−i (x) = sup {γ∞i (r) | r ∈ Q ∩ [0, x]} and γ+i (x) =
inf {γ∞i (r) | r ∈ Q∩ [x, n]}. Then, by density of Q, for all x ∈ [0, n], one has
(γ+1 (x)− γ−1 (x))+ · · ·+(γ+n (x)− γ−n (x)) = 0. Thus, for all x ∈ [0, n] and for
all 1 ≤ i ≤ n, since γ+i (x)−γ

−
i (x) ≥ 0, we deduce that γ+i (x) = γ−i (x). This

means that γ+i = γ−i : [0, n] → [0, 1] is continuous for all i ∈ {1, . . . , n}. Con-
sequently, each sequence (γki )k≥0 converges pointwise for 1 ≤ i ≤ n. By the
second Dini theorem, the convergence is uniform. Using [14, Lemma 6.10],
we deduce that (γk)k≥0 has a convergent subsequence. We deduce that Nn is
sequentially compact, hence compact, being metrizable.

Notation 4.11. Let x = (x1, . . . , xn) and x′ = (x′1, . . . , x
′
n) be two ele-

ments of [0, 1]n. Let
d∞(x, x′) = max

1≤i≤n
|xi − x′i|.

Definition 4.12. Let n≥2. Let Vn={0, 1}n\{0n, 1n}. Consider the con-
tinuous map ϕ : Nn → [0, 1] defined by ϕ(γ) = min(t,v)∈[0,n]×Vn

d∞(γ(t), v).
Let ∂Nn = ϕ−1(0) equipped with the relative topology.

Notation 4.13. Let ∂N0 = N0 = ∂N1 = ∅.

Proposition 4.14. Let n ≥ 2. The underlying set of ∂Nn is exactly
the set of Moore compositions of tame natural d-paths in subcubes of [0, 1]n.
For every γ ∈ ∂Nn, γ([0, n]) is included in the boundary of [0, 1]n. The
topology of ∂Nn is ∆-generated and ∆-Hausdorff. It is metrizable, compact
and sequentially compact.

Proof. The set ∂Nn is exactly the set of tame natural d-paths in [0, 1]n

whose image intersects Vn. Let γ = (γ1, . . . , γn) ∈ ∂Nn and let t0 ∈ ]0, n[
be such that γ(t0) = (ϵ1, . . . , ϵn) ∈ Vn. Since γ is natural, one has t0 =
ϵ1 + · · · + ϵn, which is therefore an integer between 1 and n − 1. Then γ =
γa ∗ γb with γa(0) = 0n, γ(t0) = γa(t0) = γb(0) ∈ Vn and γb(n − t0) = 1n.
Therefore, for all t ∈ [0, t0], t = γ1(t) + · · · + γn(t) = γa1 (t) + · · · + γan(t).
Let J = {j ∈ {1, . . . , n} | ϵj = 0}. Since the paths are nondecreasing
with respect to each axis of coordinates, it follows that γaj (t) = 0 for all
j ∈ J . Thus for all t ∈ [0, t0], t =

∑
j /∈J γ

a
j (t). This means that γa is a

natural path in the subcube from 0n to γa(t0). For all t ∈ [t0, n], one has
t = γ1(t) + · · ·+ γn(t) = γb1(t− t0) + · · ·+ γbn(t− t0), the first equality since
γ is natural, the second equality by definition of the Moore composition of
paths. We deduce that t − t0 = (γb1(t − t0) − ϵ1) + · · · + (γbn(t − t0) − ϵn)
for all t ∈ [t0, n]. If ϵi = 1 for some i ∈ {1, . . . , n}, then γbi = 1 since the
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paths are nondecreasing with respect to each axis of coordinates. We obtain
t − t0 =

∑
j∈J γ

b
j (t − t0) for all t ∈ [t0, n]. This means that γb is a natural

path in the subcube going from γ(t0) to 1n. We deduce that the underlying
set of ∂Nn is exactly the set of Moore compositions of tame natural d-paths
in subcubes of [0, 1]n. The second assertion is a consequence of this fact.
Consider γ ∈ ∂Nn. There exists t0 ∈ ]0, n[ such that γ(t0) ∈ Vn. Since
Vn is discrete, there exists an open subset U of [0, 1]n such that U ∩ Vn =
{γ(t0)}. Then W ({t0}, U) = {γ′ ∈ ∂Nn | γ′(t0) ∈ U} is an open subset
of ∂Nn for the compact-open topology. The latter being metrizable, take a
ball B(γ, ϵ) ⊂ W ({t0}, U) and repeat the reasoning of Proposition 4.10: we
deduce that ∂Nn is locally path-connected as well, hence ∆-generated (and
also ∆-Hausdorff, being metrizable) by [4, Proposition 3.11].

To summarize, ∂Nn is a closed subset of Nn which remains ∆-generated
and also ∆-Hausdorff when equipped with the relative topology. Both ∂Nn

and Nn are equipped with the compact-open topology and are metrizable,
compact, and sequentially compact.

The presentation chosen for ∂Nn and Nn is due to the fact that [32,
Proposition 10.2] is used in the proof of Proposition 5.4 and that [32, Propo-
sition 10.3] is used in the proof of Proposition 5.5. However, [32] uses the
compact-open topology. It turns out that the ∆-kelleyfication functor does
not preserve compactness and that it is a right Quillen equivalence, not a
left Quillen equivalence. Since ∂Nn and Nn equipped with the compact-open
topology are metrizable for all n ≥ 0, they are k-spaces. An additional ar-
gument is necessary to prove that they are ∆-generated as well to get rid of
this issue.

