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Regular directed path and Moore flow

Philippe Gaucher

Abstract. Using the notion of tame regular d-path of the topological n-cube, we introduce
the tame regular realization of a precubical set as a multipointed d-space. Its execution paths
correspond to the nonconstant tame regular d-paths in the geometric realization of the precubical
set. The associated Moore flow gives rise to a functor from precubical sets to Moore flows which
is weakly equivalent in the h-model structure to a colimit-preserving functor. The two functors
coincide when the precubical set is spatial, and in particular proper. As a consequence, it is given
a model category interpretation of the known fact that the space of tame regular d-paths of a
precubical set is homotopy equivalent to a CW-complex. We conclude by introducing the regular
realization of a precubical set as a multipointed d-space and with some observations about the
homotopical properties of tameness.

1. Introduction

Presentation

It is described in [21] a way of realizing a precubical set as a flow without any non-
canonical choice of any cofibrant replacement in the construction, by introducing a
natural realization functor. It is an improvement of what is done in [14, Section 4].
The latter terminology comes from the fact that it uses the notion of natural d-path
of the topological n-cube. This work is devoted to the study of a way of realizing
a precubical set as a multipointed d-space without any non-canonical choice in
the construction either, unlike what is done in [14, Section 5]. Precubical sets
are a model for concurrency theory [9]. The n-cube represents the concurrent
execution of n actions. This idea is even further developed in [24] in which it is
established that the non-positively curved precubical sets contain most of the useful
examples. However, we do not need this concept and we keep working with general
precubical sets like in [21]. The d-paths of a precubical set, i.e. in the geometric
realization of the precubical set, are the continuous paths which are compositions
of continuous paths included in cubes of the geometric realization which are locally
nondecreasing with respect to each axis of coordinates. These particular continuous
paths represent the possible execution paths of the concurrent process modelled
by the precubical set. The local nondecreasingness represents time irreversibility.
The notion of regular continuous path is introduced in [8, Definition 1.1]. The
terminology comes from elementary differential geometry where a differentiable
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maps γ : [0, 1]→ Rn is called regular if p′(t) ̸= 0 for all t ∈]0, 1[. Intuitively, it is a
continuous path without zero speed point.

By starting from the topological n-cube equipped with the set of nonconstant
tame regular d-paths of the topological n-cube, it is introduced the tame regular
realization |K|treg of a precubical set K as a multipointed d-space in Definition 2.23.
Since the composition of two tame regular d-paths is still tame regular, all execution
paths of this multipointed d-space are tame regular d-paths (and nonconstant).
Thus, the tame regular realization of a precubical set does not contain as execution
paths all nonconstant regular d-paths between two vertices of the precubical set: see
Figure 2 for an example of a non-tame d-path. This point of view is not restrictive:
see Theorem 7.2, Corollary 7.3 and Corollary 7.4.

It is well established that the relevant information for concurrency theory is
contained in the homotopy type of the space of execution paths [9]. In particular,
it is not contained in the topology of the underlying space. It therefore suffices
to consider the Moore flow MG(|K|treg). The latter is obtained by forgetting the
underlying topological space of the multipointed d-space |K|treg and by keeping
only the execution paths and the information about their reparametrization (see
Theorem 3.14).

The point is that the functor K 7→MG(|K|treg) is the composite of a left adjoint
K 7→ |K|treg from precubical sets to multipointed d-spaces and of a right adjoint
MG : GdTop → GFlow from multipointed d-spaces to Moore flows. The latter
does not commute with colimits in general. The main result of this paper is that
the composite functor K 7→MG(|K|treg) from precubical sets to Moore flows can
be replaced, up to a natural weak equivalence of the h-model structure of Moore
flows, by a colimit-preserving functor. This replacement up to a weak equivalence
of the h-model structure means that the spaces of execution paths are replaced by
homotopy equivalent ones. Moreover, the image of this new functor is included in
the class of m-cofibrant Moore flows. More precisely, we obtain the two following
theorems.

Theorem (Theorem 6.5). There exists a colimit-preserving functor

[−]reg : □opSet −→ GFlow

from precubical sets to Moore flows and a natural map of Moore flows

[K]reg −→MG(|K|treg)

which is a weak equivalence of the h-model structure of Moore flows for all precubical
sets K. Moreover, the above natural map of Moore flows is an isomorphism if and
only if K is spatial.

Theorem (Theorem 6.7). For all precubical sets K, the Moore flow [K]reg is
m-cofibrant.

As examples of spatial precubical sets, there are all proper precubical sets by
[21, Proposition 7.5], and in particular the geometric and non-positively curved
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ones. In other terms, the precubical sets coming from a lot of real concurrent
systems by [24, Proposition 1.29].

As any right adjoint between locally presentable category, the functor MG :
GdTop→ GFlow is accessible. However it is not finitely accessible. This is due to
the fact that the convenient category of topological spaces we are working with is
locally (2ℵ0)+-presentable and not locally finitely presentable. However, it does
commute with some particular transfinite compositions [17, Theorem 6.14] [18,
Theorem 5.7]. The right adjoint MG : GdTop→ GFlow is also a part of a Quillen
equivalence MG

! ⊣ MG between the q-model structures of multipointed d-spaces
and Moore flows by [18, Theorem 8.1] which satisfies a very specific property: the
unit and the counit of this Quillen equivalence induce isomorphisms between the
q-cofibrant objects [18, Theorem 7.6 and Corollary 7.9]. These facts together with
the isomorphism of Theorem 6.5 when K is a spatial precubical set is an illustration
of the following informal observation: the right adjoint MG : GdTop → GFlow
commutes with good enough colimits.

It is then deduced from Theorem 6.7 that the space of tame regular d-paths
of a precubical set is homotopy equivalent to a CW-complex. We obtain a purely
model category proof of this known fact (see the long comment after Corollary 6.8
for bibliographical references).
Theorem (Corollary 6.8). For every precubical set K, the space of tame regular
d-paths is homotopy equivalent to a CW-complex.

At this point, the reader may wonder what happens to the theory developed in
this paper when the tameness condition is removed. As an answer, we introduce
the regular realization |K|reg of a precubical set K as a multipointed d-space in
Definition 7.1. The execution paths of |K|reg are exactly all nonconstant regular
d-paths in the geometric realization of K between two vertices of K, not only the
tame ones. We then obtain the following comparison theorem as a corollary of
Theorem 6.5 and of results from Raussen and Ziemiański.
Theorem (Corollary 7.4). For all precubical sets K, there exists a natural weak
equivalence of the h-model structure of Moore flows

[K]reg −→MG(|K|reg).

The notion of natural d-path of a precubical set enables us in [21] to find a way
to realize any precubical set as an m-cofibrant flow without using any non-canonical
choice of any cofibrant replacement functor on the category of flows. In this
paper, the notion of tame regular d-path of a precubical set enables us to obtain
a realization of any precubical set as an m-cofibrant Moore flow without using
any non-canonical choice of any cofibrant replacement functor on the category of
multipointed d-spaces or on the category of Moore flows either.

In both cases, we obtain much better results than in [14] because all construc-
tions become canonical thanks to the geometric properties of the cubes. However,
the associated Moore flow is m-cofibrant, and not q-cofibrant. It is the counter-
part of these improvements: unlike in [14], we have to deal with accessible model
categories which are unlikely to be combinatorial.
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By removing the adjective regular from Definition 2.23, it is possible to develop
the same theory as the one develop in this paper. However, it is necessary to replace
the reparametrization category G defined in Notation 3.5 by the reparametrization
category M ⊃ G of [17, Proposition 4.11]: the small category G is exactly the
subcategory of M with the same set of objects ]0,+∞[ and containing only the
invertible maps of M. In particular, it is necessary to work with M-flows instead
of with G-flows (the latter are called Moore flows in this paper). Some results in
this direction are already available in [23].

Outline of the paper

Section 2, after a reminder about multipointed d-spaces and precubical sets, intro-
duces the tame regular realization of a precubical set as a multipointed d-space. It is
built using the notion of nonconstant tame regular d-path of the topological n-cube.
The execution paths of the tame regular realization are exactly the nonconstant
tame regular d-paths in the geometric realization of the precubical set.

Section 3 starts by a reminder about flows and Moore flows (flows are just
a particular case of Moore flows for which the reparametrization category is the
terminal category), as well as some results about them which are used in this paper.
We add in this reminder the construction of the {q,m, h}-model structures of Moore
flows. It is an easy adaptation of the case of flows treated in [20, Theorem 7.4].

Section 4 is devoted to the important notion of L1-arc length of a d-path in the
geometric realization of a precubical set. Some results coming from [36] are adapted
to ∆-generated spaces. Theorem 4.11 is a slightly improved statement of a similar
statement in [36]: a homotopy equivalence is replaced by a homeomorphism. It is
then proved that Theorem 4.11 implies that the flow associated to the tame regular
realization as a multipointed d-space is the tame concrete realization of a precubical
set as recalled in Definition 4.12 and originally defined in [21, Definition 7.1].

Section 5 makes the link between the ideas of this paper and Ziemiański’s notion
of cube chain. It is an adaptation of [21, Section 6] in the setting of Moore flows.
The idea is to adapt Ziemiański’s cube chains initially developed for the closed
monoidal category of topological spaces (Top,×) to the biclosed semimonoidal
category of G-spaces ([Gop,Top]0,⊗). It culminates with Theorem 5.9.

Section 6, after recalling the important notion of spatial precubical set, es-
tablishes the main results of this paper, namely Theorem 6.5, Theorem 6.7 and
Corollary 6.8 expounded in the introduction.

Finally, Section 7 addresses the question of the regular realization of a pre-
cubical set as a multipointed d-space and a comparison theorem with the tame
regular realization is obtained in Theorem 7.2 and Corollary 7.3. We then deduce
Corollary 7.4 from the results of this section and Theorem 6.5. Some observations
are also made about the link between tameness and model categories.
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Prerequisites and notations

We refer to [2] for locally presentable categories, to [39] for combinatorial model
categories. We refer to [28] and to [27] for more general model categories, and to
[40, 26, 12] for accessible model categories. We refer to [29] and to [4, Chapter 6]
for enriched categories. All enriched categories are topologically enriched categories:
the word topologically is therefore omitted.

The initial object of a category is denoted by ∅. The terminal object of a
category is denoted by 1. The set of maps from X to Y in a category C is denoted
by C(X,Y ). IdX denotes the identity map of X. Let I be a set of maps of a
bicomplete category C. An I-cellular object is an object X such that the canonical
map ∅→ X is a transfinite composition of pushouts of maps of I. This sequence
of pushouts is called the I-cellular decomposition of X. An I-cofibrant object is a
retract of an I-cellular object. A cellular (cofibrant resp.) object of a combinatorial
model category is an I-cellular (I-cofibrant resp.) object where I is the set of
generating cofibrations. The prefix I can be omitted when there is no ambiguity.

The category Top denotes the category of ∆-generated spaces or of ∆-Haus-
dorff ∆-generated spaces together with the continuous maps (cf. [19, Section 2
and Appendix B]). The inclusion functor from the full subcategory of ∆-generated
spaces to the category of general topological spaces together with the continuous
maps has a right adjoint called the ∆-kelleyfication functor and denoted by k∆.
The latter functor does not change the underlying set. It only adds open subsets.
The category Top is locally presentable by [10, Theorem 3.9] and Cartesian closed
by [42, Theorem 3.6] (see also [15, Proposition 2.5]). The internal hom TOP(X,Y )
is given by taking the ∆-kelleyfication of the compact-open topology on the set
Top(X,Y ). The category Top can be equipped with its q-model structure Topq.
The m-model structure Topm [6] and the h-model structure Toph [3] of Top are
also used in various places of the paper. Compact means quasicompact Hausdorff
(French convention).

The following elementary fact is implicitly assumed several times in this work
to use results written with the compact-open topology and not with its ∆-kelleyfica-
tion:
Proposition 1.1. Let X and Y be two homotopy equivalent general topological
spaces. Then their ∆-kelleyfications k∆(X) and k∆(Y ) are homotopy equivalent.

Proof. It suffices to prove that two homotopic maps f, g : X ⇒ Y give rise to two
homotopic maps k∆(f), k∆(g) : k∆(X) ⇒ k∆(Y ). Let H : X × [0, 1] → Y be a
homotopy from f to g. Since k∆ is a right adjoint, it preserves binary products.
Therefore there are the natural homeomorphisms

k∆(X × [0, 1]) ∼= k∆(X)× k∆([0, 1]) ∼= k∆(X)× [0, 1],

the right-hand one because [0, 1] is ∆-generated. Thus k∆(H) yields a homotopy
from k∆(f) to k∆(g).

We conclude the prerequisites by giving the general definition of a reparametri-
zation category for the convenience of the reader because the terminology is used
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sometimes in this paper. It is not required to understand the proofs of this paper.

Definition 1.2. A semimonoidal category (K,⊗) is a category K equipped with a
functor ⊗ : K×K → K together with a natural isomorphism ax,y,z : (x⊗ y)⊗ z →
x⊗ (y ⊗ z) called the associator satisfying the pentagon axiom [31, diagram (5)
page 158].