5. Natural realization from precubical sets to flows. We define
a flow |□[n]|nat for n ≥ 0 called the natural n-cube as follows. The set of
states is {0, 1}n. Let n ≥ 1 and α, β ∈ {0, 1}n. Let α = (α1, . . . , αn) and
β = (β1, . . . , βn). Assume that α < β in the product order {0 < 1}n. Let
I = {i ∈ {1, . . . , n} | αi ̸= βi}. By hypothesis, I is nonempty. Let m be
the cardinality of I. Then α (β resp.) is the initial (final resp.) state of
an m-subcube of □[n]. Then let Pα,β|□[n]|nat = Nm viewed as the space of
tame natural d-paths in the m-subcube from α to β. Assume that α ≥ β. Let
Pα,β|□[n]|nat = ∅. The composition law is defined by the Moore composition
of tame natural d-paths, which is still a tame natural d-path.

Proposition 5.1. Let ϕ : [n] → [n+1] be a map of the small category □.
Then the continuous map P0n,1n |□[n]|nat → Pϕ(0n),ϕ(1n)|□[n+ 1]|nat induced
by ϕ is the identity of Nn.

Proof. This is a straightforward consequence of the definitions.
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Corollary 5.2. We obtain a well-defined cocubical flow |□[∗]|nat.

Proof. Consider an algebraic relation ϕ1ϕ2 = ψ1ψ2 : [n] → [n+ 2] in the
small category □. Consider the diagram of topological spaces

P0n,1n |□[n]|nat

��

P0n,1n |□[n]|nat

��

Pϕ2(0n),ϕ2(1n)|□[n+ 1]|nat

��

Pψ2(0n),ψ2(1n)|□[n+ 1]|nat

��

Pϕ1ϕ2(0n),ϕ1ϕ2(1n)|□[n+ 2]|nat Pψ1ψ2(0n),ψ1ψ2(1n)|□[n+ 2]|nat

By Proposition 5.1 and by definition of |− |nat, the two vertical compos-
ite maps are equal to the identity of Nn. This means that the diagram is
commutative and that the cocubical relations are satisfied.

Using Proposition 3.5, we obtain:

Definition 5.3. Let K be a precubical set. Consider the colimit-preserv-
ing functor

|K|nat = lim−→
□[n]→K

|□[n]|nat.

It is called the natural realization of K as a flow.

Proposition 5.4. Let n ≥ 0. There is a homeomorphism

∂Nn
∼= P0n,1n |∂□[n]|nat.

Proof. Using [32, Proposition 10.2] applied to the sequence (n), we de-
duce that this map is a homeomorphism: the idea of the proof is that
there is a continuous bijection from P0n,1n |∂□[n]|nat to ∂Nn and that both
P0n,1n |∂□[n]|nat and ∂Nn are compact.

Proposition 5.5. The continuous map ∂Nn ⊂ Nn is an h-cofibration of
spaces for all n ≥ 0.

Proof. Applying [32, Proposition 10.3] to the sequence (n), we deduce
that this map is a strong neighborhood deformation retract, i.e. an h-cofibra-
tion by [29, Theorem 2].

Corollary 5.6. The map of flows Glob(∂Nn) ⊂ Glob(Nn) is an h-co-
fibration of flows for all n ≥ 0.

Proof. A map of flows of the form Glob(U) → Glob(V ) has the left
lifting property with respect to a map of flows f : X → Y if and only
if the map U → V has the left lifting property with respect to all maps
Pα,βX → Pf(α),f(β)Y for all (α, β) ∈ X0 × X0. Using the characterization
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of the trivial h-fibrations of flows (see Theorem 2.4) and Proposition 5.5, we
deduce that the map Glob(∂Nn) → Glob(Nn) is an h-cofibration of flows.

Proposition 5.7. For all n ≥ 0, the map |∂□[n]|nat → |□[n]|nat is an
h-cofibration of flows.

Proof. From the homeomorphism of Proposition 5.4 and by definition
of Nn, we deduce that the commutative diagram of spaces

∂Nn
∼= //

��

P0n,1n |∂□[n]|nat

��

Nn
∼= // P0n,1n |□[n]|nat

is a pushout diagram of spaces. The top homeomorphism yields a map of
flows

Glob(∂Nn) → |∂□[n]|nat
taking 0 to 0n and 1 to 1n for all n ≥ 0. We obtain the pushout diagram of
flows

Glob(∂Nn) //

��

|∂□[n]|nat

��

Glob(Nn) // |□[n]|nat
Using Corollary 5.6, we deduce that the map |∂□[n]|nat → |□[n]|nat is an
h-cofibration of flows for all n ≥ 0.

Theorem 5.8. There exists a natural transformation µ : |−|q ⇒ |−|nat
such that for all precubical sets K, the natural map µK : |K|q → |K|nat in-
duces a bijection on states and a homotopy equivalence Pα,β|K|q ≃ Pα,β|K|nat
for all α, β ∈ K0.

Proof. The map |□[∗]|nat → {0 < 1}∗ is an objectwise weak equivalence
for the h-model structure of Flow since all spaces Nn for n ≥ 1 are con-
tractible by Proposition 4.10. By Proposition 5.7, the natural realization
functor is then an h-realization functor. Since |−|q is also an h-realization
functor by Proposition 3.11, the proof is complete thanks to Theorem 3.8.

The statement of Theorem 3.8 being symmetric, there is also a natural
transformation ν : |−|nat ⇒ |−|q such that, for all precubical sets K, the
natural map νK : |K|nat → |K|q induces a bijection on states and a homotopy
equivalence Pα,β|K|nat ≃ Pα,β|K|q for all α, β ∈ K0. This statement is less
intuitive because the natural realization contains more execution paths than
the q-realization.
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Proposition 5.7 means that the natural realization functor is an h-realiza-
tion functor. In fact, it is possible to do better. For all precubical sets K and
all (α, β) ∈ K0×K0, there is a homotopy equivalence Pα,β|K|nat ≃ Pα,β|K|q.
Since |K|q is q-cofibrant, the space Pα,β|K|q is q-cofibrant by [15, The-
orem 5.7]. This means that the spaces of execution paths Pα,β|K|nat are
m-cofibrant for all (α, β) ∈ K0 ×K0. This suggests that the natural realiza-
tion |K|nat is an m-cofibrant flow. Indeed we have the following theorem:

Theorem 5.9. The natural realization functor is an m-realization func-
tor. For any precubical set K, the flow |K|nat is m-cofibrant.

Proof. The map |□[∗]|nat → {0 < 1}∗ is an objectwise weak equivalence
for the h-model structure of Flow, and therefore for the m-model structure
of Flow as well. There is a homeomorphism ∂Nn

∼= P0n,1n |∂□[n]|nat (Propo-
sition 5.4) and a homotopy equivalence P0n,1n |∂□[n]|nat ≃ P0n,1n |∂□[n]|q
(Theorem 3.8). Since |∂□[n]|q is a q-cofibrant flow by Proposition 3.7, the
space P0n,1n |∂□[n]|q is q-cofibrant by [15, Theorem 5.7]. Moreover, Nn is
contractible by Proposition 4.10, hence m-cofibrant. It implies that all maps
∂Nn → Nn for n ≥ 0 are h-cofibrations of spaces between m-cofibrant
spaces [5, Corollary 3.7]. By [5, Corollary 3.12], the maps ∂Nn → Nn are
therefore m-cofibrations of spaces for all n ≥ 0. Thus, the map of flows
Glob(∂Nn) → Glob(Nn) is an m-cofibration of flows for all n ≥ 0 by the
same argument as in the proof of Corollary 5.6. Using the pushout diagram
in the proof of Proposition 5.7, we deduce that the natural realization func-
tor is an m-realization functor. By Proposition 3.7, we deduce that the flow
|K|nat is m-cofibrant.

6. Natural realization and cube chains. Cube chains are introduced
in [31, Definition 1.1]. We use the presentation given in [32, Section 7] instead.
Let Seq(n) be the set of sequences of positive integers n = (n1, . . . , np) with
n1 + · · ·+np = n. Let n = (n1, . . . , np) ∈ Seq(n). Then |n| = n is the length
of n, and ℓ(n) = p is the number of elements of n. Let K be a precubical set
and A = a1 < · · · < ak ⊂ {1, . . . , n} and ϵ ∈ {0, 1}. The iterated face map is
defined by

∂ϵA = ∂ϵa1 . . . ∂
ϵ
ak
.

Definition 6.1. Let n ∈ Seq(n). The n-cube is the precubical set

□[n] = □[n1] ∗ · · · ∗□[np]

where the notation ∗ means that the final state 1ni of the precubical set
□[ni] is identified with the initial state 0ni+1 of the precubical set □[ni+1]
for 1 ≤ i ≤ p− 1.

Let K be a precubical set. Let α, β be two vertices of K. Let n ≥ 1.
The category Chα,β(K,n) is defined as follows. The objects are the maps
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of precubical sets □[n] → K with |n| = n where the initial state of □[n1]
is mapped to α and the final state of □[np] is mapped to β. Let A ⊔ B =
{1, . . . ,m1 +m2} be a partition with the cardinality of A equal to m1 > 0
and the cardinality of B equal to m2 > 0. Let

ϕA,B : □[m1] ∗□[m2] → □[m1 +m2]

be the unique map of precubical sets such that

ϕA,B(Id[m1]) = ∂0B(Id[m1+m2]),

ϕA,B(Id[m2]) = ∂1A(Id[m1+m2]).

For i ∈ {1, . . . , ℓ(n)} and a partition A ⊔B = {1, . . . , ni}, let

δi,A,B = Id□[n1] ∗ · · · ∗ Id□[ni−1] ∗ϕA,B ∗ Id□[ni+1] ∗ · · · ∗ Id□[nℓ(n)] .

The morphisms are the commutative diagrams

□[na]

��

a // K

□[nb]
b // K

where the left vertical map is the composition of maps of precubical sets of
the form δi,A,B.

From a precubical set K, we are going to define a flow ∥K∥ as follows.
The set of states is K0. Consider the small diagram of spaces

Dα,β(K,n) : Chα,β(K,n) → Top

defined on objects by

Dα,β(K,n)(□[n] → K) = Nn1 × · · · ×Nnp

and on morphisms by using the maps

P|ϕA,B|nat : P(□[m1] ∗□[m2]) → P(□[m1 +m2])

which induce maps Nm1 ×Nm2 → Nm1+m2 given by the Moore composition
of tame natural d-paths. The space of execution spaces Pα,β∥K∥ is defined
as follows:

Pα,β∥K∥ =
∐
n≥1

lim−→Dα,β(K,n).