According to the usual terminology used for similar situations, a semimonoidal
category could be called a non-unital monoidal category. Note that it is the
monoidal structure which is non unital, not the category.

Definition 1.3. A semimonoidal category (K,⊗) is enriched if the category K is
enriched and if the set map

K(a, b)×K(c, d) −→ K(a⊗ c, b⊗ d)

is continuous for all objects a, b, c, d ∈ Obj(K).

Definition 1.4 ([17, Definition 4.3]). A reparametrization category (P,⊗) is a
small enriched semimonoidal category satisfying the following additional properties:

1. The semimonoidal structure is strict, i.e. the associator is the identity.

2. All spaces of maps P(ℓ, ℓ′) for all objects ℓ and ℓ′ of P are contractible.

3. For all maps ϕ : ℓ → ℓ′ of P, for all ℓ′
1, ℓ

′
2 ∈ Obj(P) such that ℓ′

1 ⊗ ℓ′
2 = ℓ′,

there exist two maps ϕ1 : ℓ1 → ℓ′
1 and ϕ2 : ℓ2 → ℓ′

2 of P such that ϕ = ϕ1⊗ϕ2 :
ℓ1 ⊗ ℓ2 → ℓ′

1 ⊗ ℓ′
2 (which implies that ℓ1 ⊗ ℓ2 = ℓ).

Notation 1.5. To stick to the intuition, we set ℓ+ ℓ′ := ℓ⊗ ℓ′ for all ℓ, ℓ′ ∈ Obj(P).
Indeed, morally speaking, ℓ is the length of a path.

A reparametrization category P is an enriched category with contractible
spaces of morphisms such that the set Obj(P) of objects of P has a structure of a
semigroup with a composition law denoted by +, such that the set map

⊗ : P(ℓ1, ℓ
′
1)× P(ℓ2, ℓ

′
2)→ P(ℓ1 + ℓ2, ℓ

′
1 + ℓ′

2)

is continuous for all ℓ1, ℓ
′
1, ℓ2, ℓ

′
2 ∈ Obj(P), and such that every map of P is of the

form ϕ1 ⊗ ϕ2 (not necessarily in a unique way).

Example 1.6. The terminal category with one object 1 and one map Id1 is a
reparametrization category.

2. The tame regular realization of a precubical set

This section starts by a reminder about multipointed d-spaces, then another one
about precubical sets. Then we introduce the notion of d-path and, finally, the
tame regular realization of a precubical set is defined.
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Notation 2.1. The notations ℓ, ℓ′, ℓi, L, . . . mean a strictly positive real number
unless specified something else.

Notation 2.2. Let ℓ > 0. Let µℓ : [0, ℓ]→ [0, 1] be the homeomorphism defined by
µℓ(t) = t/ℓ.

Notation 2.3. The notation [0, ℓ1] ∼=+ [0, ℓ2] means a nondecreasing homeomor-
phism from [0, ℓ1] to [0, ℓ2] with ℓ1, ℓ2 > 0. Let

G(ℓ1, ℓ2) = {[0, ℓ1] ∼=+ [0, ℓ2]}

for ℓ1, ℓ2 > 0.

The sets G(ℓ1, ℓ2) are equipped with the ∆-kelleyfication of the compact-open
topology, which coincides with the compact-open topology, and with the pointwise
convergence topology by [18, Proposition 2.5].

Definition 2.4. Let γ1 and γ2 be two continuous maps from [0, 1] to some
topological space such that γ1(1) = γ2(0). The composite defined by

(γ1 ∗N γ2)(t) =
{
γ1(2t) if 0 ⩽ t ⩽ 1

2 ,

γ2(2t− 1) if 1
2 ⩽ t ⩽ 1

is called the normalized composition.

A multipointed d-space X [15] is a triple (|X|, X0,PtopX) where

• The pair (|X|, X0) is a multipointed space. The space |X| is called the underlying
space of X and the set X0 the set of states of X.

• The set PtopX is a set of continuous maps from [0, 1] to |X| called the execution
paths, satisfying the following axioms:

– For any execution path γ, one has γ(0), γ(1) ∈ X0.
– Let γ be an execution path of X. Then any composite γϕ with ϕ : [0, 1] ∼=+

[0, 1] is an execution path of X.
– Let γ1 and γ2 be two composable execution paths of X; then the normalized

composition γ1 ∗N γ2 is an execution path of X.

Remark 2.5. The subset X0 is not necessarily discrete: for any topological space
Z, the triple (Z,Z,∅) defines a multipointed d-space. Figure 1 depicts another
example already given in [18, Figure 1].

A map f : X → Y of multipointed d-spaces is a map of multipointed spaces
from (|X|, X0) to (|Y |, Y 0) such that for any execution path γ of X, the composite
map f.γ is an execution path of Y .

Notation 2.6. The category of multipointed d-spaces is denoted by GdTop.
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(0 , 0)

(1 , 1)(0 , 1)

(1 , 0)

Figure 1: |X| = [0, 1] × [0, 1], X0 = {0} × [0, 1] ∪ {(x, x) | x ∈ [0, 1]}, Ptop
(0,t),(t,t)X = G(1, 1)

for all t ∈]0, 1], Ptop
(0,0),(0,0)X = {(0, 0)} and Ptop

α,βX = ∅ otherwise, there is no composable
execution paths.

The category of multipointed d-spaces is locally presentable by [15, Theorem 3.5].
Let us recall the three model structures of multipointed d-spaces.

Theorem 2.7 ([20, Theorem 6.14]). Let r ∈ {q,m, h}. There exists a unique
model structure on GdTop such that:

• A map of multipointed d-spaces f : X → Y is a weak equivalence if and only if
f0 : X0 → Y 0 is a bijection and for all (α, β) ∈ X0 ×X0, the continuous map
Ptop

α,βX → Ptop
f(α),f(β)Y is a weak equivalence of the r-model structure of Top.

• A map of flows f : X → Y is a fibration if and only if for all (α, β) ∈ X0 ×X0,
the continuous map Ptop

α,βX → Ptop
f(α),f(β)Y is a fibration of the r-model structure

of Top.

This model structure is accessible and all objects are fibrant. The q-model structure
is even combinatorial.

Notation 2.8. These three model categories are denoted by GdTopq, GdTopm

and GdToph.

Notation 2.9. The subset of execution paths from α to β is the set of γ ∈ PtopX
such that γ(0) = α and γ(1) = β; it is denoted by Ptop

α,βX: α is called the initial
state and β the final state of such a γ.

The set Ptop
α,βX is equipped with the ∆-kelleyfication of the relative topology

induced by the inclusion Ptop
α,βX ⊂ TOP([0, 1], |X|).

Notation 2.10. Let [0] = {()} and [n] = {0, 1}n for n ⩾ 1. By convention, one has
{0, 1}0 = [0] = {()}. The set [n] is equipped with the product ordering {0 < 1}n.
Let 0n = (0, . . . , 0) ∈ {0, 1}n and 1n = (1, . . . , 1) ∈ {0, 1}n
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Let δα
i : [n− 1]→ [n] be the coface map defined for 1 ⩽ i ⩽ n and α ∈ {0, 1} by

δα
i (ϵ1, . . . , ϵn−1) = (ϵ1, . . . , ϵi−1, α, ϵi, . . . , ϵn−1).

The small category □, called sometimes the box category, is by definition the
subcategory of the category of sets with the set of objects {[n], n ⩾ 0} and generated
by the coface maps δα

i . They satisfy the cocubical relations δβ
j δ

α
i = δα

i δ
β
j−1 for

i < j and for all (α, β) ∈ {0, 1}2. If p > q ⩾ 0, then the set of morphisms □([p], [q])
is empty. If p = q, then the set □([p], [p]) is the singleton {Id[p]}. For 0 ⩽ p ⩽ q,
all maps of □ from [p] to [q] are one-to-one. A good reference for presheaves is [32].

Definition 2.11 ([5]). The category of presheaves over □, denoted by □opSet, is
called the category of precubical sets.

Let us expand the above definition. A precubical set K consists of a family
of sets (Kn)n⩾0 and of set maps ∂α

i : Kn → Kn−1 with 1 ⩽ i ⩽ n and α ∈ {0, 1}
satisfying the cubical relations ∂α

i ∂
β
j = ∂β

j−1∂
α
i for any α, β ∈ {0, 1} and for i < j.

An element of Kn is called a n-cube. An element of K0 is also called a vertex of K.
A precubical set K is of dimension n ⩾ 0 if Kn ̸= ∅ and Kp = ∅ for p > n.

Definition 2.12. For all n ⩾ 0, the n-cube is the precubical set □[n] = □(−, [n]).
It is of dimension n.

There exists a functor □(K) : (□↓K)→ □opSet (in the notation (□↓K), every
object [n] of □ is identified with the precubical set □[n]) which takes the map
of precubical sets □[n]→ K to □[n]. It is a general property of presheaves that
K = lim−→□(K), and the latter colimit is denoted by

lim−→
□[n]→K

□[n].

Let dim(x) = n if x ∈ Kn. Let

K⩽n = lim−→
□[p]→K

p⩽n

□[p].

The boundary of □[n] is the precubical set

∂□[n] = □[n]⩽n−1.

In particular, one has ∂□[0] = ∅. The precubical set ∂□[n] is of dimension n− 1
for all n ⩾ 1.

Definition 2.13. A cocubical object of a category C is a functor □→ C.

Notation 2.14. Let C be a cocomplete category. Let X : □→ C be a cocubical
object of C. It gives rise to a small diagram (□↓K)→ C for all precubical sets K.
Its colimit is denoted by

X̂(K) = lim−→
□[n]→K

X([n]).
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Proposition 2.15 ([14, Proposition 2.3.2]). Let C be a cocomplete category. The
mapping X 7→ X̂ induces an equivalence of categories between the category of
cocubical objects of C and the colimit-preserving preserving functors from □opSet
to C.

Definition 2.16. Let K be a precubical set. The cocubical topological space
defined on objects by [n] 7→ [0, 1]n and on maps by (δα

i : [n − 1] → [n]) 7→
((ϵ1, . . . , ϵn−1) 7→ (ϵ1, . . . , ϵi−1, α, ϵi, . . . , ϵn−1)) gives rise to a colimit-preserving
functor from precubical sets to topological spaces denoted by

|K|geom = lim−→
□[n]→K

[0, 1]n.

The space |K|geom is called the geometric realization of K.

The topological space |K|geom is a CW-complex. It is equipped with the final
topology which is ∆-generated and Hausdorff.

Definition 2.17. Let U be a topological space. A (Moore) path in U consists of
a continuous map γ : [0, ℓ] → U with ℓ > 0. The real number ℓ > 0 is called the
length of the path. It can be extended to a continuous map γ : [0,+∞[→ U such
that γ(t) = γ(ℓ) for all t ⩾ ℓ. The path γ is a path from γ(0) to γ(ℓ).

The notions of stop interval and regular path appear in [8, Definition 1.1].

Definition 2.18. Let U be a Hausdorff topological space. Let γ : [0, ℓ]→ U be a
Moore path in U with ℓ > 0. A stop interval of γ is an interval [a, b] ⊂ [0, ℓ] with
a < b such that the restriction γ ↾ [a,b] is constant and such that [a, b] is maximal
for this property. The path γ is regular if it has no stop intervals.

Since U is in this paper the geometric realization of a precubical set (cf.
Definition 2.16), the Hausdorff condition in Definition 2.18 is not restrictive. The
Hausdorff condition is used in [8] for two reasons: U must have closed points and
unique sequential limits. It is worth mentioning that the proof of [8, Proposition 3.7]
is incorrect and that a correction is published in [35]. Note also that the proof of
[8, Corollary 3.5] is false, which has no consequence nowhere. Only two theorems
from [8] are used in this paper:

• [8, Proposition 2.22], which is a topological lemma involving only the segment
[0, 1], in the proof of Proposition 3.6.

• [8, Proposition 3.8] in the remark before Proposition 3.6. The proof of [8,
Proposition 3.8] requires that the limit of a convergent sequence is unique.

Definition 2.19. Let γ1 : [0, ℓ1] → U and γ2 : [0, ℓ2] → U be two paths in the
topological space U such that γ1(ℓ1) = γ2(0). The Moore composition γ1 ∗ γ2 :
[0, ℓ1 + ℓ2]→ U is the Moore path defined by

(γ1 ∗ γ2)(t) =
{
γ1(t) for t ∈ [0, ℓ1]
γ2(t− ℓ1) for t ∈ [ℓ1, ℓ1 + ℓ2].
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Figure 2: The left d-path is tame, the right d-path is not tame.

The Moore composition of Moore paths is strictly associative. The Moore composi-
tion of two regular paths of a Hausdorff space is regular.