It is easy to see that the concatenation of tuples induces functors

Dα,β(K,m1)×Dβ,γ(K,m2) → Dα,γ(K,m1 +m2),

and, using [15, Proposition A.4], continuous maps

lim−→Dα,β(K,m1)× lim−→Dβ,γ(K,m2) → lim−→Dα,γ(K,m1 +m2)
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for all m1,m2 ≥ 1. We obtain an associative composition map

Pα,β∥K∥ × Pβ,γ∥K∥ → Pα,γ∥K∥

for all (α, β, γ) ∈ K0 ×K0 ×K0.

Proposition 6.2. There is an isomorphism of cocubical flows

∥□[∗]∥ ∼= |□[∗]|nat.

Proof. At first, we prove the isomorphism of flows ∥□[n]∥ ∼= |□[n]|nat by
induction on n ≥ 0. The statement is obvious for n = 0. Let n ≥ 1 and
α, β ∈ {0, 1}n with α < β. Let α = (α1, . . . , αn) and β = (β1, . . . , βn). Let

I = {i ∈ {1, . . . , n} | αi ̸= βi}.

By hypothesis, I is nonempty. Let m be the cardinality of I. Then α (β resp.)
is the initial (final resp.) state of an m-subcube c of □[n]. We deduce that
the category Chα,β(□[n], p) is empty for p ̸= m and that it has a terminal
object c : □[m] → □[n] for p = m corresponding to the subcube from α to β.
We deduce the homeomorphisms

Pα,β∥□[n]∥ = lim−→
n=(n1,...,np), ℓ(n)=m

□[n]→□[n]∈Chα,β(□[n],m)

Nn1 × · · · ×Nnp
∼= Nm = Pα,β|□[n]|nat,

the first equality by definition of ∥□[n]∥, the homeomorphism because of the
unique map c : □[m] → □[n] which is the terminal object of Chα,β(□[n],m),
and the last equality by Proposition 5.1 applied to the map c : □[m] → □[n].
By Proposition 5.1 again, the isomorphism ∥□[n]∥ ∼= |□[n]|nat is natural with
respect to [n].

We do not know yet that the functor ∥−∥ is colimit-preserving. An ad-
ditional argument based on Proposition 5.1 as well is necessary for proving
Theorem 6.3.

Theorem 6.3. There is a natural isomorphism of flows

∥K∥ ∼= |K|nat
for all precubical sets K.

Proof. Let n = (n1, . . . , np) ∈ Seq(n). Every map of precubical sets
□[n] → K gives rise to a map of flows |□[n]|nat → |K|nat, and therefore to a
continuous map

Nn1 × · · · ×Nnp → P|K|nat.

Let ϕA,B : □[m1] ∗□[m2] → □[m1 +m2] as above. A composite map of pre-
cubical sets □[m1]∗□[m2] → □[m1+m2] → K gives rise to the commutative
diagram of flows
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|□[m1] ∗□[m2]|nat

��

// |K|nat

|□[m1 +m2]|nat // |K|nat
and therefore to the commutative diagram of spaces

Nm1 ×Nm2

��

// P|K|nat

Nm1+m2
// P|K|nat

Consequently, we obtain a cocone

(Nn1 × · · · ×Nnp) □[n]→K
∈Chα,β(K,n)

•−→ P|K|nat

and then a map of flows ∥K∥ → |K|nat which is bijective on states. For each
map of precubical sets □[n] → K, we obtain by Proposition 6.2 a map of
flows

|□[n]|nat ∼= ∥□[n]∥ → ∥K∥.

Using Proposition 5.1, we obtain a cocone of flows

(|□[n]|nat)□[n]→K
•−→ ∥K∥

and therefore a map of flows |K|nat → ∥K∥ such that the composite map
|K|nat → ∥K∥ → |K|nat is the identity. Thus, the map ∥K∥ → |K|nat
is onto on execution paths, and the map |K|nat → ∥K∥ is one-to-one on
execution paths. Consider an execution path γ of ∥K∥. It belongs to a co-
limit and therefore has a representative (γ1, . . . , γp) in a space of the form
Nn1 × · · · ×Nnp corresponding to some map of precubical sets □[n] → K
with n = (n1, . . . , np). By Proposition 5.1, there exists an execution path
γ1 ∗ · · · ∗ γp of |K|nat which is mapped to (γ1, . . . , γp) by the map of flows
|K|nat→∥K∥. The latter is therefore surjective on execution paths, and the
proof is complete.

7. Comparing execution paths and d-paths. The fact that the
Moore composition of tame natural d-paths in the geometric realization of
a precubical set is strictly associative entails the following definition.

Definition 7.1. LetK be a precubical set. The tame concrete realization
of K is the flow |K|tc such that the set of states is K0, the space of execution
paths Pα,β|K|tc for (α, β) ∈ K0 × K0 is the space of nonconstant tame
natural d-paths from α to β in |K|geom equipped with the ∆-kelleyfication
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of the relative topology induced by the compact-open topology, and the
composition of execution paths is induced by the Moore composition.

This construction yields a well-defined functor |−|tc : □opSet → Flow.
By definition of |□[n]|nat (see the beginning of Section 5), there is a natural
isomorphism of flows |□[n]|nat ∼= |□[n]|tc for all [n] ∈ □. Since the natural
realization functor is colimit-preserving, the universal property of the colimit
provides a natural map of flows |K|nat → |K|tc.

Proposition 7.2. Let K be a precubical set. The natural map of flows
|K|nat → |K|tc is bijective on states. For all (α, β) ∈ K0×K0, the continuous
map Pα,β|K|nat → Pα,β|K|tc is onto. The following assertions are equivalent:

(1) For all (α, β) ∈ K0×K0, the continuous map Pα,β|K|nat → Pα,β|K|tc is
one-to-one.

(2) For all (α, β) ∈ K0×K0, the continuous map Pα,β|K|nat → Pα,β|K|tc is
bijective.

Finally, for all (α, β) ∈ K0 ×K0, the space of execution paths Pα,β|K|tc is
Hausdorff.

Proof. The first assertion follows from the definition of |K|nat and |K|tc.
Let (α, β) ∈ K0 ×K0. Consider a tame natural d-path [c1; γ1] ∗ · · · ∗ [cp; γp]
of Pα,β|K|tc (cf. Notation 4.7). Let n =

∑
i dim(ci) and n = (dim(c1), . . . ,

dim(cp)). The sequence (c1, . . . , cp) of cubes gives rise to a map □[n] → K.
Then

(γ1, . . . , γp) ∈ Dα,β(K,n)(□[n] → K) = Ndim(c1) × · · · ×Ndim(cp)

is the representative of an element of Pα,β|K|nat ∼= Pα,β∥K∥ which is taken
to [c1; γ1]∗· · ·∗[cn; γn] ∈ Pα,β|K|tc. This means that, for all (α, β) ∈ K0×K0,
the continuous map Pα,β|K|nat → Pα,β|K|tc is onto. This implies (1)⇔(2).
From the sequence of one-to-one continuous maps

Pα,β|K|tc ⊂
∐
n≥1

TOP([0, n], |K|geom)

⊂
∐
n≥1

Topco([0, n], |K|geom) ⊂
∐
n≥1

∏
[0,n]

|K|geom

for all (α, β) ∈ K0 ×K0, Topco([0, n], |K|geom) being the set of continuous
maps from [0, n] to |K|geom equipped with the compact-open topology, and
the product being equipped with the pointwise topology (i.e. the product
topology), we deduce that the space of execution paths Pα,β|K|tc is Hausdorff
for all (α, β) ∈ K0 ×K0, |K|geom being Hausdorff.

Definition 7.3. A precubical set K is spatial if for all (α, β) ∈ K0×K0,
the continuous map Pα,β|K|nat → Pα,β|K|tc is bijective.
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A characterization of spatial precubical sets as a small orthogonality class
is postponed to Appendix A. We want to give some examples of spatial
precubical sets before expounding the main theorems of the section.

Definition 7.4 ([31, p. 499]). A precubical set K is proper if the map∐
n≥0

Kn → K0 ×K0

which takes an n-cube c of K to (∂0{1,...,n}c, ∂
1
{1,...,n}c) is one-to-one.

For all n ≥ 0, the precubical sets ∂□[n] and □[n] are proper. The precubi-
cal sets associated to all PV-programs are proper. Every geometric precubical
set in the sense of [17, Definition 1.18] is proper. In particular, every non-
positively curved precubical set in the sense of [17, Definition 1.28] is proper
since it is geometric by definition. Indeed, let K be a geometric precubical
set. Let c1, c2 be two cubes ofK such that (∂0{1,...,dim(c1)}c1, ∂

1
{1,...,dim(c1)}c1) =

(∂0{1,...,dim(c2)}c2, ∂
1
{1,...,dim(c2)}c2). Suppose that dim(c1) = 0. Since K has

no self-intersection, c2 is 0-dimensional as well and c1 = c2. Assume that
dim(c1) ≥ 1. Then c2 cannot be 0-dimensional because K has no self-
intersection. The cubes c1 and c2 have a maximal common face which is
necessarily c1 = c2. Thus K is proper.

Proposition 7.5. We have two strict inclusions

{proper precubical sets} ⊂ {spatial precubical sets} ⊂ {precubical sets}.

Proof. Let K be a proper precubical set. Let (α, β) ∈ K0 ×K0. Let ξ1
and ξ2 be two execution paths of Pα,β|K|nat. Suppose that ξ1 and ξ2 are
taken to the same tame natural d-path

γ = [c1; γ1] ∗ · · · ∗ [cp; γp]
in |K|geom with p ≥ 1 and 0 = t0 < t1 < · · · < tp = ℓ such that for all
1 ≤ i ≤ p and t ∈ [ti−1, ti] we have γ(t) = [ci; γi(t)] with dim(ci) ≥ 1, and
γ(ti) ∈ K0 for 0 ≤ i ≤ p. Choose the presentation [c1; γ1]∗· · ·∗ [cp; γp] so that
γ([0, 1]) ∩K0 = {γ(ti) | 0 ≤ i ≤ p} and γ(]ti−1, ti[) ∩K0 = ∅ for 1 ≤ i ≤ p.
Let n =

∑
i dim(ci) and n = (dim(c1), . . . ,dim(cp)). There exist maps of

precubical sets ak : □[n] → K for k = 1, 2 such that

(γ1, . . . , γp) ∈ Dα,β(K,n)(ak) = Ndim(c1) × · · · ×Ndim(cp)

is identified to ξk for k = 1, 2 in the colimit Pα,β∥K∥. Since K is proper and
since γ(]ti−1, ti[)∩K0 = ∅ for 1 ≤ i ≤ p, we deduce that a1 = a2. Therefore,
ξ1 = ξ2. This means that K is spatial. Consider the precubical set K such
that K0 = K1 is a singleton and Kn = ∅ for n ≥ 2; K is a loop. Then
K is spatial but not proper (see [31, Example (1.5)]). This means that the
left-hand inclusion is strict.
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Consider the precubical set K = □[3] ⊔∂□[3] □[3]. Any tame natural
d-path from 03 to 13 lying in the common boundary |∂□[3]|geom that does
not contain other vertices than 03 and 13 is represented by two distinct
elements of P03,13 |K|nat. Thus, □[3] ⊔∂□[3] □[3] is not spatial. This means
that the right-hand inclusion is strict.