Definition 2.20. Let n ⩾ 0. A (Moore) d-path of length ℓ ⩾ 0 of □[n] (or in the
geometric realization of □[n]) is a continuous map γ : [0, ℓ] → [0, 1]n with ℓ ⩾ 0
which is nondecreasing with respect to each axis of coordinates. It is tame if
γ(0), γ(ℓ) ∈ {0, 1}n. Let K be a precubical set. Let c ∈ Kn with n ⩾ 0 be an
n-cube of K. A d-path of c of length ℓ ⩾ 0 is a composite continuous map denoted
by [c; γ] : [0, ℓ] → |K|geom such that γ : [0, ℓ] → [0, 1]n is a d-path of length ℓ ⩾ 0
with [c; γ] = |c|geomγ. A d-path of K (or in the geometric realization of K) of
length ℓ ⩾ 0 is a continuous path [0, ℓ]→ |K|geom which is a Moore composition
of the form [c1; γ1] ∗ · · · ∗ [cp; γp] with p ⩾ 1. The d-path γ is tame if each γi for
1 ⩽ i ⩽ p is tame. The point γ(0) is called the initial state of γ and the point γ(ℓ)
is called the final state of γ. We refer e.g. to [44, Section 2.1 and Section 2.5] for
further details.

Figure 2 depicts an example of a tame d-path and of a non-tame d-path: the
exit points of the right d-path from the bottom left square and from the bottom
right square are not vertices indeed. Figure 3 gives another example of a non-tame
d-path in the boundary of the 3-cube. Note that all d-paths in the boundary of
the 2-cube are tame.

Notation 2.21. The set of all d-paths of length 1 of a precubical set K from
α ∈ K0 to β ∈ K0 is denoted by −→P α,β(K).

Now we can introduce the tame regular realization of a precubical set K as
follows. The regular realization of a precubical set is defined in Section 7.

Proposition 2.22. Let n ⩾ 1. The following data assemble into a multipointed
d-space |□[n]|treg called the regular n-cube:

• The underlying space is the topological n-cube [0, 1]n.

• The set of states is {0, 1}n ⊂ [0, 1]n.

• The set of execution paths from a to b with a < b ∈ {0 < 1}n is the set of
regular d-paths [0, 1]→ [0, 1]n from a to b.
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• The set of execution paths from a to b with a ⩾ b is empty.
Let |□[0]|treg = {()}. Let δα

i : [0, 1]n−1 → [0, 1]n be the continuous map defined for
1 ⩽ i ⩽ n and α ∈ {0, 1} by δα

i (ϵ1, . . . , ϵn−1) = (ϵ1, . . . , ϵi−1, α, ϵi, . . . , ϵn−1). By
convention, let [0, 1]0 = {()}. The mapping [n] 7→ |□[n]|treg yields a well-defined
cocubical multipointed d-space.
Proof. The multipointed d-space |□[n]|treg is well defined for all n ⩾ 0 because the
normalized composition of two regular paths is regular and because the reparamet-
rization of a regular path by a homeomorphism is regular.

Using Proposition 2.15, this leads to the definition:
Definition 2.23. Let K be a precubical set. The tame regular realization of K is
the multipointed d-space

|K|treg = lim−→
□[n]→K

|□[n]|treg.

This yields a colimit-preserving functor from precubical sets to multipointed d-
spaces.

Since the underlying space functor from multipointed d-spaces to spaces is
colimit-preserving, the topological space |K|geom is the underlying space of the
multipointed d-space |K|treg. By [20, Proposition 6.5], the forgetful functor X 7→
(|X|, X0) from multipointed d-spaces to multipointed spaces which forgets the set
of execution paths is topological in the sense of [1, Definition 21.1]. This means
that colimits are calculated by a final structure. Consequently, the execution paths
of |K|treg are exactly the nonconstant tame regular d-paths of K.

3. Homotopy theory of Moore flows

This section starts by the necessary reminders about flows and Moore flows for the
readers not familiar with this topic. The end of the section introduces the q-model
structure, the h-model structure and the m-model structure of Moore flows, as
generalizations of results expounded in [20] for flows: the proofs are very similar
indeed.
Definition 3.1 ([13, Definition 4.11]). A flow is a small semicategory enriched over
the closed monoidal category (Top,×). The corresponding category is denoted by
Flow.

Let us expand the above definition. A flow X consists of a topological space
PX of execution paths, a discrete space X0 of states, two continuous maps s and t
from PX to X0 called the source and target map respectively, and a continuous
and associative map ∗ : {(x, y) ∈ PX × PX; t(x) = s(y)} −→ PX such that
s(x∗y) = s(x) and t(x∗y) = t(y). Let Pα,βX = {x ∈ PX | s(x) = α and t(x) = β}:
it is the space of execution paths from α to β, α is called the initial state and β is
called the final state. Note that the composition is denoted by x ∗ y, not by y ◦ x.
The category Flow is locally presentable by [17, Theorem 6.11].
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Notation 3.2. A set can be viewed as a flow with an empty path space between
each pair of states. The flow −→I consists of the semicategory 0→ 1 without identity
morphisms.

Let X be a multipointed d-space. Consider for every (α, β) ∈ X0 × X0 the
coequalizer of spaces

Pα,βX = lim−→
(
Ptop

α,βX × G(1, 1) ⇒ Ptop
α,βX

)
where the two maps are (c, ϕ) 7→ c and (c, ϕ) 7→ c.ϕ. Let [−]α,β : Ptop

α,βX → Pα,βX
be the canonical map.

Theorem 3.3 ([15, Theorem 7.2]). Let X be a multipointed d-space. Then there
exists a flow cat(X) with cat(X)0 = X0, Pα,β cat(X) = Pα,βX and the composition
law ∗ : Pα,βX × Pβ,γX → Pα,γX is for every triple (α, β, γ) ∈ X0 ×X0 ×X0 the
unique map making the following diagram commutative:

Ptop
α,βX × PG

β,γX
∗N //

[−]α,β×[−]β,γ

��

PG
α,γX

[−]α,γ

��

Pα,βX × Pβ,γX // Pα,γX

where ∗N is the normalized composition (cf. Definition 2.4). The mapping X 7→
cat(X) induces a functor from GdTop to Flow.

Definition 3.4. The functor cat : GdTop → Flow is called the categorization
functor.

Notation 3.5. The enriched small category G is defined as follows:

• The set of objects is the open interval ]0,+∞[.

• The space of maps from ℓ1 to ℓ2 is the space G(ℓ1, ℓ2) defined in Notation 2.3.

• For every ℓ1, ℓ2, ℓ3 > 0, the composition map

G(ℓ1, ℓ2)× G(ℓ2, ℓ3)→ G(ℓ1, ℓ3)

is induced by the composition of continuous maps.

The enriched category G is an example of a reparametrization category in the
sense of Definition 1.4 which is different from the terminal category. It is introduced
in [17, Proposition 4.9].

By [8, Proposition 3.8], the topological space Pα,βX of Theorem 3.3 is exactly
the space of traces in the sense of [36] when |X| is Hausdorff and all execution paths
of the multipointed d-space X from α to β are regular. This happens e.g. when X



124 P. Gaucher

is a cellular object of the q-model category of multipointed d-spaces of Theorem 2.7.
It is not true for general multipointed d-spaces as shown by Proposition 3.6.

To have such a fact for all multipointed d-spaces, the enriched category G
must be replaced by the enriched category M of [17, Proposition 4.11] in the
definition of a multipointed d-space. The enriched category M is another example
of reparametrization category in the sense of Definition 1.4. It is out of the scope
of this paper which treats only the case of regular d-paths. The reader might be
interested in [23] to read the first results in this direction.

Proposition 3.6. Consider the multipointed d-space −→I M such that

• The underlying topological space of −→I M is the segment [0, 1].

• The set of states of −→I M is {0, 1}.

• The set of execution paths of −→I M from 0 to 1 is the set M(1, 1) of nonde-
creasing surjective maps from [0, 1] to itself. There are no other execution
paths in −→I M.

• There is no composition law.

Then P0,1
−→
I M is not a singleton.

Proof. The space P0,1
−→
I M is the quotient of the space M(1, 1) by the action of

the space G(1, 1). By [18, Proposition 2.5], the compact-open topology of G(1, 1) is
∆-generated, and by [23, Proposition 2.6], the compact-open topology ofM(1, 1) is
∆-generated as well (it is the same argument); therefore we can use the results of
[8] which is written with the compact-open topology. By [8, Proposition 2.22], the
quotient ofM(1, 1) by the action of G(1, 1) is in bijection with the set of countable
subsets of [0, 1]. We deduce that P0,1

−→
I M is not a singleton.

This implies that the flow cat(−→I M) is not equal to −→I (see Notation 3.2). Since
the inclusion map G(1, 1) ⊂ M(1, 1) is a homotopy equivalence, a q-cofibrant
replacement of −→I M is the multipointed d-space −→I G such that

• The underlying topological space of −→I G is the segment [0, 1].

• The set of states of −→I G is {0, 1}.

• The set of execution paths of −→I G from 0 to 1 is the set G(1, 1). There are no
other execution paths in −→I G .

• There is no composition law.

This phenomenon is general: the q-cofibrant replacement functor of GdTop turns
out to be a way of removing all non-regular execution paths of a multipointed
d-space by preserving its causal structure.
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Definition 3.7. The enriched category of enriched presheaves from G to Top is
denoted by [Gop,Top]. The underlying set-enriched category of enriched maps
of enriched presheaves is denoted by [Gop,Top]0. The objects of [Gop,Top]0 are
called the G-spaces. Let

FGop

ℓ U = G(−, ℓ)× U ∈ [Gop,Top]0

where U is a topological space and where ℓ > 0.

The category [Gop,Top]0 is locally presentable by [16, Proposition 5.1].

Proposition 3.8 ([16, Proposition 5.3 and Proposition 5.5]). The category of
enriched presheaves [Gop,Top]0 is a full reflective and coreflective subcategory of
TopGop

0 . For every G-space F : Gop → Top, every ℓ > 0 and every topological space
X, we have the natural bijection of sets

[Gop,Top]0(FGop

ℓ X,F ) ∼= Top(X,F (ℓ)).

Theorem 3.9 ([17, Theorem 5.14]). Let D and E be two G-spaces. Let

D ⊗ E =
∫ (ℓ1,ℓ2)

G(−, ℓ1 + ℓ2)×D(ℓ1)× E(ℓ2).

The pair ([Gop,Top]0,⊗) has the structure of a biclosed semimonoidal category.

Proposition 3.10 ([17, Proposition 5.16]). Let U,U ′ be two topological spaces.
Let ℓ, ℓ′ > 0. There is the natural isomorphism of G-spaces

FGop

ℓ U ⊗ FGop

ℓ′ U ′ ∼= FGop

ℓ+ℓ′(U × U ′).

Proposition 3.11 ([17, Proposition 5.18]). Let D and E be two G-spaces. Then
there is a natural homeomorphism

lim−→(D ⊗ E) ∼= lim−→D × lim−→E.

By [33, Theorem 6.5(ii)], since all topological spaces are fibrant and since
(Top,×, {0}) is a locally presentable base by [16, Corollary 3.3], the category of
G-spaces [Gop,Top]0 can be endowed with the projective model structure associated
with one of the three model structures Topq,Topm,Toph. They are called the
projective q-model structure (m-model structure, h-model structure resp.) and
denoted by [Gop,Topq]proj

0 ([Gop,Topm]proj
0 , [Gop,Toph]proj

0 resp.). The three
model structures are accessible. The fibrations are the objectwise fibrations of the
corresponding model structure of Top. They are called the projective q-fibrations
(projective m-fibrations, projective h-fibrations resp.). The weak equivalences are
the objectwise weak equivalence of the corresponding model structure of Top.
Since the projective m-fibrations of spaces are the projective h-fibrations of spaces,
and since the weak equivalences of the projective m-model structure of G-spaces
are the weak equivalences of the projective q-model structure of G-spaces, it implies
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that the projective m-model structure of G-spaces is the mixing in the sense of [6,
Theorem 2.1] of the projective q-model structure of G-spaces and of the projective
h-model structure of G-spaces. All G-spaces are fibrant for these three model
structures.

When the reparametrization category G is replaced by the terminal category,
these model structures coincide with the q-model structure Topq, the m-model
structure Topm and the h-model structure Toph respectively.

Definition 3.12 ([17, Definition 6.2]). A Moore flow is a small semicategory
enriched over the biclosed semimonoidal category ([Gop,Top]0,⊗) of Theorem 3.9.
The corresponding category is denoted by GFlow.

A Moore flow X consists of a set of states X0, for each pair (α, β) of states a
G-space Pα,βX of [Gop,Top]0 and for each triple (α, β, γ) of states an associative
composition law

∗ : Pα,βX ⊗ Pβ,γX → Pα,γX.

A map of Moore flows f from X to Y consists of a set map

f0 : X0 → Y 0

(often denoted by f as well if there is no possible confusion) together for each pair
of states (α, β) of X with a natural transformation

Pf : Pα,βX −→ Pf(α),f(β)Y

compatible with the composition. The topological space Pα,βX(ℓ) is denoted by
Pℓ

α,βX and is called the space of execution paths of length ℓ. A set can be viewed
as a Moore flow with an empty G-space of execution paths between each pair of
states.

Note that by replacing G by the terminal category, we recover Definition 3.1.

Notation 3.13. Let D : Gop → Top be a G-space. We denote by Glob(D) the
Moore flow defined as follows:

Glob(D)0 = {0, 1}
P0,0Glob(D) = P1,1Glob(D) = P1,0Glob(D) = ∅
P0,1Glob(D) = D.

There is no composition law. This construction yields a functor

Glob : [Gop,Top]0 → GFlow.

The category GFlow is locally presentable by [17, Theorem 6.11]. Let X be a
multipointed d-space. Let Pℓ

α,βX be the subspace of continuous maps from [0, ℓ]
to |X| defined by Pℓ

α,βX = {t 7→ γµℓ | γ ∈ Ptop
α,βX}. By [18, Theorem 4.12], there

exists a Moore flow MG(X) such that:
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• The set of states is X0.

• For all α, β ∈ X0 and all real numbers ℓ > 0, Pℓ
α,βMG(X) = Pℓ

α,βX.

• For all maps [0, ℓ] ∼=+ [0, ℓ′], a map f : [0, ℓ′]→ |X| of Pℓ′

α,βMG(X) is mapped
to the map [0, ℓ] ∼=+ [0, ℓ′] f→ |X| of Pℓ

α,βMG(X).

• For all α, β, γ ∈ X0 and all real numbers ℓ, ℓ′ > 0, the composition maps

∗ : Pℓ
α,βMG(X)× Pℓ′

β,γMG(X)→ Pℓ+ℓ′

α,γ MG(X)

is the Moore composition.

Theorem 3.14 ([18, Theorem 4.12 and Appendix B]). The mapping above induces
a functor MG : GdTop→ GFlow which is a right adjoint.

Notation 3.15. Denote by MG
! : GFlow → GdTop the left adjoint of MG :

GdTop→ GFlow.

Consider a Moore flow X. For all α, β ∈ X0, let Xα,β = lim−→Pα,βX. Let
(α, β, γ) be a triple of states of X. The composition law of the Moore flow X
induces, using Proposition 3.11, a continuous map

Xα,β ×Xβ,γ
∼= lim−→(Pα,βX ⊗ Pβ,γX) −→ lim−→Pα,γX ∼= Xα,γ

which is associative in an obvious sense. We obtain a flow M!(X) such that:

• The set of states is X0.

• For all α, β ∈ X0, one has Pα,βM!X = Xα,β .

• For all α, β, γ ∈ X0, the composition law is the map Xα,β ×Xβ,γ → Xα,γ

above defined.

This construction yields a well-defined functor

M! : GFlow −→ Flow

by [17, Proposition 10.5] which is a left adjoint by [17, Theorem 10.7].

Notation 3.16. Denote by M : Flow → GFlow a right adjoint of the functor
M! : GFlow −→ Flow.

We now recall the theorem:

Theorem 3.17 ([18, Theorem 8.11]). There is the isomorphism of functors

cat ∼= M!MG

where cat : GdTop→ Flow from multipointed d-spaces to flows is the functor of
Definition 3.4.
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We want to conclude this section by constructing the {q,h,m}-model structures
of Moore flows.

Definition 3.18. A [Gop,Top]0-graph X consists of a pair

(X0, (Pα,βX)(α,β)∈X0×X0)

such that X0 is a set and such that each Pα,βX is a G-space. A map of [Gop,Top]0-
graphs f : X → Y consists of a set map f0 : X0 → Y 0 (called the underlying
set map) together with a map Pα,βX → Pf0(α),f0(β)Y of G-spaces for all (α, β) ∈
X0 × X0. The composition is defined in an obvious way. The corresponding
category is denoted by Gph([Gop,Top]0).

Theorem 3.19. Let (C,F ,W) be either the projective q-model structure, or the
projective m-model structure, or the projective h-model structure of G-spaces. Then
the category of Moore flows can be endowed with an accessible model structure
characterized as follows:

• A map of Moore flows f : X → Y is a weak equivalence if and only if f0 :
X0 → Y 0 is a bijection and Pf : Pα,βX → Pf(α),f(β)Y belongs to W for all
(α, β) ∈ X0 ×X0.

• A map of Moore flows f : X → Y is a fibration if and only if Pf : Pα,βX →
Pf(α),f(β)Y belongs to F for all (α, β) ∈ X0 ×X0.

All objects are fibrant. These three model structures are called the q-model structure,
the m-model structure and the h-model structure of GFlow. The m-model structure
of Moore flows is the mixing in the sense of [6, Theorem 2.1] of the q-model structure
and the h-model structure of Moore flows. The q-model structure coincides with the
one of [17, Theorem 8.8]. Every q-cofibration of Moore flows is an m-cofibration of
Moore flows and every m-cofibration of Moore flows is an h-cofibration of Moore
flows.

Remark 3.20. Theorem 3.19 is already proved in [20, Theorem 7.4] if the repara-
metrization category G is replaced by the terminal category, which enables us to
obtain the q-model structure, the m-model structure and the h-model structure of
Flow. All these model structures are accessible. The q-model structure is even
combinatorial.

Sketch of proof. Choose (C,F ,W). By [20, Corollary 5.6], there exists a unique
model structure on the category Gph([Gop,Top]0) such that the weak equivalences
are the maps of enriched graphs which induce a bijection between the sets of
vertices and which are objectwise weak equivalences and such that the fibrations
are the objectwise fibrations. This model structure is accessible and all enriched
graphs are fibrant. There is a forgetful functor

Gph: GFlow −→ Gph([Gop,Top]0)
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which forgets the composition law. This functor is a right-adjoint. The left adjoint
is the free Moore flow generated by the enriched graph. The semicategorical
description of Moore flows is crucial: see [20, Proposition 7.3] for a description
of the left adjoint. Like in [20, Theorem 7.4], the model structure on enriched
graphs of G-spaces can be right-lifted along this right adjoint by using [20, The-
orem 2.1], namely the Quillen path object argument in model categories where
all objects are fibrant, with the path functor Path : GFlow→ GFlow defined on
objects by Path(X)0 = X0, and for all (α, β) ∈ X0 × X0 and for all ℓ > 0 by
Pℓ

α,β Path(X) = TOP([0, 1],Pℓ
α,βX) with an obvious definition of the composition

law. The hypotheses of [20, Theorem 2.1] are satisfied because they are satisfied
objectwise. Indeed, for all (α, β) ∈ X0 ×X0 and for all ℓ > 0, the diagonal of the
topological space Pℓ

α,βX factors as a composite

Pℓ
α,βX −→ TOP([0, 1],Pℓ

α,βX) −→ Pℓ
α,βX × Pℓ

α,βX

where the left-hand map is a homotopy equivalence and the right-hand map is
a r-fibration for r ∈ {q,m, h}. The q-model structure of this theorem coincides
with the one of [17, Theorem 8.8] because the two model structures have the same
class of fibrations and weak equivalences. The last sentence is a general fact about
mixed model structures (see [6, Theorem 2.1 and Proposition 3.6]).

Notation 3.21. These three model categories are denoted by GFlowq, GFlowm

and GFlowh.

Remark 3.22. The maps C : ∅→ {0} and R : {0, 1} → {0} are cofibrations of
Moore flows. See [22] for some explanations about the importance of the cofibration
R : {0, 1} → {0}.

By equipping the category of multipointed d-spaces with its q-model structure
(cf. Theorem 2.7), the functor MG : GdTop → GFlow becomes a right Quillen
equivalence between the q-model structures by [18, Theorem 8.1]. Moreover,
the unit and counit of the Quillen adjunction MG

! ⊣ MG induce isomorphisms
for the q-cofibrant objects [18, Theorem 7.6 and Corollary 7.9]. The functor
M! : GFlow −→ Flow yields a left Quillen equivalence between the q-model
structures by [17, Theorem 10.9]. Finally, by [18, Theorem 8.8], the functor
cat ∼= M!MG : GdTop→ Flow is neither a left adjoint nor a right adjoint. However,
by [18, Theorem 8.14], it takes q-cofibrant multipointed d-spaces to q-cofibrant
flows and its total left derived functor in the sense of [7], namely X 7→ cat(Xcof )
where (−)cof is a q-cofibrant replacement of the q-model structure of multipointed
d-spaces, induces an equivalence of categories between the homotopy categories
of the q-model structures. An inverse functor of cat : GdTop → Flow up to
homotopy is the functor X 7→ MG

! (M(X)cof ) where (−)cof is now a q-cofibrant
replacement of the q-model structure of Moore flows. By Proposition 3.6, one has
cat(−→I M) ̸= −→I . This is not contradictory. Indeed, the q-cofibrant replacement of
the multipointed d-space −→I M is the multipointed d-space −→I G described in the
comment following Proposition 3.6 and cat(−→I G) = −→I .
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It is worth noting that the h-model structures of Moore flows and of flows, as
well as the h-model structure of multipointed d-spaces recalled in Theorem 2.7 do
not coincide with the Hurewicz model structure given by [3, Corollary 5.23]. This
one exists as well for Moore flows, flows, and multipointed d-spaces because all
these categories satisfy the monomorphism hypothesis of [3, Definition 5.16], being
locally presentable, and because all of them are enriched, tensored and cotensored
over (∆-Hausdorff or not) ∆-generated spaces. The proof of the latter fact is
similar to the proof that they are simplicial, tensored and cotensored. The proof
for flows is written in [14, Section 3.3]. The proof for multipointed d-spaces is
sketched in [15, Appendix B]. The proof for Moore flows is left to the reader. The
reason of this similarity is that every ∆-generated space is homeomorphic to the
disjoint sum of its path-connected components by [15, Proposition 2.8], exactly
like simplicial sets. These “genuine” Hurewicz model structures provided by [3,
Corollary 5.23] are not used in this paper. In fact, by now, there are no known
applications of them in the theory of flows, Moore flows or multipointed d-spaces.

4. L1-arc length of d-paths of precubical sets

Definition 4.1. Let K be a precubical set. Let (α, β) ∈ K0 ×K0. Let ℓ > 0. Let
−→
R ℓ

α,β(K) be the subspace of continuous maps from [0, ℓ] to |K|geom defined by

−→
R ℓ

α,β(K) = {t 7→ γµℓ | γ ∈ Ptop
α,β |K|

t
reg}.

Its elements are called the (nonconstant) tame regular d-paths of K (of length ℓ)
from α to β. Let −→

R ℓ(K) =
∐

(α,β)∈K0×K0

−→
R ℓ

α,β(K).

The definition of −→R ℓ
α,β(K) is not restrictive. Indeed, we have:

Proposition 4.2. Let K be a precubical set. Let ϕ : [0, ℓ] ∼=+ [0, ℓ]. Let γ ∈
−→
R ℓ

α,β(K). Then γϕ ∈
−→
R ℓ

α,β(K).

Proof. By definition of −→R ℓ
α,β(K), there exists γ ∈ Ptop

α,β |K|treg such that γ = γµℓ.
We obtain γϕ = γµℓϕµ

−1
ℓ µℓ. Since µℓϕµ

−1
ℓ ∈ G(1, 1), we deduce that γµℓϕµ

−1
ℓ ∈

Ptop
α,β |K|treg and that γϕ ∈ −→R ℓ

α,β(K).

Notation 4.3. Let x = (x1, . . . , xn) and x′ = (x′
1, . . . , x

′
n) be two elements of

[0, 1]n with n ⩾ 1. Let

d1(x, x′) =
n∑

i=1
|xi − x′

i|.

An important feature shared by all d-paths (regular or not, tame or not) in
the geometric realization of a precubical set is that they have a well-defined L1-arc
length [36, Section 2.2.1] [37, Section 2.2]. It is defined as follows. Consider a d-path
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γ : [0, ℓ]→ [0, 1]n. Define the L1-arc length between γ(t) and γ(t′) by d1(γ(t), γ(t′)).
The L1-arc length of a d-path of [0, 1]n between 0n an 1n is therefore n. The L1-arc
length of a Moore composition of d-paths is defined by adding the L1-arc length of
each d-path. This definition makes sense since the coface operators preserve the
metric d1.

Remark 4.4. The length of a nonconstant d-path γ : [0, ℓ] → [0, 1]n between
two vertices of {0, 1}n is ℓ, whereas its L1-arc length is an integer belonging to
{1, . . . , n}.

Proposition 4.5. Let K be a precubical set. Let (α, β) ∈ K0×K0. Two execution
paths of Ptop

α,β |K|treg which are in the same path-connected component have the same
L1-arc length.

Proof. Let −→P α,β(K)co be the set −→P α,β(K) equipped with the compact-open topol-
ogy associated with the topology of |K|geom. Write (Ptop

α,β |K|treg)co for the underly-
ing set of Ptop

α,β |K|treg endowed with the compact-open topology. All elements of
(Ptop

α,β |K|treg)co are tame regular d-paths. We obtain a one-to-one continuous map

(Ptop
α,β |K|

t
reg)co ⊂

−→
P α,β(K)co.

By [37, Proposition 2.2], a composite map of the form

[0, 1] −→ (Ptop
α,β |K|

t
reg)co ⊂

−→
P α,β(K)co −→ R

is constant, where the right-hand map is the L1-arc length. The ∆-kelleyfication
functor does not change the path-connected components. Hence the proof is
complete.

Due to the variety of the terminologies used in the mathematical literature, we
recall the following definition for the convenience of the reader.