It is necessary to recall a basic fact about ∆-inclusions before proceeding
to the proof of Theorem 7.7.

Proposition 7.6 ([14, Proposition 2.2 and Corollary 2.3]). A contin-
uous bijection f : U → V of Top is a homeomorphism if and only if it
is a ∆-inclusion, i.e. a set map [0, 1] → A is continuous if and only if the
composite set map [0, 1] → A→ B is continuous.

Theorem 7.7 states intuitively that the ∆-generated spaces Pα,β|K|nat
for (α, β) running over K0×K0 do not contain too many open subsets when
K is a spatial precubical set.

Theorem 7.7. Let K be a spatial precubical set. The natural map of flows
|K|nat → |K|tc is an isomorphism. In particular, for all (α, β) ∈ K0 ×K0,
the continuous bijection Pα,β|K|nat → Pα,β|K|tc is a homeomorphism.

Proof. The map of flows |K|nat → |K|tc induces the identity on K0. For
all (α, β) ∈ K0 ×K0, the space Pα,β|K|nat is Hausdorff, the space Pα,β|K|tc
being Hausdorff. Consider a set map f : [0, 1] → Pα,β|K|nat such that the
composite set map [0, 1] → Pα,β|K|nat → Pα,β|K|tc is continuous. Since [0, 1]
is path-connected, there exists a commutative diagram of spaces of the form

[0, 1] // Pα,β|K|nat → Pα,β|K|tc //
∐
n≥1

TOP([0, n], |K|geom)

[0, 1] // TOP([0, n0], |K|geom) //
∐
n≥1

TOP([0, n], |K|geom)

for some integer n0 ≥ 1. By adjunction, we obtain a continuous map
[0, 1] × [0, n0] → |K|geom. Since the topological space |K|geom is a CW-
complex, the image of the compact [0, 1]× [0, n0] is a closed compact subset
of |K|geom which, by [18, Proposition A.1], intersects N interiors of cubes and
vertices with N > 0 finite. We want to prove that the set map f : [0, 1] →
Pα,β|K|nat is continuous. Since the ∆-generated spaces are sequential, it suf-
fices to prove the sequential continuity of f : [0, 1] → Pα,β|K|nat. Let (tk)k≥0

be a sequence of [0, 1] which converges to t∞ ∈ [0, 1]. For all t ∈ [0, 1],
Carrier(f(t)) is of the form (c1, . . . , cp) with dim(ci) + · · · + dim(cp) = n0.
We deduce that the set {Carrier(γ(t)) | t ∈ [0, 1]} has at most (N + 1)n0

elements, i.e. it is finite. Thus the sequence (Carrier(f(tk))k≥0) of carriers
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has a constant subsequence. Suppose that the sequence (Carrier(f(tk))k≥0)
is constant and equal to (c1, . . . , cp). Then the sequence (f(tk))k≥0 of paths
belongs to the image of the continuous map Ndim(c1) × · · · × Ndim(cp) →
Pα,β∥K∥ ∼= Pα,β|K|nat. The product Ndim(c1) × · · · × Ndim(cp) is a finite
product in Top of compact metrizable spaces by Proposition 4.10. By [14,
Lemma 6.9], this product coincides with the product taken in the category
of general topological spaces. This means that Ndim(c1) × · · · × Ndim(cp) is
compact metrizable, and hence sequentially compact. Consequently, the im-
age of Ndim(c1) × · · · × Ndim(cp) → Pα,β|K|nat is sequentially compact, and
also closed in Pα,β|K|nat, the latter being Hausdorff. We deduce that the
sequence (f(tk))k≥0 has a limit point which is necessarily f(t∞) by conti-
nuity of the composite map [0, 1] → Pα,β|K|nat → Pα,β|K|tc. In fact, we
have proved that every subsequence of (f(tk))k≥0 has a subsequence that
has a limit point, which is necessarily f(t∞). Suppose that the sequence
(f(tk))k≥0 does not converge to f(t∞). Then there exists an open neigh-
borhood V of f(t∞) in Pα,β|K|nat such that for some M ≥ 0, and for
all k ≥ M , f(tk) ∈ V c, the complement of V , the latter being closed in
Pα,β|K|nat. Thus, (f(tk))k≥M cannot have a limit point, a contradiction. We
deduce that f : [0, 1] → Pα,β|K|nat is sequentially continuous, hence contin-
uous. This means that the continuous bijection Pα,β|K|nat → Pα,β|K|tc is a
∆-inclusion. Therefore, the latter is a homeomorphism by Proposition 7.6.
The proof is complete.

Note that the functor |−|tc : □opSet → Flow is not colimit-preserving.
Otherwise, there would be an isomorphism |K|nat → |K|tc for all precubical
sets K, which would contradict Proposition 7.5.