Definition 4.6. A pseudometric space (X, d) is a set X equipped with a map
d : X ×X → [0,+∞] called a pseudometric such that:

• ∀x ∈ X, d(x, x) = 0,

• ∀(x, y) ∈ X ×X, d(x, y) = d(y, x),

• ∀(x, y, z) ∈ X ×X ×X, d(x, y) ⩽ d(x, z) + d(z, y).

A map f : (X, d)→ (Y, d) of pseudometric spaces is a set map f : X → Y which
does not increase distance, i.e. ∀(x, y) ∈ X ×X, d(f(x), f(y)) ⩽ d(x, y).

Every metric space is a pseudometric space. The interest of this category for
Proposition 4.7 lies in the following two facts. At first, it is bicomplete, being a
coreflective subcategory of the bicomplete category of Lawvere metric spaces which
are pseudometric spaces with the symmetry condition dropped [30]. Secondly, the
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family of balls B(x, ϵ) = {y ∈ X | d(x, y) < ϵ}) with x ∈ X and ϵ > 0 generates a
topology called the underlying topology of (X, d). This gives rise to a functor from
pseudometric spaces to general topological spaces.

By equipping each topological n-cube [0, 1]n for n ⩾ 0 with the metric d1,
we obtain a cocubical pseudometric space, and by Proposition 2.15, a colimit-
preserving functor from precubical sets to pseudometric spaces. By composing
with the underlying topological space functor, we obtain a functor from precubical
sets to general topological spaces denoted by K 7→ |K|d1 . Since there is a natural
homeomorphism |□[n]|geom

∼= |□[n]|d1 for all n ⩾ 0, the universal property of the
colimit proves that the identity induces a continuous map

|K|geom −→ |K|d1 .

It is worth noting that the latter map is a homeomorphism if and only if the
CW-complex |K|geom is locally finite. Indeed, it is a homeomorphism if and only
if the final topology is pseudometrizable, and therefore, if and only if each path-
connected component is metrizable. We conclude using [11, Proposition 1.5.17].
Note that this argument also implicitly proves that the topology of |K|geom is
pseudometrizable if and only if it is metrizable (in this case, there exists a real
number B > 0 independent from the path-connected components such that each
path-connected component of |K|geom is included in a ball of radius B, being
embeddable in the Hilbert cube: see [11, Proposition 1.5.12, Proposition 1.5.13
and Theorem 1.5.16]).

Proposition 4.7. Let K be a precubical set. Let ℓ > 0. The function

L : −→R ℓ(K)× [0, ℓ] −→ [0,+∞[

which takes (γ, t) to the L1-arc length between γ(0) and γ(t) is continuous.

Proof. Let −→P α,β(K)d1 be the set −→P α,β(K) equipped with the compact-open topol-
ogy associated with the topological space |K|d1 . Using [36, Lemma 2.13], the set
map L : −→P (K)d1 × [0,+∞[−→ [0,+∞[ taking a pair (γ, t) to the L1-arc length
between γ(0) and γ(t) is continuous. Let (−→R ℓ(K))d1 ((−→R ℓ(K))co resp.) be the
underlying set of the space −→R ℓ(K) equipped with the compact-open topology
associated with the topological space |K|d1 (associated with the topological space
|K|geom resp.). Since the identity induces a continuous map |K|geom → |K|d1 , we
obtain a continuous map

L : (−→R ℓ(K))co × [0, ℓ]→ (−→R ℓ(K))d1 × [0, ℓ] ⊂ −→P (K)d1 × [0,+∞[→ [0,+∞[.

Finally, take the image by the ∆-kelleyfication functor. The latter is a right adjoint
therefore it preserves binary products. Besides, [0, ℓ] and [0,+∞[ are already
∆-generated. Hence the proof is complete.

Notation 4.8. By adjunction, we obtain a continuous map

L̂ : −→R ℓ(K) −→ TOP([0, ℓ], [0,+∞[).
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Lemma 4.9. For all r ∈ −→R ℓ(K), for all ϕ ∈ G(ℓ′, ℓ), and for all t ∈ [0, ℓ′], one
has

L̂(rϕ)(t) = L̂(r)(ϕ(t)).

Proof. The L1-arc length between r(0) = r(ϕ(0)) and r(ϕ(t)) for the d-path r is
equal to the L1-arc length between (rϕ)(0) and (rϕ)(t) for the d-path rϕ.

Intuitively, the natural d-paths are the d-paths whose speed corresponds to the
L1-arc length.

Definition 4.10 ([36, Definition 2.14]). Let K be a precubical set. Let (α, β) ∈
K0 ×K0. A d-path γ of −→R ℓ

α,β(K) is natural if L̂(γ)(t) = t for all t ∈ [0, ℓ]. This
implies that ℓ is an integer (greater than or equal to 1). The subset of natural
d-paths of length n ⩾ 1 from α to β equipped with the ∆-kelleyfication of the
relative topology is denoted by −→N n

α,β(K). Let

−→
N ℓ(K) =

∐
(α,β)∈K0×K0

−→
N ℓ

α,β(K).

The following theorem is an improvement and an adaptation in our topological
setting of [36, Proposition 2.16]: the homotopy equivalence is replaced by a
homeomorphism thanks to the spaces G(ℓ, n).

Theorem 4.11. Let K be a precubical set. Let (α, β) ∈ K0 × K0. There is a
homeomorphism

Ψℓ : −→R ℓ
α,β(K)

∼=−→
∐
n⩾1
G(ℓ, n)×−→N n

α,β(K).

Proof. By Proposition 4.5, the space −→R ℓ
α,β(K) is the direct sum of the subspaces

−→
R ℓ,n

α,β(K) of tame regular d-paths of L1-arc length n for n ⩾ 1. It then suffices to
prove the homeomorphism −→R ℓ,n

α,β(K) ∼= G(ℓ, n)×−→N n
α,β(K) for all n ⩾ 1. Consider

the continuous map Φℓ : G(ℓ, n)×−→N n
α,β(K)→ −→R ℓ,n

α,β(K) defined by

Φℓ(ϕ, γ) = γϕ.

Since L̂(γϕ) = L̂(γ)ϕ = ϕ, the first equality by Lemma 4.9 and the second equality
since γ is natural, the d-path γϕ has no stop-interval, ϕ being bijective, and
it is therefore regular. We want to define a continuous map Ψℓ : −→R ℓ,n

α,β(K) →
G(ℓ, n)×−→N n

α,β(K). Let r ∈ −→R ℓ,n
α,β(K). Then L̂(r) : [0, ℓ]→ [0, n] is surjective and

nondecreasing. Let t, t′ ∈ [0, 1] such that L̂(r)(t) = L̂(r)(t′). Since r is regular, it
has no stop interval. It implies that t = t′. Thus, L̂(r) ∈ G(ℓ, n). Let

Ψℓ(r) = (L̂(r), rL̂(r)−1).
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The map Ψℓ is continuous by Proposition 4.7 and by [18, Lemma 6.2]. Then one
has

L̂(rL̂(r)−1)(t) = L̂(r)(L̂(r)−1(t)) = t

for all 0 ⩽ t ⩽ n, the first equality by Lemma 4.9 and the second equality by
algebraic simplification. This means that rL̂(r)−1 ∈

−→
N n

α,β(K): the path rL̂(r)−1

is called the naturalization of r in [36, Definition 2.14]. One has

ΦℓΨℓ(r) = Φℓ(L̂(r), rL̂(r)−1) = rL̂(r)−1L̂(r) = r,

the first equality by definition of Ψℓ, the second equality by definition of Φℓ and
the last equality by algebraic simplification. Let (ϕ, γ) ∈ G(ℓ, n)×−→N n

α,β(K). Since
L̂(γϕ) = ϕ, we obtain

ΨℓΦℓ(ϕ, γ) = Ψℓ(γϕ) = (L̂(γϕ), γϕL̂(γϕ)−1) = (ϕ, γ),

the first equality by definition of Φℓ, the second equality by definition of Ψℓ, and
the last equality by algebraic simplification.

Theorem 4.11 can be applied as follows.
Definition 4.12 ([21, Definition 7.1]). Let K be a precubical set. The tame
concrete realization of K is the flow |K|tc defined as follows:

|K|0tc = K0

∀(α, β) ∈ K0 ×K0, Pα,β |K|tc =
∐
n⩾1

−→
N n

α,β(K).

The composition of execution paths is induced by the Moore composition.
As noticed after [21, Theorem 7.7], the tame concrete realization functor is

not colimit-preserving in general. It is therefore not a realization functor for flows
in the sense of [21, Definition 3.6]. This means that it is difficult to calculate
for a general precubical set. However, [21, Theorem 7.7] proves that it coincides
with a colimit-realization functor when the precubical set is spatial in the sense
of Definition 6.4. Since most of the concrete examples coming from concurrency
theory are spatial precubical sets (see the comment after Definition 6.4), the tame
concrete realization of a precubical set is easily calculable for this kind of examples.
Proposition 4.13. For every precubical set K, there is the natural isomorphism
of flows

cat(|K|treg) ∼= |K|tc.

Proof. By Theorem 4.11, there is the homeomorphism

Ptop
α,β |K|

t
reg = −→R 1

α,β(K)
∼=−→

∐
n⩾1
G(1, n)×−→N n

α,β(K)

for all (α, β) ∈ K0×K0. The coequalizer above identifies (ψ, γ) ∈ G(1, n)×−→N n
α,β(K)

with (ψϕ, γ) ∈ G(1, n) × −→N n
α,β(K) for all ϕ ∈ G(1, 1). The proof is complete by

Definition 4.12.
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5. Cube chains and tame regular realization

Definition 5.1. The cocubical Moore flow MG |□[∗]|treg gives rise by Proposi-
tion 2.15 to a colimit-preserving functor [−]reg : □opSet→ GFlow defined by

[K]reg = lim−→
□[n]→K

MG |□[n]|treg

The following notations coincide with [21, Definition 4.8 and Definition 4.12]
by [21, Proposition 4.10 and Proposition 4.14].

Notation 5.2. Let Nn = −→N n
0n,1n

(□[n]) and ∂Nn = −→N n
0n,1n

(∂□[n]) for n ⩾ 0.
These spaces are first countable, ∆-generated and ∆-Hausdorff.

The continuous map

[0, 1]m1 ⊔ [0, 1]m2 −→ [0, 1]m1+m2

defined by taking the tuple (t1, . . . , tm1) to the tuple (t1, . . . , tm1 , 0m2) and the
tuple (t′1, . . . , t′m2

) to the tuple (1m1 , t
′
1, . . . , t

′
m2

) induces a continuous map

Nm1 ×Nm2 −→ Nm1+m2

by using the fact that the Moore composition of two natural d-paths is still a
natural d-path.

Cube chains are a powerful notion introduced by Ziemiański. We use the
presentation given in [44, Section 7].

Notation 5.3. Let Seq(n) be the set of sequences of positive integers

n = (n1, . . . , np)

with n1 + · · ·+ np = n. Let n = (n1, . . . , np) ∈ Seq(n). Then |n| = n is the length
of n and ℓ(n) = p is the number of elements of n.

Let K be a precubical set and A = a1 < · · · < ak ⊂ {1, . . . , n} and ϵ ∈ {0, 1}.
The iterated face map is defined by

∂ϵ
A = ∂ϵ

a1
∂ϵ

a2
. . . ∂ϵ

ak
.

Definition 5.4. Let n = (n1, . . . , np) ∈ Seq(n). The n-cube is the precubical set

□[n] = □[n1] ∗ · · · ∗□[np]

where the notation ∗ means that the final state 1ni of the precubical set □[ni] is
identified with the initial state 0ni+1 of the precubical set □[ni+1] for 1 ⩽ i ⩽ p− 1.
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Let K be a precubical set. Let α, β ∈ K0. Let n ⩾ 1. The small category
Chα,β(K,n) is defined as follows. The objects are the maps of precubical sets
□[n] → K with |n| = n where the initial state of □[n1] is mapped to α and the
final state of □[np] is mapped to β. Let A ⊔B = {1, . . . ,m1 +m2} be a partition
with the cardinal of A equal to m1 > 0 and the cardinal of B equal to m2 > 0. Let

ϕA,B : □[m1] ∗□[m2] −→ □[m1 +m2]

be the unique map of precubical sets such that

ϕA,B(Id[m1]) = ∂0
B(Id[m1+m2]),

ϕA,B(Id[m2]) = ∂1
A(Id[m1+m2]).

For i ∈ {1, . . . , ℓ(n)} and a partition A ⊔B = {1, . . . , ni}, let

δi,A,B = Id□[n1] ∗ · · · ∗ Id□[ni−1] ∗ϕA,B ∗ Id□[ni+1] ∗ · · · ∗ Id□[nℓ(n)] .

The morphisms are the commutative diagrams

□[na]

��

a // K

□[nb] b // K

where the left vertical map is a composite of maps of precubical sets of the form
δi,A,B .

We recall the definition of the functor K 7→ ||K|| from precubical sets to flows
introduced in [21, Section 6]. The set of states of ||K|| is K0. Consider the small
diagram of spaces

Dα,β(K,n) : Chα,β(K,n) −→ Top

defined by on objects by

Dα,β(K,n)(□[n]→ K) = Nn1 × · · · ×Nnp

with n = (n1, . . . , np) and
∑

i ni = n and on morphisms by using the maps

P|ϕA,B |nat : P(□[m1] ∗□[m2])→ P(□[m1 +m2])

which induce maps Nm1 × Nm2 → Nm1+m2 given by the Moore composition of
tame natural d-paths. The space of execution spaces Pα,β ||K|| is defined as follows:

Pα,β ||K|| =
∐
n⩾1

lim−→Dα,β(K,n).

The concatenation of tuples induces functors

Dα,β(K,m1)×Dβ,γ(K,m2)→ Dα,γ(K,m1 +m2),
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and, using [19, Proposition A.4], continuous maps

lim−→Dα,β(K,m1)× lim−→Dβ,γ(K,m2)→ lim−→Dα,γ(K,m1 +m2)

for all m1,m2 ⩾ 1. We obtain an associative composition map

Pα,β ||K|| × Pβ,γ ||K|| → Pα,γ ||K||

for all (α, β, γ) ∈ K0 ×K0 ×K0.
We want to define a Moore flow ||K||G by mimicking the above construction of

||K|| by using the following two rules: 1) any occurrence of the topological space
Nk is replaced by the G-space FGop

k Nk for all integers k ⩾ 1; 2) any product of
spaces of the form Nn1 × · · · ×Nnp is replaced by the tensor products of G-spaces
FGop

n1
Nn1 ⊗ · · · ⊗ FGop

np
Nnp

. The idea is to work with the biclosed semimonoidal
category ([Gop,Top]0,⊗) instead of with the biclosed (semi)monoidal category
(Top,×).

Let (α, β) ∈ K0 ×K0. Let

DG
α,β(K,n) : Chα,β(K,n) −→ [Gop,Top]0

be the functor defined on objects by

DG
α,β(K,n)(□[n]→ K) = FGop

n1
Nn1 ⊗ . . .⊗ FGop

np
Nnp

with n = (n1, . . . , np) and
∑

i ni = n and on morphisms by taking the map

ϕA,B : □[m1] ∗□[m2]→ □[m1 +m2]

to the composite map of G-spaces

FGop

m1
Nm1 ⊗ FGop

m1
Nm2

∼= FGop

m1+m2
(Nm1 ×Nm2)→ FGop

m1+m2
Nm1+m2

where the isomorphism is given by Proposition 3.10 and where the map Nm1 ×
Nm2 → Nm1+m2 is given by the Moore composition of tame natural d-paths. The
G-space of execution spaces Pα,β ||K||G is defined as follows:

Pα,β ||K||G =
∐
n⩾1

lim−→D
G
α,β(K,n).

There is the obvious proposition:

Proposition 5.5. Let Di : Ii → [Gop,Top]0 be two small diagrams of G-spaces
with i = 1, 2. Then the mappings (Mor(I) means the set of morphisms of a small
category I)

(i1, i2) ∈ I1 × I2 7→ D1(i1)⊗D2(i2)
(f, g) ∈ Mor(I1)×Mor(I2) 7→ f ⊗ g

yield a well defined small diagram of G-spaces denoted by

D1 ⊗D2 : I1 × I2 −→ [Gop,Top]0.
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Proposition 5.6 is the main fact which enables us to define the composition law
of the Moore flow ||K||G .

Proposition 5.6. Let K be a precubical set. Let α, β, γ ∈ K0. Let m1,m2 ⩾ 1.
There is the isomorphism of G-spaces

lim−→
(
DG

α,β(K,m1)⊗DG
β,γ(K,m2)

) ∼= (
lim−→D

G
α,β(K,m1)

)
⊗

(
lim−→D

G
β,γ(K,m2)

)
.

Proof. The semimonoidal category ([Gop,Top]0,⊗) being biclosed by Theorem 3.9,
write

[Gop,Top]0(D, {E,F}L) ∼= [Gop,Top]0(D ⊗ E,F ), (L)
[Gop,Top]0(E, {D,F}R) ∼= [Gop,Top]0(D ⊗ E,F ), (R)

D,E, F being three G-spaces. Then we obtain the sequence of bijections

[Gop,Top]0
((

lim−→D
G
α,β(K,m1)

)
⊗

(
lim−→D

G
β,γ(K,m2)

)
, F

)
∼= [Gop,Top]0

(
lim−→D

G
α,β(K,m1),

{
lim−→D

G
β,γ(K,m2), F

}
L

)
∼= lim←−

a1

[Gop,Top]0
(
DG

α,β(K,m1)(a1),
{

lim−→D
G
β,γ(K,m2), F

}
L

)
∼= lim←−

a1

[Gop,Top]0
(
DG

α,β(K,m1)(a1)⊗
(

lim−→D
G
β,γ(K,m2)

)
, F

)
∼= lim←−

a1

[Gop,Top]0
(

lim−→D
G
β,γ(K,m2),

{
DG

α,β(K,m1)(a1), F
}

R

)
∼= lim←−

a1

lim←−
a2

[Gop,Top]0
(
DG

β,γ(K,m2)(a2),
{
DG

α,β(K,m1)(a1), F
}

R

)
∼= lim←−

a1

lim←−
a2

[Gop,Top]0
(
DG

α,β(K,m1)(a1)⊗DG
β,γ(K,m2)(a2), F

)
∼= lim←−

(a1,a2)
[Gop,Top]0

(
DG

α,β(K,m1)(a1)⊗DG
β,γ(K,m2)(a2), F

)
∼= [Gop,Top]0

(
lim−→

(
DG

α,β(K,m1)⊗DG
β,γ(K,m2)

)
, F

)
for all G-spaces F , the first and third bijections by (L), the second and fifth and
eighth bijections by the universal property of the colimit, the fourth and sixth
bijections by (R) and finally the seventh bijection because limits commute with
each other. The proof is complete thanks to the Yoneda lemma.

We then consider the category of all small diagrams of G-spaces over all
small categories, denoted by Diag([Gop,Top]0), defined as follows. An object
is a functor F : I → [Gop,Top]0. A morphism from F : I1 → [Gop,Top]0 to
G : I2 → [Gop,Top]0 is a pair (f : I1 → I2, µ : F ⇒ G.f) where f is a functor
and µ is a natural transformation. If (g, ν) is a map from G : I2 → [Gop,Top]0 to
H : K → [Gop,Top]0, then the composite (g, ν).(f, µ) is defined by (g.f, (ν.f)⊙µ),
⊙ meaning the composition of natural transformations. The identity of F : I1 →
[Gop,Top]0 is the pair (IdI1 , IdF ). It is well-known that this defines an associative
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composition law (e.g. see [19, Appendix A]). The colimit construction induces a
functor

lim−→ : Diag([Gop,Top]0) −→ [Gop,Top]0
by [19, Proposition A.2]. We define a map of Diag([Gop,Top]0)

(fm1,m2
α,β,γ , µm1,m2

α,β,γ ) : DG
α,β(K,m1)⊗DG

β,γ(K,m2) −→ DG
α,γ(K,m1 +m2)

for all m1,m2 ⩾ 1 and all (α, β, γ) ∈ K0 ×K0 ×K0 as follows. The functor

fm1,m2
α,β,γ : Chα,β(K,m1)× Chβ,γ(K,m2)→ Chα,γ(K,m1 +m2)

takes a pair (□[m1] → K,□[m2] → K) to the map of precubical sets □[m1] ∗
□[m2]→ K and the natural transformation

µm1,m2
α,β,γ : DG

α,β(K,m1)⊗DG
β,γ(K,m2) =⇒ DG

α,γ(K,m1 +m2)fm1,m2
α,β,γ

is the identity. Using Proposition 5.6, we obtain a map of G-spaces

Pα,β ||K||G ⊗ Pβ,γ ||K||G −→ Pα,γ ||K||G

for all (α, β, γ) ∈ K0 ×K0 ×K0. It is strictly associative since ([Gop,Top]0,⊗) is
semimonoidal [17, Proposition 5.11]. We have obtained a well-defined Moore flow
||K||G .

Proposition 5.7. The mapping (ϕγ) 7→ γϕ yields the homeomorphisms

G(ℓ, n)×Nn
∼= Pℓ

0n,1n
MG |□[n]|treg

G(ℓ, n)× ∂Nn
∼= Pℓ

0n,1n
MG |∂□[n]|treg

for all n ⩾ 1 and all ℓ > 0. In particular, for ℓ = 1, we obtain the homeomorphisms

G(1, n)×Nn
∼= Ptop

0n,1n
|□[n]|treg

G(1, n)× ∂Nn
∼= Ptop

0n,1n
|∂□[n]|treg

for all n ⩾ 1. Note that for n = 1, ∂N1 = ∅ = Ptop
0n,1n

|∂□[n]|treg.

Proof. The first part is a consequence of Theorem 4.11 applied to the regular
d-paths of length ℓ and of L1-arc length n of the precubical sets □[n] and ∂□[n].
The particular case ℓ = 1 is a consequence of the definition of the functor MG :
GdTop→ GFlow

Corollary 5.8. For all n ⩾ 1, there are the isomorphisms of G-spaces

FGop

n Nn
∼= P0n,1n

MG |□[n]|treg,

FGop

n ∂Nn
∼= P0n,1nMG |∂□[n]|treg.
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Proof. It is a consequence of Proposition 5.7, of the fact that all regular d-paths
from 0n to 1n of |□[n]| are of L1-arc length n, and of the definition of the functor
MG : GdTop→ GFlow.

Theorem 5.9. There is a natural isomorphism of Moore flows

[K]reg
∼= ||K||G

for all precubical sets K.

The proof of Theorem 5.9 is roughly speaking the proof of [21, Proposi-
tion 6.2] and [21, Theorem 6.3] by working with the biclosed semimonoidal category
([Gop,Top]0,⊗) instead of with the biclosed (semi)monoidal category (Top,×).
Some details slightly change due to the fact that we work with Moore composition
of paths which have a length.

Proof. First of all, we prove that there is an isomorphism of cocubical Moore flows
[□[∗]]reg = MG |□[∗]|treg

∼= ||□[∗]||G . Let d1(α, β) = m. For α < β ∈ {0, 1}n for the
product order, the small category Chα,β(□[n], p) is empty if p ≠ m and it has a
terminal object □[m]→ □[n] corresponding to the subcube from α to β of □[n] if
p = m. We deduce the isomorphisms of G-spaces

Pα,β ||□[n]||G = lim−→
n=(n1,...,np),ℓ(n)=m

□[n]→□[n]∈Chα,β(□[n],m)

FGop

n1
Nn1 ⊗ · · · ⊗ FGop

np
Nnp

∼= lim−→
n=(n1,...,np),ℓ(n)=m

□[n]→□[n]∈Chα,β(□[n],m)

FGop

m (Nn1 × · · · ×Nnp
)

∼= FGop

m

(
lim−→

n=(n1,...,np),ℓ(n)=m
□[n]→□[n]∈Chα,β(□[n],m)

(Nn1 × · · · ×Nnp
)
)

∼= FGop

m Nm

∼= Pα,β [□[n]]reg,

the first equality by definition of ||□[n]||G , the first isomorphism by Proposition 3.10,
the second isomorphism by Proposition 3.8, the third isomorphism because of the
unique map c : □[m]→ □[n] which is the terminal object of Chα,β(□[n],m), and
the last isomorphism by Corollary 5.8 and by definition of the Moore flow [□[n]]reg.
The universal property of the colimit yields a natural map of Moore flows [K]reg →
||K||G , the functor [−]reg being colimit-preserving. Let n = (n1, . . . , np) ∈ Seq(n).
Every map of precubical sets □[n] → K gives rise to a map of Moore flows
[□[n]]reg → [K]reg. Let α0, α1, . . . , αp ∈ K0 the images by 0n1 , 1n1 = 0n2 , . . . , 1np

by this map of precubical sets. There are maps of Moore flows [□[ni]]reg → [K]reg

inducing maps of G-spaces

FGop

ni
Nni
∼= P0ni

,1ni
[□[ni]]reg −→ Pαi−1,αi

[K]reg
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for i ∈ {1, . . . , p}. Using the composition law of the Moore flow [K]reg, one obtains
a map of G-spaces

FGop

n1
Nn1 ⊗ · · · ⊗ FGop

np
Nnp

−→ P[K]reg.

Consequently, we obtain a cocone

(FGop

n1
Nn1 ⊗ · · · ⊗ FGop

np
Nnp

) □[n]→K
∈Chα,β(K,n)

•−→ P[K]reg

and then a map of Moore flows ||K||G → [K]reg which is bijective on states. The
composite map of Moore flows [K]reg → ||K||G → [K]reg is the identity of [K]reg

because it is the identity for K = □[n] for all n ⩾ 0. Consequently, for all (α, β) ∈
K0 ×K0, the composite continuous map P1

α,β [K]reg → P1
α,β ||K||G → P1

α,β [K]reg

is the identity of P1
α,β [K]reg: this means that the left-hand map P1

α,β [K]reg →
P1

α,β ||K||G is one-to-one and that the right-hand map P1
α,β ||K||G → P1

α,β [K]reg is
onto. Consider an element γ ∈ P1

α,β ||K||G . It has a representative of the form
γ ∈ FGop

n1
Nn1 ⊗ · · · ⊗ FGop

np
Nnp

for some map □[n] → K with n = (n1, . . . , np) ∈
Seq(n). The same argument as above yields an element of P1

α,β [K]reg. This
means that the left-hand map P1

α,β [K]reg → P1
α,β ||K||G is onto. It implies that the

map P1
α,β [K]reg → P1

α,β ||K||G is a homeomorphism, thus the map Pℓ
α,β [K]reg →

Pℓ
α,β ||K||G is a homeomorphism for all ℓ > 0. The proof is complete.