As already noticed at the end of Section 4, the spaces of d-paths of
precubical sets are equipped in [32] with the compact-open topology instead
of some kind of kelleyfication of the compact-open topology. The latter is the
correct internal hom, both for k-spaces and ∆-generated spaces, except in
very specific situations like Propositions 4.10 and 4.14. Since the ∆-kelley-
fication functor takes (weak resp.) homotopy equivalences to (weak resp.)
homotopy equivalences, this point is not an issue.

Theorem 7.8. Let K be a precubical set. The natural map of flows
|K|nat → |K|tc is a weak equivalence of the h-model structure of flows. In par-
ticular, for all (α, β) ∈ K0×K0, the continuous map Pα,β|K|nat → Pα,β|K|tc
is a homotopy equivalence.

Proof. The map of flows |K|nat → |K|tc induces the identity on K0.
Let (α, β) ∈ K0 × K0. Let c = □[n] → K be an object of Chα,β(K,n)
with ℓ(n) = p and n = (n1, . . . , np). Since there is an isomorphism of
flows ∥□[n]∥ ∼= |□[n]|nat by Theorem 6.3, there is the homeomorphism
Nn1 ×· · ·×Nnp

∼= P0n1 ,1np
|□[n]|nat, the identity map □[n] → □[n] being the
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final object of the small category Ch0n1 ,1np
(□[n], n) (the proof is similar to

that of Proposition 6.2). The precubical set □[n] is spatial by Proposition 7.5,
being proper. Thus the topological space

Dα,β(K,n)(c) = Nn1 × · · · ×Nnp
∼= P0n1 ,1np

|□[n]|nat
is homeomorphic to the space of tame natural d-paths in |□[n]|geom from
the initial state 0n1 of □[n1] to the final state 1np of □[np] equipped with
the ∆-kelleyfication of the relative topology induced by the compact-open
topology by Theorem 7.7. This implies that the map Pα,β∥K∥ → Pα,β|K|tc
is the homotopy equivalence

∐
n≥1 F

K
n of [32, Proposition 9.7]. The proof is

complete thanks to the isomorphism of flows ∥K∥ ∼= |K|nat.

There exists a continuous bijection between Hausdorff∆-generated spaces
which is a homotopy equivalence and not a homeomorphism: consider
X = S1, the discretization Xδ and the map between unreduced cones
C(Xδ) → C(X) [30]. Consequently, it is not possible to deduce Theorem 7.7
from Theorem 7.8 and Proposition 7.2 without any additional assumption.

The phrase “weak homotopy equivalence” can be replaced by “homotopy
equivalence” in the statements of [32, Theorems 7.5 and 7.6] because all
maps of [32, (7.5)] are homotopy equivalences. Indeed, it is proved in [32,
Proposition 10.3] that some specific map is an h-cofibration. Therefore the
diagram of [32, Proposition 10.4] is Reedy h-cofibrant, and the map QKn is a
homotopy equivalence.

Corollary 7.9. Let K be a precubical set. Let α, β be two vertices of K.
Then the space of execution paths Pα,β|K|q is homotopy equivalent to the
space of nonconstant d-paths from α to β in the geometric realization of K
equipped with the ∆-kelleyfication of the compact-open topology.

Proof. This is a consequence of Theorems 5.8, 7.8 and [32, Theorem 7.6].

Since the natural realization functor is an m-realization functor, Theo-
rem 7.8 provides a model category explanation of the known fact that the
space of nonconstant d-paths in the geometric realization of a precubical
set between two vertices of the precubical set has the homotopy type of a
CW-complex.

Appendix A. Characterization of spatial precubical sets. The
purpose of this appendix is to characterize spatial precubical sets without
using any realization functor from precubical sets to flows. This result is
unnecessary for the understanding of the core of the paper. This is the reason
why it is expounded here.

Notation A.1. Let n ≥ 1. Let Bn be the set of precubical sets A such
that A ⊂ ∂□[n] and |A|geom ⊂ [0, 1]n contains a natural d-path from 0n to 1n
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in [0, 1]n which does not intersect {0, 1}n\{0n, 1n}. In particular, 0n, 1n are
two vertices of A. One has B1 = B2 = ∅, and for all n ≥ 3, one has
∂□[n] ∈ Bn.

Since every d-path of [0, 1]n has a naturalization [24, Definition 2.14], the
adjective “natural” is superfluous in the definition of Bn.

Theorem A.2. The class of spatial precubical sets is a small orthogonal-
ity class. More precisely, it is the class of precubical sets which are orthogonal
with respect to the set of maps of precubical sets

{□[n] ⊔A □[n] → □[n] | n ≥ 3 and A ∈ Bn}.
Every map □[n] ⊔A □[n] → □[n] for n ≥ 3 and A ∈ Bn being an epi-

morphism of precubical sets, injective is equivalent to orthogonal. Recall
that the injectivity (orthogonality resp.) condition means that any map
□[n] ⊔A □[n] → K factors (uniquely resp.) as a composite map □[n] ⊔A
□[n] → □[n] → K [1, Definitions 4.1 and 1.32].

Proof of Theorem A.2. Let K be a precubical set which is not injective
with respect to □[n] ⊔A □[n] → □[n] for some n ≥ 3 and some A ∈ Bn.
This means that there exists a map of precubical sets f : □[n] ⊔A □[n] → K
which does not factor as a composite □[n]⊔A□[n] → □[n] → K. By definition
of Bn, there exists a tame natural d-path γ from 0n to 1n such that γ([0, n]) ⊂
|A|geom ⊂ [0, 1]n and γ([0, n]) ∩ {0, 1}n = {0n, 1n}. Let

c1 ⊔ c2 : □[n] ⊔□[n]
Id□[n] ⊔ Id□[n]

// □[n] ⊔A □[n]
f−−→ K.

One obtains a composite map of spaces

P0n,1n |□[n] ⊔A □[n]|nat → Pf(0n),f(1n)|K|nat → TOP([0, n], |K|geom)
such that ξk ∈ Pf(0n),f(1n)∥K∥ represented by γ ∈ Df(0n),f(1n)(K,n)(ck)
= Nn for k = 1, 2 is taken to the natural d-path [c1; γ] = [c2; γ] in |K|geom.
We have ξ1 ̸= ξ2 in the colimit Pf(0n),f(1n)∥K∥ (this is the same argument
as in the proof of Proposition 7.5). This means that K is not spatial.

Conversely, let K be a precubical set which is injective with respect to
□[n] ⊔A □[n] → □[n] for all n ≥ 3 and all A ∈ Bn. Let (α, β) ∈ K0 ×K0.
Let ξ1 and ξ2 be two execution paths of Pα,β|K|nat which are taken to
the same tame natural d-path γ = [c1; γ1] ∗ · · · ∗ [cp; γp] in |K|geom with
p ≥ 1 and 0 = t0 < t1 < · · · < tp = ℓ such that for all 1 ≤ i ≤ p and
t ∈ [ti−1, ti], γ(t) = [ci; γi(t)] with dim(ci) ≥ 1, γ([0, 1]) ∩ K0 = {γ(ti) |
0 ≤ i ≤ p} and γ(]ti−1, ti[) ∩ K0 = ∅ for 1 ≤ i ≤ p. This implies that
γi(]ti−1, ti[) ∩ {0, 1}dim(ci) = ∅ for 1 ≤ i ≤ p. Let m =

∑
i dim(ci) and

m = (dim(c1), . . . ,dim(cp)). For k ∈ {1, 2}, there exists a map of precubical
sets ak : □[m] → K such that

(γ1, . . . , γp) ∈ Dα,β(K,m)(ak) = Ndim(c1) × · · · ×Ndim(cp)
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is identified with ξk in the colimit Pα,β∥K∥. Let ak = a1k ∗ · · · ∗a
p
k for k = 1, 2

with aik : □[dim(ci)] → K.
Choose i ∈ {1, . . . , p}. Let G be the set of p-cubes c of □[dim(ci)] with

p ≥ 1 such that γi(]ti−1, ti[) intersects |c|geom(]0, 1[dim(c)), say in γi(tc). By
hypothesis, we have

[ai1; γi(tc)] = [ai2; γi(tc)] = [ci; γi(tc)]

in |K|geom. This implies that
[ci; γi(tc)] ∈ |ai1(c)|geom(]0, 1[dim(c)) ∩ |ai2(c)|geom(]0, 1[dim(c)).

However, there is a bijection of sets

(P) |K|geom ∼= K0 ⊔
∐
p≥1

∐
e∈Kp

|e|geom(]0, 1[p).

It follows that for all c ∈ G, we have ai1(c) = ai2(c). Since ai1, ai2 : □[dim(ci)]
→ K are maps of precubical sets, we deduce that ai1(c) = ai2(c) for all
c ∈ G and all their iterated faces, i.e. on the cubes c of the precubical set
Ĝ ⊂ □[dim(ci)] generated by G. Let x ∈ γi(]ti−1, ti[). By (P) applied to the
precubical set □[dim(ci)] and since γ(]ti−1, ti[)∩{0, 1}dim(ci) = ∅, there exist
p ≥ 1 and a p-cube c of □[dim(ci)] such that x ∈ |c|geom(]0, 1[dim(c)). Such a
p-cube c thus belongs to G. It follows that γi([ti−1, ti]) ⊂ |Ĝ|geom.

There are two mutually exclusive cases: Id[dim(ci)] ∈ G and Id[dim(ci)] /∈ G.
In the first case, we have Ĝ = □[dim(ci)]. We obtain ai1 = ai2. In the second
case, we have γi([ti−1, ti]) ⊂ |Ĝ|geom ⊂ |∂□[dim(ci)]|geom. Since γ(]ti−1, ti[)

∩{0, 1}dim(ci) = ∅, we deduce that Ĝ ∈ Bdim(ci) by definition of the latter set.
This means that the map of precubical sets ai1 ⊔ ai2 : □[dim(ci)]⊔□[dim(ci)]
→ K factors as a composite

□[dim(ci)] ⊔□[dim(ci)] → □[dim(ci)] ⊔Ĝ □[dim(ci)] → K,

and therefore as a composite
□[dim(ci)] ⊔□[dim(ci)] → □[dim(ci)] ⊔Ĝ □[dim(ci)] → □[dim(ci)] → K.

It follows that ai1 = ai2 for all i ∈ {1, . . . , p}.
We deduce that a1 = a2 : □[m] → K are the same map of precubical

sets. Thus ξ1 = ξ2 in the colimit Pα,β∥K∥. This means that K is spatial.

Corollary A.3. Let K be a precubical set of dimension 2 (i.e. Kn = ∅
for all n ≥ 3). Then K is spatial.

Proof. There are no maps from □[n] ⊔A □[n] to K for all n ≥ 3 and all
A ∈ Bn.
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