6. Space of tame regular d-paths and m-cofibrancy

Some additional information about cube chains is required before proving Theo-
rem 6.5.

Proposition 6.1. Let K be a precubical set. Let (α, β) ∈ K0 ×K0. Then there is
the isomorphism of G-spaces

FGop

n

(
lim−→Dα,β(K,n)

) ∼= lim−→D
G
α,β(K,n)

for all integers n ⩾ 1.

Proof. Let n = (n1, . . . , np) and
∑

i ni = n. Then

DG
α,β(K,n)(□[n]→ K) = FGop

n1
Nn1 ⊗ · · · ⊗ FGop

np
Nnp

∼= FGop

n (Nn1 × · · · ×Nnp)
= FGop

n Dα,β(K,n)(□[n]→ K),

the first equality by definition of DG
α,β(K,n), the isomorphism by Proposition 3.10

and the last equality by definition of DG
α,β(K,n). The conclusion follows from

Proposition 3.8.
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Proposition 6.2. For all precubical sets K, there is the natural isomorphism of
flows

M!(||K||G) ∼= ||K||.

Proof. Let (α, β) ∈ K0 ×K0. There is the sequence of homeomorphisms

Pα,βM!(||K||G) ∼= lim−→
(
Pα,β ||K||G

)
∼=

∐
n⩾1

lim−→

(
FGop

n

(
lim−→Dα,β(K,n)

))
∼=

∐
n⩾1

lim−→Dα,β(K,n)

∼= Pα,β ||K||,

the first homeomorphism by definition of M!, the second homeomorphism by Propo-
sition 6.1 and since colimits commute with coproducts, the third homeomorphism
by [16, Proposition 5.8], and the last homeomorphism by definition of the flow
||K||.

Notation 6.3. [21, Notation A.1] Let n ⩾ 3. Let Bn be the set of precubical
sets A such that A ⊂ ∂□[n] and such that |A|geom ⊂ [0, 1]n contains a d-path of
−→
N n

0n,1n
(□[n]) which does not intersect {0, 1}n\{0n, 1n}. In particular, this means

that 0n, 1n are two vertices of A. One has ∂□[n] ∈ Bn.

Definition 6.4. A precubical set is spatial if it is orthogonal to the set of maps of
precubical sets {

□[n] ⊔A □[n] −→ □[n] | n ⩾ 3 and A ∈ Bn

}
.

Every proper precubical set in the sense of [43, page 499] is spatial by [21,
Proposition 7.5]. In particular, for all n ⩾ 0, the precubical sets ∂□[n] and □[n] are
spatial, as well as all geometric precubical sets in the sense of [24, Definition 1.18]
and all non-positively curved precubical sets in the sense of [24, Definition 1.28],
since they are proper. Also every 2-dimensional precubical set is spatial by [21,
Corollary A.3].

Theorem 6.5. For all precubical sets K, there is a natural weak equivalence of
the h-model structure of Moore flows

[K]reg −→MG(|K|treg).

Moreover, the weak equivalence above is an isomorphism of Moore flows if and only
if K is spatial.

Proof. From the cocone(
MG |□[n]|treg

)
□[n]→K

•−→MG |K|treg
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we deduce the natural map of Moore flows g : [K]reg −→MG |K|treg. It is bijective
on states. Let (α, β) ∈ K0 ×K0. Consider the following commutative diagram of
topological spaces∐
n⩾1
G(1, n)× lim−→Dα,β(K,n)

h1

��

h3 //
∐
n⩾1
G(1, n)×−→N n

α,β(K)

Φ1

��

P1
α,β ||K||G

h2 // P1
α,β [K]reg

P1
α,βg
// P1

α,βMG |K|treg = −→R 1
α,β(K)

where 1) the map Φ1 is the homeomorphism of Theorem 4.11, 2) the map h1 is
the homeomorphism of Proposition 6.1, 3) the map h2 is the homeomorphism
given by Theorem 5.9, and 4) the map h3 is induced by the continuous map
Dα,β(K,n)→ −→N n

α,β(K) given by the Moore composition of tame natural d-paths
defined as follows. Let n = (n1, . . . , np), n =

∑
i ni and consider a map □[n] →

K ∈ Chα,β(K,n). It gives rise to a sequence of cubes (c1, . . . , cp) of K. The
continuous map Dα,β(K,n)→ −→N n

α,β(K) takes

(γ1, . . . , γp) ∈ Dα,β(K,n)(□[n]→ K) = Nn1 × · · · ×Nnp

to the Moore composition of tame natural d-paths

(|c1|geomγ1) ∗ · · · ∗ (|cp|geomγp) ∈ −→N n
α,β(K)

which is denoted by [c1; γ1] ∗ · · · [cp; γp] in [21]. By [21, Theorem 7.7], the map h3
is a homeomorphism when K is spatial. For a general precubical set K, the map
h3 is a homotopy equivalence by [21, Theorem 7.8]. Hence the first part of the
proof is complete.

Conversely, suppose that the natural map [K]reg →MG(|K|treg) is an isomor-
phism of Moore flows. Then there is the sequence of isomorphisms of flows

||K|| ∼= M!||K||G ∼= M![K]reg

∼=−→M!MG(|K|treg) ∼= cat(|K|treg) ∼= |K|tc,

the first isomorphism by Proposition 6.2, the second isomorphism by Theorem 5.9,
the third isomorphism by hypothesis, the fourth isomorphism by Theorem 3.17 and
the last isomorphism by Proposition 4.13. This isomorphism of flows from ||K|| to
|K|tc is the identity of K0 on states, and for all (α, β) ∈ K0×K0, it takes an element
of Pα,β ||K|| ∼=

∐
n⩾1 lim−→Dα,β(K,n) to an element of Pα,β |K|tc =

∐
n⩾1
−→
N n

α,β(K)
as described above. By [21, Theorem A.2], the precubical set K is spatial.

A by-product of the calculation made in the proof of Theorem 6.5 is the following
fact. The image by the functor M! : GFlow → Flow of the map [K]reg −→
MG(|K|treg) is the map of flows ||K|| → |K|tc which is induced by the maps
Nn1 × · · · ×Nnp

→
−→
N n

α,β(K) for □[n] → K ∈ Chα,β(K,n) with n = (n1, . . . , np)
and n =

∑
i ni as described in the core of the proof. It is a weak equivalence of

the h-model structure of flows, and an isomorphism if and only if K is spatial by
[21, Theorem 7.6 and Theorem 7.7].
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Proposition 6.6. For all n ⩾ 1, there is the pushout diagram of Moore flows

Glob(FGop

n ∂Nn)

��

// [∂□[n]]reg

��

Glob(FGop

n Nn) // [□[n]]reg

Proof. By Corollary 5.8 and □[n] and ∂□[n] being spatial for all n ⩾ 0, we obtain
using Theorem 6.5 the commutative diagram of G-spaces

FGop

n ∂Nn

��

∼= // P0n,1n [∂□[n]]reg

��

FGop

n Nn

∼= // P0n,1n
[□[n]]reg

where the two horizontal maps are isomorphisms of G-spaces. This commutative
diagram of G-spaces is therefore a pushout diagram and the proof is complete.

Theorem 6.7. For all precubical sets K, the Moore flow [K]reg is m-cofibrant.

Proof. A map of Moore flows f : X → Y satisfies the RLP with respect to the
map of Moore flows Glob(FGop

n ∂Nn) → Glob(FGop

n Nn) if and only if for each
(α, β) ∈ K0 × K0, the map of G-spaces f : Pα,βX → Pf(α),f(β)Y satisfies the
RLP with respect to the map of G-spaces FGop

n ∂Nn → FGop

n Nn. Therefore, by
Proposition 3.8, a map of Moore flows f : X → Y satisfies the RLP with respect
to the map of Moore flows Glob(FGop

n ∂Nn)→ Glob(FGop

n Nn) if and only the map
of topological spaces Pn

α,βX → Pn
f(α),f(β)Y satisfies the RLP with respect to the

map of topological spaces ∂Nn → Nn. By [21, Theorem 5.9], the latter map is an
m-cofibration of spaces. By Theorem 3.19, the trivial fibrations of the m-model
structures of Moore flows are objectwise. We then deduce that the map of Moore
flows Glob(FGop

n ∂Nn)→ Glob(FGop

n Nn) is an m-cofibration of Moore flows for all
n ⩾ 1. Using Proposition 6.6, and since [□[0]]reg = {0} (the Moore flow without
execution paths and one state 0) is m-cofibrant, we deduce that for all precubical
sets K, the Moore flow [K]reg is m-cofibrant.

Corollary 6.8. Let K be a precubical set. Let (α, β) ∈ K0 ×K0. The space of
tame regular d-paths from α to β in the geometric realization of K is homotopy
equivalent to a CW-complex.

Proof. The Moore flow MG [K]reg is m-cofibrant by Theorem 6.7. Thus it is weakly
equivalent in the h-model structure of Moore flows to a q-cofibrant Moore flow X
by [6, Corollary 3.7]. The latter has projective q-cofibrant G-spaces of execution
paths by [17, Theorem 9.11]. It implies that Pα,βX is injective m-cofibrant by
[16, Corollary 7.2]. Thus P1

α,βX is an m-cofibrant topological space. Since weak
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equivalences of the projective h-model structure of G-spaces are objectwise homotopy
equivalences, it implies that P1

α,βMG [K]reg is homotopy equivalent to P1
α,βX. By

Theorem 6.5, P1
α,βMG [K]reg is homotopy equivalent to Ptop

α,β |K|treg. When α = β,
the space of tame regular d-paths from α to β is homeomorphic to the disjoint
union of {α} and the space of nonconstant tame regular d-paths from α to β. For
α ̸= β, the latter remark is pointless. Hence the proof is complete.

Corollary 6.8 was previously established by several other authors by explicitly
constructing homotopy equivalences with CW-complexes. At first, the adjective
regular can be removed from the statement of Corollary 6.8 thanks to a result
due to Raussen [36, Proposition 2.16]: see the proof of Theorem 7.2. The first
method to establish Corollary 6.8 without the adjective regular is due to Ziemiański
[44, Theorem 6.1, Theorem 7.5 and Theorem 7.6]. It consists of proving that
the space of tame d-paths from α to β in the geometric realization is homotopy
equivalent to the classifying space of a small category, namely the small category
of cube chains from α to β (as already pointed before [21, Corollary 7.9], the
word “weak homotopy equivalence” can be replaced by “homotopy equivalence”
in [44, Theorem 7.5 and Theorem 7.6]). Another method is proposed by Paliga
and Ziemiański in [34, Proposition 6.5], which uses another result due to Raussen,
namely [36, Proposition 3.15]. However, it works only for finite precubical sets.
Finally, another method is expounded by Raussen in [38] which works only for
proper non-self-linked precubical sets.

The reader may wonder whether the multipointed d-space |K|treg is m-cofibrant
as well for all precubical sets K. We are not even able to prove that it is always
h-cofibrant. We can only prove what follows:

Proposition 6.9. Let K be a spatial precubical set. Then the multipointed d-space
|K|treg is m-cofibrant if it is h-cofibrant.

Proof. The functor MG : GdTop → GFlow takes (trivial resp.) m-fibrations of
multipointed d-spaces to (trivial resp.) m-fibrations of Moore flows by definition of
the m-model structures (see Theorem 2.7 and Theorem 3.19). Thus, the functor
MG : GdTop→ GFlow is a right Quillen adjoint between the m-model structures.
We have the commutative diagram of right Quillen adjoints

GdTopm

IdGdTop

��

MG
// GFlowm

IdGFlow

��

GdTopq MG
GFlowq

The bottom horizontal arrow is a right Quillen equivalence by [18, Theorem 8.1].
It is a general fact about mixed model structures that the two vertical arrows are
right Quillen equivalences. Thus, the top right Quillen adjoint is a right Quillen
equivalence. All multipointed d-spaces are m-fibrant by Theorem 2.7. Since the



146 P. Gaucher

Moore flow [K]reg is m-cofibrant by Theorem 6.7, we deduce that the counit map

MG
! (MG |K|treg) ∼= MG

! ([K]reg) −→ |K|treg,

is a weak equivalence of the m-model structure of multipointed d-spaces by Theo-
rem 6.5, the precubical set K being spatial by hypothesis. Moreover, MG

! being a
left Quillen adjoint, the multipointed d-space MG

! (MG |K|treg) is m-cofibrant. For
all (α, β) ∈ K0 ×K0, we deduce the weak homotopy equivalence

Ptop
α,βM

G
! (MG |K|treg) −→ Ptop

α,β |K|
t
reg.

By [20, Theorem 8.6], the topological space Ptop
α,βM

G
! (MG |K|treg) is m-cofibrant.

By Corollary 6.8, the space Ptop
α,β |K|treg is an m-cofibrant space. Thus the weak

homotopy equivalence

Ptop
α,βM

G
! (MG |K|treg) −→ Ptop

α,β |K|
t
reg.

is a weak homotopy equivalence between m-cofibrant spaces. By [6, Corollary 3.4],
the latter map is therefore a homotopy equivalence. This means that the counit map
MG

! (MG |K|treg)→ |K|treg is a weak equivalence of the h-model structure of GdTop
when K is spatial. This implies by [6, Corollary 3.7] that the multipointed d-space
|K|treg is m-cofibrant if it is h-cofibrant, the multipointed d-space MG

! (MG |K|treg)
being m-cofibrant.

The example of non h-cofibrant multipointed d-space provided in [20, Proposi-
tion 6.19] suggests that the h-cofibrant objects are the objects without algebraic
relations. According to this intuition, we have the following conjecture:

Conjecture 6.10. For all precubical sets K, the multipointed d-space |K|treg is
h-cofibrant.

7. The regular realization of a precubical set

The regular realization of a precubical set is defined as follows:

Definition 7.1. Let K be a precubical set. The regular realization |K|reg of K is
the multipointed d-space having the underlying space |K|geom, the set of states X0

and such that the set of execution paths from α to β consists of the nonconstant
regular d-paths from α to β in the geometric realization of K.

The multipointed d-space |K|reg is well defined for all precubical sets K because
the normalized composition of two regular d-paths in the geometric realization of a
precubical set is regular and because the reparametrization of a regular d-path by
a homeomorphism is regular. There is an isomorphism of cocubical multipointed
d-spaces |□[∗]|treg

∼= |□[∗]|reg by Proposition 2.22. By the universal property of the
colimits, we obtain a natural map of multipointed d-spaces

|K|treg −→ |K|reg.
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Theorem 7.2. For all precubical sets K, there is a natural weak equivalence for
the h-model structure of Moore flows

MG(|K|treg) −→MG(|K|reg).

Proof. The image by the functor MG of the natural map of multipointed d-spaces
|K|treg → |K|reg preserves the set of states. For each (α, β) ∈ K0, the continuous
map P1

α,βMG |K|treg ⊂ P1
α,βMG |K|reg is the inclusion of the space of nonconstant

tame regular d-paths from α to β into the space of nonconstant regular d-paths
from α to β, both equipped with the ∆-kellefication of the compact-open topology.
By [36, Proposition 2.16], the inclusion of the space of regular d-paths from α to β
into the space of d-paths from α to β has an inverse up to homotopy. The latter is a
reparametrization of Moore d-paths (it is the composite of two reparametrizations,
the normalization and the naturalization: see Raussen’s proof). It therefore
preserves tameness. Moreover, the homotopies with the identities are homotopies
between reparametrizations: see Part 3 of the proof of [36, Proposition 2.16]. This
implies that they preserve tameness as well. This implies that the inclusion of the
space of tame regular d-paths from α to β into the space of tame d-paths from α to β
has an inverse up to homotopy as well. The paper [36] works with the compact-open
topology, which is not an issue thanks to Proposition 1.1. Besides, working with
nonconstant d-paths only is not an issue either in the case of precubical sets: indeed
either α ̸= β and there is no constant d-paths from α to β or α = β and the unique
constant d-path is in a distinct path-connected component. Thus, the continuous
map P1

α,βMG |K|treg ⊂ P1
α,βMG |K|reg is homotopic to the inclusion of the space of

nonconstant tame d-paths from α to β into the space of nonconstant d-paths from
α to β: the adjective regular can be omitted. Thanks to the tamification theorem
[44, Theorem 6.1] and the two-out-of-three property for homotopy equivalences, we
then obtain that the continuous map P1

α,βMG |K|treg ⊂ P1
α,βMG |K|reg is a homotopy

equivalence. We obtain a weak equivalence of the projective h-model structure
of G-spaces Pα,βMG |K|treg ⊂ Pα,βMG |K|reg for each (α, β) ∈ K0 ×K0. Hence the
proof is complete.

There is no reason for the weak equivalence MG(|K|treg) → MG(|K|reg) to
become an isomorphism when K is spatial: the precubical set ∂□[3] is spatial by [21,
Corollary A.3] and Figure 3 proves that the map MG(|∂□[3]|treg)→MG(|∂□[3]|reg)
is not an isomorphism.

Corollary 7.3. For all precubical sets K, there is a natural weak equivalence for
the h-model structure of multipointed d-spaces

|K|treg −→ |K|reg.

Proof. A straightforward consequence of the definition of a weak equivalence in the
h-model structures of multipointed d-spaces and Moore flows is that the functor
MG : GdTop to GFlow reflects weak equivalences of the h-model structures (it is
also true for the q-model structures and for the m-model structures). Thanks to
Theorem 7.2, the proof is complete.
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Figure 3: Non-tame d-path from 03 to 13 in the boundary of the 3-cube

Corollary 7.4. For all precubical sets K, there exists a natural weak equivalence
of the h-model structure of Moore flows

[K]reg −→MG(|K|reg).

Proof. It is a consequence of Theorem 6.5 and Theorem 7.2.

Corollary 6.8 gives a pure model categorical proof of the fact that the space
of tame regular d-paths between two vertices of a precubical set in its geometric
realization is homotopy equivalent to a CW-complex. On the other hand, we do
not know any pure model categorical proof of the same fact for the space of all
regular d-paths between two vertices. We can only deduce it from Corollary 6.8
and Theorem 7.2, the latter relying on results from Raussen and Ziemiański.

The following observations enable us to better understand the interaction
between model categories and tameness. There exists a combinatorial model
structure on multipointed d-spaces such that the multipointed d-spaces |K|treg are
cofibrant for all precubical sets K. Indeed, it suffices to consider the minimal
model structure in the sense of [25, Theorem 1.4] with respect to the set of
maps {|∂□[n]|treg ⊂ |□[n]|treg | n ⩾ 0} with or without the additional map R :
{0, 1} → {0}. Note that the multipointed d-spaces |K|treg are in general not
q-cofibrant for the q-model structure. In the same way, we could consider the
minimal model structure on multipointed d-spaces with respect to the set I
of maps {|∂□[n]|reg ⊂ |□[n]|reg | n ⩾ 0} with or without the additional map
R : {0, 1} → {0}. However, it turns out that for all n ⩾ 3, |∂□[n]|reg is not
I-cofibrant by Proposition 7.5. This implies that [25, Theorem 1.4] cannot even
be used to prove its existence. The best that can be said is that the latter model
structure exists by assuming Vopěnka’s principle thanks to [41, Theorem 2.2].

Before proving Proposition 7.5, let us start by a remark about I-cellular
multipointed d-spaces. The underlying space of an I-cellular multipointed d-space
is not necessarily the geometric realization of a precubical set because the attaching
maps are not necessarily images of maps of precubical sets. However, the notion
of tameness can be easily generalized to them. Consider a pushout diagram of
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multipointed d-spaces of the form

|∂□[n]|reg

��

// X

��

|□[n]|reg
// Y

with n ⩾ 0 such that X is I-cellular and such that all its execution paths are tame.
By definition of |□[n]|reg = |□[n]|treg for all n ⩾ 0 (see Proposition 2.22), and
since colimits are calculated by taking a final structure as explained at the end of
Section 2, we deduce that all execution paths of Y are tame even if |∂□[n]|reg may
contain non-tame execution paths: for example the non-tame d-path depicted in
Figure 3 becomes tame if ∂□[3] is embedded in □[3]. By an immediate transfinite
induction, we obtain that all execution paths of an I-cellular multipointed d-space
are tame. The converse is false. Indeed, the multipointed d-space |□[3]|reg is not
I-cellular, |∂□[3]|reg being not I-cellular, and all its execution paths are tame.
One can also easily prove by transfinite induction on the I-cellular decomposition
of an I-cellular multipointed d-space X that X0 is a discrete subspace of |X| and
that |X| is Hausdorff. Recall that, for a general multipointed d-space X, X0 is not
necessarily discrete: see Figure 1.
Proposition 7.5. Let n ⩾ 3. The multipointed d-space |∂□[n]|reg is not I-
cofibrant.
Sketch of proof. The multipointed d-space |∂□[n]|reg is not I-cellular precisely
because it contains non-tame execution paths (see Figure 3 for the case n = 3).
Suppose that |∂□[n]|reg is a retract of an I-cellular multipointed d-space X. This
means that the identity of |∂□[n]|reg factors as a composite

|∂□[n]|reg −→ X −→ |∂□[n]|reg.

The left-hand map being one-to-one and |X| being Hausdorff, this implies that the
compact |∂□[n]|geom, which is homeomorphic to the (n− 1)-dimensional sphere
Sn−1, is homeomorphic to its compact image K in |X|. The composite map of
groups

Z ∼= πn−1(|∂□[n]|geom) −→ πn−1(|X|) −→ πn−1(|∂□[n]|geom) ∼= Z

being the identity of Z (πn−1 denotes the (n−1)-th homotopy group and we choose
any point of |∂□[n]|geom as a base point), we deduce that the compact K ⊂ |X| is
not contained in a p-cube for some p ⩾ n: intuitively the hole cannot be filled in
|X|. Now, recall that every execution path of |∂□[n]|reg is taken to an execution
path of X which is necessarily tame because, by hypothesis, X is I-cellular. By
deforming continuously a non-tame d-path from 0n to 1n in |∂□[n]|geom to obtain
a family (γu)u∈[0,1] of non-tame d-paths from 0n to 1n in |∂□[n]|geom such that
u ̸= u′ implies γu([0, 1]) ∩ γu′([0, 1]) = {0n, 1n}, we then build an infinite set
of elements of X0 in K, the left-hand map |∂□[n]|geom → |X| being one-to-one.
However, X0 ∩K is finite, X0 being discrete. It is a contradiction.
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[12] R. Garner, M. Kȩdziorek, and E. Riehl. Lifting accessible model structures. J. Topol.,
13(1):59–76, 2020. doi:10.1112/topo.12123.

[13] P. Gaucher. A model category for the homotopy theory of concurrency. Homology Homotopy
Appl., 5(1):p.549–599, 2003. doi:10.4310/hha.2003.v5.n1.a20.

[14] P. Gaucher. Globular realization and cubical underlying homotopy type of time flow of
process algebra. New York J. Math., 14:101–137, 2008.

[15] P. Gaucher. Homotopical interpretation of globular complex by multipointed d-space. Theory
Appl. Categ., 22(22):588–621, 2009.

[16] P. Gaucher. Enriched diagrams of topological spaces over locally contractible enriched
categories. New York J. Math., 25:1485–1510, 2019.

[17] P. Gaucher. Homotopy theory of Moore flows (I). Compositionality, 3(3), 2021.
doi:10.32408/compositionality-3-3.

[18] P. Gaucher. Homotopy theory of Moore flows (II). Extr. Math., 36(2):157–239, 2021.
doi:10.17398/2605-5686.36.2.157.

[19] P. Gaucher. Left properness of flows. Theory Appl. Categ., 37(19):562–612, 2021.
[20] P. Gaucher. Six model categories for directed homotopy. Categ. Gen. Algebr. Struct. Appl.,

15(1):145–181, 2021. doi:10.52547/cgasa.15.1.145.
[21] P. Gaucher. Comparing cubical and globular directed paths. Fund. Math., 262(3):259–286,

2023. doi:10.4064/fm219-3-2023.
[22] P. Gaucher. Comparing the non-unital and unital settings for directed homotopy. Cah.

Topol. Géom. Différ. Catég., LXIV-2:176–197, 2023.
[23] P. Gaucher. Homotopy theory of Moore flows (III), 2023. doi:10.48550/arXiv.2303.16174.

https://doi.org/10.1017/cbo9780511600579.004
https://doi.org/10.2140/agt.2013.13.1089
https://doi.org/10.1017/cbo9780511525865
https://doi.org/10.1016/0022-4049(81)90018-9
https://doi.org/10.1016/j.topol.2005.02.004
https://doi.org/10.1090/surv/113
https://doi.org/10.1007/978-3-319-15398-8
https://doi.org/10.1017/cbo9780511983948
https://doi.org/10.1112/topo.12123
https://doi.org/10.4310/hha.2003.v5.n1.a20
https://doi.org/10.32408/compositionality-3-3
https://doi.org/10.17398/2605-5686.36.2.157
https://doi.org/10.52547/cgasa.15.1.145
https://doi.org/10.4064/fm219-3-2023
https://doi.org/10.48550/arXiv.2303.16174


Regular directed path and Moore flow 151

[24] E. Goubault and S. Mimram. Directed homotopy in non-positively curved spaces. Log.
Methods Comput. Sci., 16(3):55, 2020. Id/No 4. doi:10.23638/LMCS-16(3:4)2020.

[25] S. Henry. Minimal model structures, 2020. doi:10.48550/arXiv.2011.13408.
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